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INVESTIGATION ON THE TRENDS OF PARTICULAR
COSINE PRODUCTS

CHANYEON HWANG

ABSTRACT. This paper aims to investigate the trend exhibited in the particu-
late cosine products of the general form Hg'j(lnfl) oS (ank) It will be.shown
that this particular product of cosines is related to the exponential.of 2 and the
greatest common divisor between the non-zero integers n,m where/n is odd-
Hence, the product can be connected to the greatest common divisor function,

the prime counting function and other topics in number theory:
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1. INTRODUCTION

The following cosine product identities can be found in several papers concerned
with the factorization of Fibonacci numbers [1], [2]:

(n—1)/2 Tk
H 2 cos (—) =1, n odd (1.1)
n

where the relationship between similar trigonometric expressions and the Fi-
bonacci, Lucas numbers have been extensively studied. However, the aesthet-
ically pleasing expression (1.1), referred to as the “Grandma’s Identity” by Steve
Humble in his 88.62 note on the Cambridge Mathematical Gazette [3], have been

far less studied, being regarded as simply an aside in other investigations. This
1
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paper aims to expand upon previous discoveries regarding the identity, deriving
the following general expression of the product for all nonzero integers n, m:

n—1

. k 15125 if m odd

Hcos (m) = (- )[41H[n2 1’] 1 o (1.2)
Pl n (=1)' = 22", if m even

where n,m are nonzero integers, n is odd and ¢t = ged(n,m). By rearranging,
we can obtain the following trigonometric expression for the greatest’common
n—1

divisor between n, m:
22: log |cos mk (1.3)
2 & & n :

which leads to the following equation, where the roeeots. of the equation p =
p1, P2, ... are the odd prime numbers.
1
oS ( ]W)‘ =0 (1.4)
p

—1\?
(%) log2 + Z log
2. PROOF FOR m.= 1

ged(m,n) =

1<i,j<(p—1)/2

We will start the proof of the general.case(1.2)with a-proof for the case where
m = 1, which is equivalent to the expression in (1.1). The simplest way of proving
this expression, as suggested by [3]48 a proof involving the roots of unity. Given
the solutions of the complex equation z" =.1"are 21, 25 - - - 2,, it is known that the
equation can be factored into:

M=l =(z=z ) (z=2) - (2—2,) =0

The solutions of the equation z" = 1:are referred to as the roots of unity and
have the form z, = exp (2’”k) whete £k = 1,2,---n and ¢« = v/—1. Then by the
Euler’s Formula we«know that:

2mik 2mik
zk:cos< - )+isin( m ) (2.1)
n n

We see that-z = 1 is/a seolution to the equation when k& = n, therefore we can
substitute z, = 1 toderive the following expression:

S BURELCEE EREREY | (R
k=1

Then by substituting (2.1) for z; and using the double angle identities for sine
and cosine we obtain the following:

n—1
| k k k
Zz_ 1 = ,H <z—|— 1 — 2cos? <%) — 2¢sin <%> cos <%>)

As Vz € R the above equation is satisfied, we can set z = —1:

e (2) - (2o ()
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By rearranging and using Euler’s Formula again, we obtain:

(_11# = (—2)"! ﬁcos (%k) ﬁexp (%) (2.2)

k=1 k=1

Using property of exponents, we can simplify the latter product, as shown:

n—1 . n—1 . . n—1
ik ik T im(n—1) -1
,!:ll exp ( - ) exp ( E - > exp (n kEZI ) e 2 (=1)=

k=1

Substituting the above into (2.2), we obtain the followingexpression:

n—1

(_11# = (2" (-)F kli[lcos (%’“)

Rearranging, we derive the following:

n—1

- k n
IT cos (”—) — oltn(11)'5" (2.3)
n
k=1
From trigonometric identities, we obtain.the following property of cosines:
cos(z + my) = (—=1)Y cos(@) VyeZ (2.4)

Using this property, we see that:

n—1 nTil n—1 nTil n—1
Tk wk 7k k m(n —k)
H cosS (7) = H cos (7) H coS (7) = cos (7) H — Cos (—
k=1 k=1 oL k=1 p=ntl
Note that for | =n—k:
1 nxt nrt
. ﬂ(ﬂ—k)) (Wl) <7rk>
H coS <— = H cos| — | = H cos | —
n =1 n k=1 n

_n+1
k= 2

By substituting and rearranging we arrive at:

Finally;. by substituting (2.3) for the cosine product, we arrive at our desired
equation (1.1):
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3. PROOF FOR GENERAL CASE m € Z

3.1. Proof for Magnitude. It can be noted from the generalized expression
(1.2) that the absolute value of the cosine product equals the following:

z (mwk) 2 (m’ﬂk) ol5n (1)

I I cos [ —— || = | | cOS — 95" ‘
n n'

k=1 k=1

where t = ged(m,n), m = tm/, n = tn’. We will attempt to prove this Vm,n-€
7", which can be expanded to m,n € Z where m,n # 0 by the even propétty of
the cosine function.

Lemma 3.1. Letn’ € ZT and m' € Z* satisfy ged(m’,n') ="1. ‘Let the remainder
function R : ZT — {0,...,n' — 1} be:

R@y:m%—ﬂ{m%J

n/

Then, the Lemma states that:
{RmM'k) |k=1,....n  —=1}={1,...,nl—1}=5

Proof. Let a,b be distinct integers in the set.,S. Without loss of generality, we
can set b > a. As both a,b € S, we know that b~ a < n’ or that b = a + In’
where 0 < | < 1. Then we can constructthe following equalities:

m'b = pn" +R(m'b). pEZ

m'a=qn' + R(m'a) q€Z

<~ m'(b=a) = (p~qn"+ R(m'b) — R(m'a)
Assume that R(m’b) = R(m'a) for seme a,b. Then, we see that:
m'(b—"a)y=m'ln"=(p—qgn' < ml=p—qel

This implies:

ﬁ’_m’l_p—q M

. n'l b—a N

Where M, N € Z and’M =m/'l < m' and N = n'l < n',asl € (0,1). This
suggests that the fraction ZL—,/ can be further simplified to %, a contradiction to
the original condition gcd(m’,n’) = 1. Therefore, assumption R(m’b) = R(m/a)
is false, or R(m/b) % R(m'a) Va,b € S. As R(m'k) # 0 for k € S, R(m’k) would
give distinct values from the set S, a set of all possible nonzero remainders when
divided by n', fork € S, i.e.:

{RmM'k) |k=1,....n  =1}={1,...,n =1}
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From Equation (2.4), we derive that:
o (m m)
H cos

If we let v be the quotient when m k: is divided by n’, m’k —yn’ = R(m'k). Then
by using Lemma (3.1), we derive that:
H oS

o (25 e (25 -

From replacing n with n” in (2.3), we see that the above is equal to the following:

(3.2)

Then:

We already know from (2.4) that ‘COS (

)‘ = lcos (—m,”(:,/_k» .
n

n'—1 n'—1 %("/’
m'nk\| m'a(n"— k) \ |\ m/'mk!
11 ( & ) - 10 (T) T ( T )

k:%(n’—&—l) k‘:%(n’—&-l) k'=1
for n’ > 3, where k' — n’ — k. Using"(3:2), this impliés that:
4 n'—1 2
e mk = m'mk -
H COS(T) = Hcos( — > =2
k=21 (n/+1) k=1
2t N
m/mk ™ m'm(n —k .y
= H cos ( W ) . H cos <%> — 25 (3.3)
k=1 k=2 (n'+1)
For the case in“which t = 1, n’.= n,m’ = m and the above equation simply

becomes the desired Equation (3.1):

n/—l n—1

2 miTk 2 mmk 1-n ton

Hcos ; :”cos — )| =22 =272
n n

k=1 k=1

In the case where ¢ > 1, we can consider the following equality:

L((2a+1n"=1) 3 ((2a+1)n'—1)

H %os <m7;7:'k) _ H cos (m’ﬂ'(l{} —an’ ) H oS (m Wk) _ 21777/

k=an’+1 k=an’+1

where k — an’ — k and « € Z. Similarly, we know that:

(a+1)n/ m,ﬂ'k 17n/
H CoS - =22
n

k=1(2a+1)n'+1)
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Then we can construct the following equality for a > 1:

L((2a+1)n'—1

3 (Gt m'mk

| | cos =
n/

k=1

L((2a+1)n'—1 _1 [L(@2B+1)n' -1 n!

5 ((20+1) ) m7rk: 3((28+1) ) ke (B+1) ok

1 M I () T (™
n n

k=an'+1 = k=pn’+1 k=21((28+1)n/+1)

a—1

1—n' 1-n/ 1-n

= |22 ||2 2 272
=0

As n is odd, we know that ¢ = ged(m,n) must be odd and therefore, we can set
t =2a + 1 for t > 3. Then the above becomes:

%(tn’—l)

[ cos (mﬂk> Hcos (mﬂk) U lge (35

k=1

= ‘2; Lgli=na| _ o(*5)CatD (3.4)

as desired.

3.2. Proof for Sign. The proof for the'sign of the product (1.2) will follow a
similar progression with the proof for the magnitude but with the sign changes
of the cosines considered. The following expressions will be used in the proof:

A= ﬁ cos(m:/rk>, a = sgn(A) (3.6)

k n/2+1
_ 2 m'wk ‘
Bu= H cos{—=],  b=sgn(B) (3.7)

m'mk
C'=AB = = C 3.8
Hcos(n ), c = sgn(C) (3.8)
Where sgi is the sign‘funetion returning 1,0,-1. It can be seen that:

n' n'—1

'k 'mk
A= H Ccos (mj ) = cos(m'm) H cos (er’T >
S f=nlt
n'—1 ! /
o o m'm(n’ — k) m' (n/+1)
= (—1) H (—1)™ cos (T) =(-1)"2 B
]{;7”/;1
A=(-1)"%"B (3.9)
If we substitute (3.9) into (3.8), we see that:
m/(n’ +1)

C=AB=(-1) = B

m’(n/+1)
2

— c=(-1) (3.10)
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By using (2.4), we see that:

(a+1)n/ ’ (at1)n’ / /
m'mk e m'm(k — an’) ! an! 41
| | cos( - ) = | | (—1)™“cos (T) =(-1) _ 2+ A

L((a+1)n/+1) L((2a+1)n/+1)

(at+1)n’ m' Tk /(! 41)
11 cos( ):(—1)2 A (3.11)

1 n’
5((2a41)n'+1)

Similarly,
L((a+1)n'-1)

/ k ! a(n! —1
H cos <m7r ):(—1) 5B (3.12)

n/
k=an’+1

3.2.1. Proof for t = 1. We will first begin by proving for.the case where t = 1. It
can be noted that for t = 1:

f[ cos ("%k) - ﬂ cos (m;L?k) ~ B (3.13)

Therefore, the sign of the final cosine product will be equivalent to b = sgn(B).
From (2.4) we know that:

n —1
m'wk 2 (m'k —qn)m
< ) = H (=1)%cos (T
f=1
We know from appendix/A‘that. for g = f”:l/,k +3]—1, cos (M) > (0. This

means that:

’

:
[

LT
B= k=1

We know from"appendix B that [ZF + 17 = [1| 2%k |7 + 1. Substituting this
result'to the above equation, we obtain the following:

!
n' —

2 /
b= ] (-t (3.14)

k=1

[

Eet g, and r be the quotient and remainder respectively, when m’k is divided
by '+ This implies:

m'k
m'k = gn’ + 1y, a = | o ] (3.15)
It follows that:
1, 2m'k 1 2r
- — 1
HELIIEPE LA (3.16)
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As r, is the remainder when divided by n’, it follows that 0 < r, < n’. Then
from simple casework, it can be shown that:

n —1 1,27, 0 ry < M1
1 =[=|ZE1=4" = 2 1
{rk > 2 } ’72 n/ J—‘ { n'—1 (3 7)

1, rp > 21

where 1{r; > "1} is the indicator (Iverson bracket). We can then introduce S:

'—1

~ 1 2m'k
H
k=1
where the parity of S will decide the value of b. By substituting’(3.17) inte (3.16)
and then substituting the resulting expression into (3.18),we.obtain:

3

S = 11, b= (-1)" (3418)

(]

n/

n'—1 n'—1
1 2m'k 2 h—1
5=§:@Ln,ﬂ= gk + 1{re > 75—} (3.19)
k=1 k=1
Furthermore, by summing over k in (3.15), we obtain:
n'—1 n/—1 n —1
2 2 n/2 . 1 2
m/k:qun/+rk<:>m’( < >Equ+m (mod 2)
k=1 k=1 k=1
n?=1
=m + r mod 2
S

By substituting the above into, (3.19) we derive:

n? =l = n —1
SEm/< { )+;rk+1{rk> 5 } (mod 2)
which can be simplified further through casework:
Z::T'll 1, + H{rps % (mod 2), m even

7 n/—1 ’
n28_1 + ijl ™ £ 1{7’k > ”7*1 (mod 2), m odd

S = (3.20)

Lemma 3.2. Let R = {ry |k < %} be a set of remainders r, when divided by
n'. "Forwsome remainder v € R its complementary remainder ' —r ¢ R.

Proof. Without loss of generality, let 7, = r and ry, = n’ — r. It follows that:
mk, =r (mod n')
mky=n"—r=—-r  (modn’)

m/(ky + k) =0  (mod n')

<~ ki + k=0 (mod n’)
as m/,n’ relatively prime. However, as 1 < ki, ks < n’ — 1, in order for k; + ks to
be a multiple of n’, it must sum up to n’, which implies ks = n/ —ky. If bk < %,
ky > % and vice versa, meaning only one of them can be included in R. 0J
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nl

2-1}, we start with by partitioning the

. . . ,_
nonzero remainders of n’ into pairs P, = {r,n’ — r} where r = 1,2, ... ”Tl It

can be seen that r < ,n —r> % and r,n’ — r have opposite parity, due to
n' being odd. Lemma 3.2 essentially states that one element from each pair Py
will be chosen when summing through £ =1,2,... %= ’1 . Let R be the remainder
from the pair that is chosen. It can be seen that:

(D UER=n—r, I{R>"} =1
rk+1{rk>ﬁ}:n’ r+l=1-r+1=r (mod2)
(2) Similarly, if R =7, 1{R < “} = 0:

In order to compute ry + 1{r; >

n'—1

re+1{ry > %52 =r+0=r (mod?2)
Therefore, regardless of which R is picked, r,+1{R < 2= _1 =r (mod 2),where
r=12. 2 . Therefore:
n/;l 77/271
n' —1 RN
I\rg > = = d?2 3.21
Sortitn > "y = e = U Jldend) G2

From further casework highlighted in appendixC and appendix D, it can be seen

that [2=1] + ”/28_1 =0 (mod2) and f=] =221+ [5] (mod 2). This
leads to the following final equation-for.S:
o= Bl [tT] (mod. 2); m even
R (mod"2), m odd
which gives the following equation for.b:
" (—F S, e even (3.22)
1, m odd

Recalling (3.13); we see that the sign of the main cosine product is equivalent to
the following expression for.t =1:

n'=

2 mrk (=)l m even
| I ekl = ’ 3.23
e ( n > {1 m odd (3.23)

k=1

3:2.2. Prooffor't > 3. By rewriting (3.4) without the absolute value signs, we
see that:
L(@at+1)n'—1
3 ((2a+1)n/—1) "
cos =
11 -

k=1

H2at+1)n'—1) , a—1 [ 5(@8+1)n'-1) , (B+1)n’ /
m'mk m/mk m/mk
H coS — H cos 7 H cos 7

k=an’+1 k=Bn’'+1 k=1((2B+1)n'+1)

i
o
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By substituting (3.11), (3.12) and using (3.8), we see that:

L ((2a+1)n'-1)

! k m/a(n/ - ol 1o
H cos <mn7j ) =(-1) 5B H(—l)m”fBC
5=0

k=1

Ast > 3, we can set t = 2ac+ 1 for a > 1. Then the above simply becomes:

n—1 t—3
N mﬂ'k ( 1) t—1 2 10
— (1" (T (n'—1) == _1\ym'n'B
[Iaﬁ<—g—> (=)™ BC= [](-1) (3.24)
k=1 3=0
For the product on the right side, it can be seen that when m =m"= (mod*2),

n'g = 0 (mod 2) for all index 8 and the product reducesto'l. When m//is
odd m'n’ =1 (mod 2). Therefore:

t—3 t—3
=z =z
[L0™? =[]0 = (-1
B=0 8=0
This results in the following final equation:
t—3
- ot 1 m-even
—1)™ =07 N 3.25
,L[o( ) {(—1)f731, m.odd (3.25)

Taking the sign of both sides in (3.24), and substituting equations (3.7), (3.8),
(3.10), (3.22) and (3.25) appropriately,we derive:

/e t=3
2 mrk (=) (e w0 D) T m'n’
)] R i
k=1 e
BEE meven
— (_1)t41(n,71+m(n+1))+[%]:(_1)%+f%1, m odd

Finally, using the derivation frém appendix E, we see that 52 +[2] = [£2]  (mod 2),
resulting in the final expressionfor ¢ > 3:

n—1
. [(mak (=) m even
s - = _ ’ 3.26
o kH( n ) (~nr, m odd (3:26)
=1
By substituting ¢'=.1, we see that the equation matches (3.23) for the ¢t = 1 case.

Thereforey for all possible values of ¢ (3.26) holds. Combining with the absolute
value of the product derived in (3.5), we arrive at the final expression:

“r mrk (-T2, if m odd
[Leos (=) = M 95"
Pl n (=1)' = 272, it meven

as desired.
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4. EXTENSIONS

From taking the log on both sides of (1.2) it can be seen that:

n—1

lo ﬁcos m_7rk‘ —t_nlo 2
g o =5 g

k=1

this can be rearranged to:

- 2log ( [,2 cos (mka)D

t =

log 2 n

this can be simplified to the following:

n—1

2
t =gcd(m,n) =n+ 2210g2

cos( 2 ‘ (11)

n
k=1
As only odd prime number p = n, will satisfy ¢ = 1for m=1,2. /. 7%1, we can
see that:
p=1 p=1
- - mmk
p odd prime <= Z p+2210g2 cOS (—)‘ —1] =0
P
m=1 k=1

Rearranging, one arrives at:

~1\?2
(pT> log2 4 Z log

1<ij<(p=1)/2

Cos (”l>‘ =0
p

Therefore, the set of integer solutions p to this equation will be equivalent to the
set of all odd prime numbers:
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5. APPENDIX

APPENDIX A.
Claim: Vm/,n k€ Z, dq= WZ,,]"’ + 3] — 1 € Z such that [m'k — gqn/| < %’ or
cos <M> > 0.

n'

Proof.

' oo 1 mk 1 m'k 1 m'k 1
Im —qn|<5 = o< Te<g = o5 <4l +§
As the range for g is less than 1, there exists exactly one integer ¢ that satisfies
the inequality. The value for this ¢ will be:

mk 1 mk 1 m’k+1w 1<m’k+1
n' 2 n' 2 =1 n' 2 = n 2

APPENDIX B.

Claim: [mk +11= (lLQm/kﬂ +1

Proof. Let q = L2m | be the quotient when m'k is divided by % and r = m’k—q%/

the remainder. This implies that 0 < r < —' = 0<5 < % It can be seen
that:

ﬂﬂk+11_(r+q+l]_ L+ 1=4]+1, ifgodd
n 2w 2. | 4RI=T4+1, ifgeven
mk -1 q 1 2m'k
N 24 1
A N N

APPENDIX C.

Claim: [ + % =0 (mod?2)

Proof. As n'is odd, % € % and the following casework can be considered:

(1) 1 "'* =0 (m(l)d 2), ,then/ % = 1 (mod 2) and [%1 = "/4’1:
E —1] el ol g el — w'el = 0 (mod 2), then
(2) Iflnz El21 (mod 2) :ghenl # =0 (mod 2) and [%] — nIZ—I:
I'n—l‘l_’_ns—lznzrl_'_n;lnjlznz n;r = (mod2)
Therefore, regardless of the parity of %
n/ -1 n/2 -1
[ 7 ] g = 0 (mod 2)
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APPENDIX D.
Claim: [%1 =214+ [51]  (mod 2)

4

Proof. For t = 1 the claim is trivial as n’ = n and [£1] = 0. For t > 3, we note
that [21] = !+ /=1, Then consider the followmg casework:

()Ilezg (mod 2), 2+ € Z:
2 = P it = R TR (mod 2)
<:>(”‘1 [ 11+n F= [+ (mod 2)
2) Ut =1 (HmdQ) %::%}e

In the case where "+1 is even, ( 1= f# 1= ( 1, therefore in
general: [*] = ( T+ IF =+ (mod 2)
Therefore regardless of the parity of %

n' —1 n—1+t—1

=+ TS

I

(mod 2)

APPENDIX E.

Claim: &1 (ﬁ1 =11 (mod 2)

2

Il
I

€ Z. Wecan conmder the following casework:
(1) When ﬂ E

Therefore regardless of the parity of 1 1

t—1 t—3 t—1
[ =TT (mod )

n—17 _ rn/—1 n/ﬂ_n_’ — r_n+1 17 _ ) n/2—1-|+[%1 (mod 2),
[ —‘_( 4 + 4 2—‘ _( 4 —H_[ 4—‘ { [n’»1'| [tvl" (mod 2>7

even

odd
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implementation was necessary. The author,.after deciding upon the research topic, used
tools including Desmos and Python to-find the trend in the product, including the trend in
its sign and the magnitude for different'values'of n‘’and m. After the general trends were
discovered, the author attempted to prove them mathematically by proving for the simple
m=1 case first (which he laterdiscovered.has already been proven in several papers
included in the references; most notably reference [3]), moving onto the generalized case
with changing signs.The order of the sections in the thesis roughly follow the
chronological progression of the author in the investigation. As mentioned previously, the
entirety of the research component, including all the mathematical derivations, were done
exclusively by the single‘author, without assitance from teammates, other students, the
advisor, relatives or any other.individual / entity. The advisor provided guidance in
registering for the competition and giving suggestions in writing the thesis. Several
difficulties were encountered during the incremental research progress, mostly having to
deal with the author failing to prove certain sections, most notably determining the sign
of(3.22). The author also initially tried using the roots of unity method for different
values of m, but later realized the result is misguided and found that a different approach
is necessary. There were also several instances where the author realized that certain parts
of the proof were incomplete or wrong altogether, needing adjustment. As it is often the
case ' with mathematical research, the challenges were simply overcomed by trying
different approaches, refining previous approaches over time.

Other Notes: the research has not been published anywhere previously, but the author do
intend at the current moment to use an extended part of the research for the IB Math IA.
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Page 2 - “As the above expression is satisfied for all zin R”-> “As for all z
in R the above equation is satisfied”

Page 3 - “Finally, by substituting (2.3), ” -> “Finally, by substituting (2.3)
for the cosine product,”

Page 10 - equation 3.26 changed “n’ -> n” in the product from k=1 to
0.5(n'-1), correcting type error in original paper.

Page 11 - “Only for odd prime number p=n,” -> “As.only odd prime

number p= n, will satisfy”





