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INVESTIGATION ON THE TRENDS OF PARTICULAR
COSINE PRODUCTS

CHANYEON HWANG

Abstract. This paper aims to investigate the trend exhibited in the particu-

late cosine products of the general form
Q0.5(n�1)

k=1 cos
�
m⇡k
n

�
. It will be shown

that this particular product of cosines is related to the exponential of 2 and the
greatest common divisor between the non-zero integers n,m where n is odd.
Hence, the product can be connected to the greatest common divisor function,
the prime counting function and other topics in number theory.

Keywords. Number Theory, Cosines, Trigonometry
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1. Introduction

The following cosine product identities can be found in several papers concerned

with the factorization of Fibonacci numbers [1], [2]:

(n�1)/2Y

k=1

2 cos

✓
⇡k

n

◆
= 1, n odd (1.1)

where the relationship between similar trigonometric expressions and the Fi-

bonacci, Lucas numbers have been extensively studied. However, the aesthet-

ically pleasing expression (1.1), referred to as the “Grandma’s Identity” by Steve

Humble in his 88.62 note on the Cambridge Mathematical Gazette [3], have been
far less studied, being regarded as simply an aside in other investigations. This

1
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2 CHANYEON HWANG

paper aims to expand upon previous discoveries regarding the identity, deriving

the following general expression of the product for all nonzero integers n,m:

n�1
2Y

k=1

cos

✓
m⇡k

n

◆
=

(
(�1)

d t�1
4 e

2
t�n
2 , if m odd

(�1)
d t�1

4 e+dn�1
4 e

2
t�n
2 , if m even

(1.2)

where n,m are nonzero integers, n is odd and t = gcd(n,m). By rearranging,

we can obtain the following trigonometric expression for the greatest common

divisor between n,m:

gcd(m,n) = n+
2

log 2

n�1
2X

k=1

log

����cos
✓
m⇡k

n

◆���� (1.3)

which leads to the following equation, where the roots of the equation p =

p1, p2, . . . are the odd prime numbers.

✓
p� 1

2

◆2

log 2 +

X

1i,j(p�1)/2

log

����cos
✓
ij⇡

p

◆���� = 0 (1.4)

2. Proof for m = 1

We will start the proof of the general case (1.2) with a proof for the case where

m = 1, which is equivalent to the expression in (1.1). The simplest way of proving

this expression, as suggested by [3] is a proof involving the roots of unity. Given

the solutions of the complex equation zn = 1 are z1, z2 · · · zn, it is known that the

equation can be factored into:

zn � 1 = (z � z1)(z � z2) · · · (z � zn) = 0

The solutions of the equation zn = 1 are referred to as the roots of unity and

have the form zk = exp
�
2⇡ik
n

�
where k = 1, 2, · · ·n and i =

p
�1. Then by the

Euler’s Formula we know that:

zk = cos

✓
2⇡ik

n

◆
+ i sin

✓
2⇡ik

n

◆
(2.1)

We see that z = 1 is a solution to the equation when k = n, therefore we can

substitute zn = 1 to derive the following expression:

zn � 1

z � 1
= (z � z1)(z � z2) · · · (z � zn�1) =

n�1Y

k=1

(z � zk)

Then by substituting (2.1) for zk and using the double angle identities for sine

and cosine we obtain the following:

zn � 1

z � 1
=

n�1Y

k=1

✓
z + 1� 2 cos

2

✓
⇡k

n

◆
� 2i sin

✓
⇡k

n

◆
cos

✓
⇡k

n

◆◆

As 8z 2 R the above equation is satisfied, we can set z = �1:

(�1)
n � 1

�2
=

n�1Y

k=1


�2 cos

2

✓
⇡k

n

◆
� 2i sin

✓
⇡k

n

◆
cos

✓
⇡k

n

◆�
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INVESTIGATION ON THE TRENDS OF PARTICULAR COSINE PRODUCTS 3

By rearranging and using Euler’s Formula again, we obtain:

(�1)
n � 1

�2
= (�2)

n�1
n�1Y

k=1

cos

✓
⇡k

n

◆ n�1Y

k=1

exp

✓
i⇡k

n

◆
(2.2)

Using property of exponents, we can simplify the latter product, as shown:

n�1Y

k=1

exp

✓
i⇡k

n

◆
= exp

 
n�1X

k=1

i⇡k

n

!
= exp

 
i⇡

n

n�1X

k=1

k

!
= e

i⇡(n�1)
2 = (�1)

n�1
2

Substituting the above into (2.2), we obtain the following expression:

(�1)
n � 1

�2
= (�2)

n�1
(�1)

n�1
2

n�1Y

k=1

cos

✓
⇡k

n

◆

Rearranging, we derive the following:

n�1Y

k=1

cos

✓
⇡k

n

◆
= 2

1�n
(�1)

1�n
2 (2.3)

From trigonometric identities, we obtain the following property of cosines:

cos(x± ⇡y) = (�1)
y
cos(x) 8 y 2 Z (2.4)

Using this property, we see that:

n�1Y

k=1

cos

✓
⇡k

n

◆
=

n�1
2Y

k=1

cos

✓
⇡k

n

◆ n�1Y

k=n+1
2

cos

✓
⇡k

n

◆
=

n�1
2Y

k=1

cos

✓
⇡k

n

◆ n�1Y

k=n+1
2

� cos

✓
⇡(n� k)

n

◆

Note that for l = n� k:

n�1Y

k=n+1
2

cos

✓
⇡(n� k)

n

◆
=

n�1
2Y

l=1

cos

✓
⇡l

n

◆
=

n�1
2Y

k=1

cos

✓
⇡k

n

◆

By substituting and rearranging we arrive at:

n�1Y

k=1

cos

✓
k⇡

n

◆
= (�1)

n�1
2

2

4
n�1
2Y

k=1

cos

✓
k⇡

n

◆3

5
2

Finally, by substituting (2.3) for the cosine product, we arrive at our desired

equation (1.1):

n�1
2Y

k=1

cos
⇡k

n
= 2

1�n
2
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4 CHANYEON HWANG

3. Proof for general case m 2 Z
3.1. Proof for Magnitude. It can be noted from the generalized expression

(1.2) that the absolute value of the cosine product equals the following:
������

n�1
2Y

k=1

cos

✓
m⇡k

n

◆������
=

������

n�1
2Y

k=1

cos

✓
m0⇡k

n0

◆������
= 2

t�n
2 (3.1)

where t = gcd(m,n), m = tm0
, n = tn0

. We will attempt to prove this 8m,n 2
Z+

, which can be expanded to m,n 2 Z where m,n 6= 0 by the even property of

the cosine function.

Lemma 3.1. Let n0 2 Z+ and m0 2 Z+ satisfy gcd(m0, n0
) = 1. Let the remainder

function R : Z+ ! {0, . . . , n0 � 1} be:

R(x) := m0k � n0
�
m0k

n0

⌫

Then, the Lemma states that:

{R(m0k) | k = 1, . . . , n0 � 1 } = { 1, . . . , n0 � 1 } = S

Proof. Let a, b be distinct integers in the set S. Without loss of generality, we

can set b > a. As both a, b 2 S, we know that b � a < n0
or that b = a + ln0

where 0 < l < 1. Then we can construct the following equalities:

m0b = pn0
+R(m0b) p 2 Z

m0a = qn0
+R(m0a) q 2 Z

() m0
(b� a) = (p� q)n0

+R(m0b)�R(m0a)

Assume that R(m0b) = R(m0a) for some a, b. Then, we see that:

m0
(b� a) = m0ln0

= (p� q)n0 () m0l = p� q 2 Z
This implies:

m0

n0 =
m0l

n0l
=

p� q

b� a
=

M

N
Where M,N 2 Z and M = m0l < m0

and N = n0l < n0
, as l 2 (0, 1). This

suggests that the fraction
m0

n0 can be further simplified to
M
N , a contradiction to

the original condition gcd(m0, n0
) = 1. Therefore, assumption R(m0b) = R(m0a)

is false, or R(m0b) 6= R(m0a) 8 a, b 2 S. As R(m0k) 6= 0 for k 2 S, R(m0k) would
give distinct values from the set S, a set of all possible nonzero remainders when

divided by n0
, for k 2 S, i.e.:

{R(m0k) | k = 1, . . . , n0 � 1 } = { 1, . . . , n0 � 1 }
⇤
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INVESTIGATION ON THE TRENDS OF PARTICULAR COSINE PRODUCTS 5

From Equation (2.4), we derive that:

�����

n0�1Y

k=1

cos

✓
m0⇡k

n0

◆����� =

�����

n0�1Y

k=1

cos

✓
(m0k � �n0

)⇡

n0

◆����� 8 � 2 Z

If we let � be the quotient when m0k is divided by n0
, m0k� �n0

= R(m0k). Then
by using Lemma (3.1), we derive that:

�����

n0�1Y

k=1

cos

✓
m0⇡k

n0

◆����� =

�����

n0�1Y

k=1

cos

✓
R(m0k)⇡

n0

◆����� =

�����

n0�1Y

k=1

cos

✓
k⇡

n0

◆�����

From replacing n with n0
in (2.3), we see that the above is equal to the following:

�����

n0�1Y

k=1

cos

✓
m0⇡k

n0

◆����� = 2
1�n0

(3.2)

We already know from (2.4) that
��cos

�
m0⇡k
n0

��� =
���cos

⇣
m0⇡(n0�k)

n0

⌘���. Then:
������

n0�1Y

k= 1
2 (n

0+1)

cos

✓
m0⇡k

n0

◆������
=

������

n0�1Y

k= 1
2 (n

0+1)

cos

✓
m0⇡(n0 � k)

n0

◆������
=

������

1
2 (n

0�1)Y

k0=1

cos

✓
m0⇡k0

n0

◆������

for n0 � 3, where k0 7! n0 � k. Using (3.2), this implies that:

������

n0�1Y

k= 1
2 (n

0+1)

cos

✓
m⇡k

n

◆������
=

�������

n0�1
2Y

k=1

cos

✓
m0⇡k

n0

◆
�������

2

= 2
1�n0

()

�������

n0�1
2Y

k=1

cos

✓
m0⇡k

n0

◆
�������
=

������

n0�1Y

k= 1
2 (n

0+1)

cos

✓
m0⇡(n0 � k)

n0

◆������
= 2

1�n0
2 (3.3)

For the case in which t = 1, n0
= n,m0

= m and the above equation simply

becomes the desired Equation (3.1):
�������

n0�1
2Y

k=1

cos

✓
m0⇡k

n0

◆
�������
=

������

n�1
2Y

k=1

cos

✓
m⇡k

n

◆������
= 2

1�n
2 = 2

t�n
2

In the case where t > 1, we can consider the following equality:

������

1
2 ((2↵+1)n0�1)Y

k=↵n0+1

cos

✓
m0⇡k

n0

◆������
=

������

1
2 ((2↵+1)n0�1)Y

k=↵n0+1

cos

✓
m0⇡(k � ↵n0

)

n0

◆������
=

�������

n0�1
2Y

k=1

cos

✓
m0⇡k

n0

◆
�������
= 2

1�n0
2

where k � ↵n0 7! k and ↵ 2 Z. Similarly, we know that:
������

(↵+1)n0Y

k= 1
2 ((2↵+1)n0+1)

cos

✓
m0⇡k

n0

◆������
= 2

1�n0
2
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6 CHANYEON HWANG

Then we can construct the following equality for ↵ � 1:
������

1
2 ((2↵+1)n0�1)Y

k=1

cos

✓
m0⇡k

n0

◆������
=

������

2

4
1
2 ((2↵+1)n0�1)Y

k=↵n0+1

cos

✓
m0⇡k

n0

◆3

5
↵�1Y

�=0

2

4
1
2 ((2�+1)n0�1)Y

k=�n0+1

cos

✓
m0⇡k

n0

◆ (�+1)n0Y

k= 1
2 ((2�+1)n0+1)

cos

✓
m0⇡k

n0

◆3

5

������

=

�����2
1�n0

2

↵�1Y

�=0

2
1�n0

2 2
1�n0

2

����� =
���2

1�n0
2 · 2(1�n0)↵

��� = 2

⇣
1�n0

2

⌘
(2↵+1)

(3.4)

As n is odd, we know that t = gcd(m,n) must be odd and therefore, we can set

t = 2↵ + 1 for t � 3. Then the above becomes:
������

1
2 (tn

0�1)Y

k=1

cos

✓
m0⇡k

n0

◆������
=

������

n�1
2Y

k=1

cos

✓
m⇡k

n

◆������
= 2

⇣
1�n0

2

⌘
t
= 2

t�n
2 (3.5)

as desired.

3.2. Proof for Sign. The proof for the sign of the product (1.2) will follow a

similar progression with the proof for the magnitude but with the sign changes

of the cosines considered. The following expressions will be used in the proof:

A :=

n0Y

k=n0+1
2

cos

✓
m0⇡k

n0

◆
, a := sgn(A) (3.6)

B :=

n0�1
2Y

k=1

cos

✓
m0⇡k

n0

◆
, b := sgn(B) (3.7)

C := AB =

n0Y

k=1

cos

✓
m0⇡k

n0

◆
, c := sgn(C) (3.8)

Where sgn is the sign function returning 1,0,-1. It can be seen that:

A =

n0Y

k=n0+1
2

cos

✓
m0⇡k

n0

◆
= cos(m0⇡)

n0�1Y

k=n0+1
2

cos

✓
m0⇡k

n0

◆

= (�1)
m0

n0�1Y

k=n0+1
2

(�1)
m0

cos

✓
m0⇡(n0 � k)

n0

◆
= (�1)

m0(n0+1)
2 B

A = (�1)
m0(n0+1)

2 B (3.9)

If we substitute (3.9) into (3.8), we see that:

C = AB = (�1)
m0(n0+1)

2 B2

() c = (�1)
m0(n0+1)

2 (3.10)
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INVESTIGATION ON THE TRENDS OF PARTICULAR COSINE PRODUCTS 7

By using (2.4), we see that:

(↵+1)n0Y

1
2 ((2↵+1)n0+1)

cos

✓
m0⇡k

n0

◆
=

(↵+1)n0Y

1
2 ((2↵+1)n0+1)

(�1)
m0↵

cos

✓
m0⇡(k � ↵n0

)

n0

◆
= (�1)

m0↵(n0+1)
2 A

(↵+1)n0Y

1
2 ((2↵+1)n0+1)

cos

✓
m0⇡k

n0

◆
= (�1)

m0↵(n0+1)
2 A (3.11)

Similarly,

1
2 ((2↵+1)n0�1)Y

k=↵n0+1

cos

✓
m0⇡k

n0

◆
= (�1)

m0↵(n0�1)
2 B (3.12)

3.2.1. Proof for t = 1. We will first begin by proving for the case where t = 1. It

can be noted that for t = 1:

n�1
2Y

k=1

cos

✓
m⇡k

n

◆
=

n0�1
2Y

k=1

cos

✓
m0⇡k

n0

◆
= B (3.13)

Therefore, the sign of the final cosine product will be equivalent to b = sgn(B).

From (2.4) we know that:

B =

n0�1
2Y

k=1

cos

✓
m0⇡k

n0

◆
=

n0�1
2Y

k=1

(�1)
q
cos

✓
(m0k � qn0

)⇡

n0

◆

We know from appendix A that for q = dm0k
n0 +

1
2e� 1, cos

⇣
(m0k�qn0)⇡

n0

⌘
> 0. This

means that:

b =

n0�1
2Y

k=1

(�1)
q
=

n0�1
2Y

k=1

(�1)
dm0k

n0 + 1
2 e�1

We know from appendix B that dm0k
n0 +

1
2e = d1

2b
2m0k
n0 ce + 1. Substituting this

result to the above equation, we obtain the following:

b =

n0�1
2Y

k=1

(�1)
d 1
2 b

2m0k
n0 ce

(3.14)

Let qk and rk be the quotient and remainder respectively, when m0k is divided

by n0
. This implies:

m0k = qkn
0
+ rk, qk = bm

0k

n0 c (3.15)

It follows that:

d1
2
b2m

0k

n0 ce = qk + d1
2
b2rk
n0 ce (3.16)
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8 CHANYEON HWANG

As rk is the remainder when divided by n0
, it follows that 0 < rk < n0

. Then

from simple casework, it can be shown that:

1{rk >
n0 � 1

2
} = d1

2
b2rk
n0 ce =

(
0, rk  n0�1

2

1, rk >
n0�1
2

(3.17)

where 1{rk > n0�1
2 } is the indicator (Iverson bracket). We can then introduce S:

S :=

n0�1
2X

k=1

d1
2
b2m

0k

n0 ce, b = (�1)
S

(3.18)

where the parity of S will decide the value of b. By substituting (3.17) into (3.16)

and then substituting the resulting expression into (3.18), we obtain:

S =

n0�1
2X

k=1

d1
2
b2m

0k

n0 ce =
n0�1

2X

k=1

qk + 1{rk >
n0 � 1

2
} (3.19)

Furthermore, by summing over k in (3.15), we obtain:

n0�1
2X

k=1

m0k =

n0�1
2X

k=1

qkn
0
+ rk () m0

✓
n02 � 1

8

◆
⌘

n0�1
2X

k=1

qk + rk (mod 2)

n0�1
2X

k=1

qk ⌘ m0
✓
n02 � 1

8

◆
+

n0�1
2X

k=1

rk (mod 2)

By substituting the above into (3.19) we derive:

S ⌘ m0
✓
n02 � 1

8

◆
+

n0�1
2X

k=1

rk + 1{rk >
n0 � 1

2
} (mod 2)

which can be simplified further through casework:

S ⌘

8
<

:

Pn0�1
2

k=1 rk + 1{rk > n0�1
2 } (mod 2), m even

n02�1
8 +

Pn0�1
2

k=1 rk + 1{rk > n0�1
2 } (mod 2), m odd

(3.20)

Lemma 3.2. Let R = {rk | k  n0�1
2 } be a set of remainders rk when divided by

n0. For some remainder r 2 R its complementary remainder n0 � r /2 R.

Proof. Without loss of generality, let rk1 = r and rk2 = n0 � r. It follows that:

m0k1 ⌘ r (mod n0
)

m0k2 ⌘ n0 � r ⌘ �r (mod n0
)

m0
(k1 + k2) ⌘ 0 (mod n0

)

() k1 + k2 ⌘ 0 (mod n0
)

as m0, n0
relatively prime. However, as 1  k1, k2 < n0 � 1, in order for k1 + k2 to

be a multiple of n0
, it must sum up to n0

, which implies k2 = n0�k1. If k1  n0�1
2 ,

k2 >
n0�1
2 and vice versa, meaning only one of them can be included in R. ⇤
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INVESTIGATION ON THE TRENDS OF PARTICULAR COSINE PRODUCTS 9

In order to compute rk + 1{rk > n0�1
2 }, we start with by partitioning the

nonzero remainders of n0
into pairs Pr = {r, n0 � r} where r = 1, 2, . . . n

0�1
2 . It

can be seen that r  n0�1
2 , n0� r > n0�1

2 and r, n0� r have opposite parity, due to

n0
being odd. Lemma 3.2 essentially states that one element from each pair Pr

will be chosen when summing through k = 1, 2, . . . n
0�1
2 . Let R be the remainder

from the pair that is chosen. It can be seen that:

(1) If R = n0 � r, 1{R > n0�1
2 } = 1:

rk + 1{rk > n0�1
2 } = n0 � r + 1 ⌘ 1� r + 1 ⌘ r (mod 2)

(2) Similarly, if R = r, 1{R < n0�1
2 } = 0:

rk + 1{rk > n0�1
2 } = r + 0 ⌘ r (mod 2)

Therefore, regardless of which R is picked, rk+1{R < n0�1
2 } ⌘ r (mod 2), where

r = 1, 2, . . . n
0�1
2 . Therefore:

n0�1
2X

k=1

rk + 1{rk >
n0 � 1

2
} ⌘

n0�1
2X

r=1

r ⌘ dn
0 � 1

4
e (mod 2) (3.21)

From further casework highlighted in appendix C and appendix D, it can be seen

that dn0�1
4 e + n02�1

8 ⌘ 0 (mod 2) and dn0�1
4 e ⌘ dn�1

4 e + d t�1
4 e (mod 2). This

leads to the following final equation for S:

S ⌘
(
dn�1

4 e+ d t�1
4 e (mod 2), m even

0 (mod 2), m odd

which gives the following equation for b:

b =

(
(�1)

dn�1
4 e+d t�1

4 e, m even

1, m odd
(3.22)

Recalling (3.13), we see that the sign of the main cosine product is equivalent to

the following expression for t = 1:

sgn

0

B@

n0�1
2Y

k=1

✓
m⇡k

n

◆
1

CA =

(
(�1)

dn�1
4 e, m even

1, m odd
(3.23)

3.2.2. Proof for t � 3. By rewriting (3.4) without the absolute value signs, we

see that:
1
2 ((2↵+1)n0�1)Y

k=1

cos

✓
m0⇡k

n0

◆
=

2

4
1
2 ((2↵+1)n0�1)Y

k=↵n0+1

cos

✓
m0⇡k

n0

◆3

5
↵�1Y

�=0

2

4
1
2 ((2�+1)n0�1)Y

k=�n0+1

cos

✓
m0⇡k

n0

◆ (�+1)n0Y

k= 1
2 ((2�+1)n0+1)

cos

✓
m0⇡k

n0

◆3

5
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10 CHANYEON HWANG

By substituting (3.11), (3.12) and using (3.8), we see that:

1
2 ((2↵+1)n0�1)Y

k=1

cos

✓
m0⇡k

n0

◆
= (�1)

m0↵(n0�1)
2 B

↵�1Y

�=0

(�1)
m0n0�C

As t � 3, we can set t = 2↵ + 1 for ↵ � 1. Then the above simply becomes:

n�1
2Y

k=1

cos

✓
m⇡k

n

◆
= (�1)

m0(
t�1
4 )(n0�1)BC

t�1
2

t�3
2Y

�=0

(�1)
m0n0�

(3.24)

For the product on the right side, it can be seen that whenm ⌘ m0 ⌘ 0 (mod 2),

m0n0� ⌘ 0 (mod 2) for all index � and the product reduces to 1. When m0
is

odd, m0n0
= 1 (mod 2). Therefore:

t�3
2Y

�=0

(�1)
m0n0�

=

t�3
2Y

�=0

(�1)
�
= (�1)

d t�3
4 e

This results in the following final equation:

t�3
2Y

�=0

(�1)
m0n0�

=

(
1, m even

(�1)
d t�3

4 e, m odd
(3.25)

Taking the sign of both sides in (3.24) and substituting equations (3.7), (3.8),

(3.10), (3.22) and (3.25) appropriately, we derive:

sgn

0

@
n�1
2Y

k=1

✓
m⇡k

n

◆1

A = (�1)
m0(

t�1
4 )(n0�1)b(�1)

m0(n0+1)(t�1)
4

t�3
2Y

�=0

(�1)
m0n0�

=

(
(�1)

dn�1
4 e+d t�1

4 e, m even

(�1)
t�1
4 (n0�1+m0(n0+1))+d t�3

4 e
= (�1)

t�1
2 +d t�3

4 e, m odd

Finally, using the derivation from appendix E, we see that
t�1
2 +d t�3

4 e ⌘ d t�1
4 e (mod 2),

resulting in the final expression for t � 3:

sgn

0

@
n�1
2Y

k=1

✓
m⇡k

n

◆1

A =

(
(�1)

dn�1
4 e+d t�1

4 e, m even

(�1)
d t�1

4 e, m odd
(3.26)

By substituting t = 1, we see that the equation matches (3.23) for the t = 1 case.

Therefore, for all possible values of t (3.26) holds. Combining with the absolute

value of the product derived in (3.5), we arrive at the final expression:

n�1
2Y

k=1

cos

✓
m⇡k

n

◆
=

(
(�1)

d t�1
4 e

2
t�n
2 , if m odd

(�1)
d t�1

4 e+dn�1
4 e

2
t�n
2 , if m even

as desired.
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INVESTIGATION ON THE TRENDS OF PARTICULAR COSINE PRODUCTS 11

4. Extensions

From taking the log on both sides of (1.2) it can be seen that:

log

������

n�1
2Y

k=1

cos

✓
m⇡k

n

◆������
=

t� n

2
log 2

this can be rearranged to:

t =
2 log

⇣���
Qn�1

2
k=1 cos

�
m⇡k
n

����
⌘

log 2
+ n

this can be simplified to the following:

t = gcd(m,n) = n+ 2

n�1
2X

k=1

log2

����cos
✓
m⇡k

n

◆���� (4.1)

As only odd prime number p = n, will satisfy t = 1 for m = 1, 2 . . . p�1
2 , we can

see that:

p odd prime ()

p�1
2X

m=1

2

4p+ 2

p�1
2X

k=1

log2

����cos
✓
m⇡k

p

◆����� 1

3

5 = 0

Rearranging, one arrives at:

✓
p� 1

2

◆2

log 2 +

X

1i,j(p�1)/2

log

����cos
✓
ij⇡

p

◆���� = 0

Therefore, the set of integer solutions p to this equation will be equivalent to the

set of all odd prime numbers.
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12 CHANYEON HWANG

5. Appendix

Appendix A.

Claim: 8 m0, n0, k 2 Z, 9 q = dm0k
n0 +

1
2e � 1 2 Z such that |m0k � qn0| < n0

2 or

cos

⇣
(m0k�qn0)⇡

n0

⌘
> 0.

Proof.

|m0k � qn0| < n0

2
() �1

2
<

m0k

n0 � q <
1

2
() m0k

n0 � 1

2
< q <

m0k

n0 +
1

2

As the range for q is less than 1, there exists exactly one integer q that satisfies

the inequality. The value for this q will be:

m0k

n0 � 1

2
=

m0k

n0 +
1

2
� 1  q = dm

0k

n0 +
1

2
e � 1  m0k

n0 +
1

2

⇤

Appendix B.

Claim: dm0k
n0 +

1
2e = d1

2b
2m0k
n0 ce+ 1

Proof. Let q = b2m0k
n0 c be the quotient whenm0k is divided by

n0

2 and r = m0k�q n0

2

the remainder. This implies that 0 < r < n0

2 () 0 < r
n0 <

1
2 . It can be seen

that:

dm
0k

n0 +
1

2
e = d r

n0 +
q + 1

2
e =

(
q+1
2 + 1 = d q

2e+ 1, if q odd

q
2 + 1 = d q

2e+ 1, if q even

dm
0k

n0 +
1

2
e = q

2
+ 1 = d1

2
b2m

0k

n0 ce+ 1

⇤

Appendix C.

Claim: dn0�1
4 e+ n02�1

8 ⌘ 0 (mod 2)

Proof. As n0
is odd,

n0�1
2 2 Z and the following casework can be considered:

(1) If
n0�1
2 ⌘ 0 (mod 2), then

n0+1
2 ⌘ 1 (mod 2) and dn0�1

4 e =
n0�1
4 :

dn0�1
4 e+ n02�1

8 =
n0�1
4 +

n0�1
4

n0+1
2 ⌘ n0�1

2 ⌘ 0 (mod 2), then

(2) If
n0�1
2 ⌘ 1 (mod 2), then

n0+1
2 ⌘ 0 (mod 2) and dn0�1

4 e =
n0+1
4 :

dn0�1
4 e+ n02�1

8 =
n0+1
4 +

n0�1
2

n0+1
4 =

n0+1
4

n0+1
2 ⌘ 0 (mod 2)

Therefore, regardless of the parity of
n0�1
2 :

dn
0 � 1

4
e+ n02 � 1

8
⌘ 0 (mod 2)

⇤
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INVESTIGATION ON THE TRENDS OF PARTICULAR COSINE PRODUCTS 13

Appendix D.

Claim: dn0�1
4 e ⌘ dn�1

4 e+ d t�1
4 e (mod 2)

Proof. For t = 1, the claim is trivial as n0
= n and d t�1

4 e = 0. For t � 3, we note

that dn�1
4 e = dn0�1

4 + n0 t�1
4 e. Then consider the following casework:

(1) If
t�1
2 ⌘ 0 (mod 2),

t�1
4 2 Z:

dn�1
4 e = dn0�1

4 e+ n0 t�1
4 ⌘ dn0�1

4 e+ d t�1
4 e (mod 2)

() dn0�1
4 e = dn0�1

4 e+ n0 t�1
4 ⌘ dn�1

4 e+ d t�1
4 e (mod 2)

(2) If
t�1
2 ⌘ 1 (mod 2),

t�1
4 +

1
2 =

t+1
4 2 Z:

dn�1
4 e = dn0�1

4 +n0 t+1
4 �n0

2 e ⌘ d�n0+1
4 e+d t+1

4 e =
(
�dn0+1

4 e+ d t+1
4 e (mod 2),

n0+1
2 even

�dn0�1
4 e+ d t�1

4 e (mod 2),
n0+1
2 odd

In the case where
n0+1
2 is even, dn0+1

4 e = dn0+1
4 � 1

2e = dn0�1
4 e, therefore in

general: dn0�1
4 e ⌘ �dn�1

4 e+ d t�1
4 e ⌘ dn�1

4 e+ d t�1
4 e (mod 2)

Therefore regardless of the parity of
t�1
2 :

dn
0 � 1

4
e ⌘ dn� 1

4
e+ dt� 1

4
e (mod 2)

⇤

Appendix E.

Claim: t�1
2 + d t�3

4 e ⌘ d t�1
4 e (mod 2)

Proof. As t odd, t�1
2 2 Z. We can consider the following casework:

(1) When
t�1
2 ⌘ 0 (mod 2),

t�1
4 2 Z:

t�1
2 + d t�3

4 e = t�1
2 + d t�1

4 � 1
2e = 3

t�1
4 + d�1

2e ⌘
t�1
4 = d t�1

4 e (mod 2)

(2) When
t�1
2 ⌘ 1 (mod 2),

t�1
4 ± 1

2 2 Z:
t�1
2 + d t�3

4 e = t�1
2 +

t�3
4 ⌘ 1 +

t�3
4 =

t+1
4 (mod 2)

as
t+1
4 2 Z, we know that:

t�1
2 + d t�3

4 e ⌘ t+1
4 = d t+1

4 � 1
2e = d t�1

4 e (mod 2)

Therefore regardless of the parity of
t�1
2 :

t� 1

2
+ dt� 3

4
e ⌘ dt� 1

4
e (mod 2)

⇤
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修改说明： 

 

Page 2 - “As the above expression is satisfied for all z in R”-> “As for all z 

in R the above equation is satisfied” 

Page 3 - “Finally, by substituting (2.3), ” -> “Finally, by substituting (2.3) 

for the cosine product,” 

Page 10 - equation 3.26 changed “n’ -> n” in the product from k=1 to 

0.5(n'-1) , correcting type error in original paper. 

Page 11 - “Only for odd prime number p= n,” -> “As only odd prime 

number p= n, will satisfy” 
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