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On an inverse problem of Bermond’s conjecture

Yuhan Zhou

Abstract

A Hamilton cycle is a spanning cycle that visits each vertex exactly once and the Hamilton
cycle problem is the problem of determining whether a Hamilton cycle exists in a given
graph. The Hamilton cycle problem is one of the crucial problems in graph theory and
the Hamilton decomposability of line graphs has been studied extensively. A long-standing
conjecture of Bermond stated that the line graph of a Hamilton decomposable graph is
Hamilton decomposable. In this paper, we study an inverse problem of Bermond’s conjecture
and characterize the root graphs whose line graphs can be completely decomposed into three
Hamilton cycles.
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1 Introduction

Throughout this paper, a graph G = (V (G), E(G)) is a finite undirected graph with no
multiple edges or loops. We say that a cycle in a graph G is a Hamilton cycle when it contains
all vertices of G without repetition. A graph is defined as Hamiltonian if it contains a Hamilton
cycle. The line graph of a graph G, written as L(G), is constructed by assigning a vertex to an
edge of G, with two vertices connected if and only if their associated edges in G share a common
endpoint. The graph G is the root graph of L(G). If the edges of a graph G can be decomposed
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into a set of Hamilton cycles in G so that every edge belongs to exactly one cycle, this collection
is called a Hamilton decomposition of G. A graph is Hamilton decomposable if it possesses a
Hamilton decomposition. The Hamilton cycle problem concerns deciding if a Hamiltonian cycle
is present in a specified graph. It is well-known that these problems are very hard to solve,
which are NP-complete. For the standard terminology and notation, we follow [2].

In 1988, Bermond [1] proposed the following famous conjecture in graph theory,

Conjecture 1.1. A Hamilton decomposable graph has a line graph that is Hamilton decompos-
able.

Here, we present the progress of previous works that support the conjecture of Bermond.
Kotzig’s 1964 result [9] states that a cubic graph is Hamiltonian exactly when its line graph is
Hamilton decomposable. In 1983, Jaeger [8] proved that whenever a simple graph G with an
even number of edges has a Hamiltonian decomposition of its edge set, the line graph of G is
1-factorizable. Moreover, if a graph G can be completely decomposed into an even (respectively,
odd) number of Hamilton cycles, then L(G) can be decomposed into Hamilton cycles (respec-
tively, into Hamilton cycles along with a 2-factor). In addition, for a 2k-regular graph G that
contains a Hamilton cycle, L(G) admits a decomposition into Hamilton cycles together with a
2-factor (A. Muthusamy and P. Paulraja, 1995) [10]. This settles Bermond’s conjecture for all
graphs which have a Hamilton cycle decomposition with even number cycles. It was also proved
that when a bipartite (2k + 1)-graph G is decomposable, then L(G) is also Hamilton decom-
posable (Pike, 1995) [11]. It was further proved that some bipartite Hamilton decomposable
graphs which are regular graphs and with degree δ ≡ 2 (mod 4) have Hamilton decomposable
line graphs. It settles the conjecture of Bermond for every bipartite Hamilton decomposable
graph G with vertex connectivity κ(G) = 2 (Pike, 2005) [12]. Recently, Bryant et al. [3] claimed
that they have fully proved Bermond’s conjecture and the paper can be found in arXiv. Other
related results can be found in [4, 5, 7].

In 2022, Sivaraman and Zaslavsky [13] asked an inverse problem of Bermond’s conjecture:

Problem 1. If L(G) is decomposable into k Hamilton cycles. What is G?

In the same paper, they studied the case when k = 2.

Theorem 1.1. [13] The graph G of Problem 1, when k = 2, is either K1,5, or the first subdivision
of a 4-regular graph G

′
that decomposes into two Hamilton cycles, or a Hamilton cubic graph.

In this paper, we study the Problem 1 when k = 3 and characterize the root graphs G whose
line graphs can be decomposable into three Hamilton cycles.

2 Preliminary and main results

Extensive work has been carried out by various researchers on Hamiltonian cycles of line
graphs. The first contribution to this topic was given by Harary and Nash-Williams in 1965 [6].

Theorem 2.1. [6] For a graph G, L(G) is Hamiltonian if and only if G has a dominating closed
trail.
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Here, we define the three quasi-compatible dominating trails for (5,3)-biregular graphs and
4-regular graph respectively.

A quasi-compatible dominating trial for (5, 3)-biregular graphs Ti (i = 1, 2, 3) is defined as
follows: Ti visits all 5-valent vertices of the root graph G at least once. If a vertex u is not in
Ti, it is in both the other two dominating trails. Additionally, each edge is visited either not or
twice by the three dominating trails.

The three quasi-compatible dominating trails for 4-regular graphs Ti (i = 1, 2, 3) satisfy the
following. First, each 2-path can be visited at most three times. Second, each vertex v is visited
by at least two of the quasi-compatible dominating trails. Third, each edge can only be visited
once or three times by the dominating trails. Fourth, two vertices that are visited only by two of
the dominating trails and visited by the same pair can not be adjacent to the same vertex that
is visited twice in a dominating trail at a specific occurrence. Fifth, two vertices that are visited
only by two of the dominating trails and visited by the two distinct pairs can not be adjacent
to the same vertex that is visited twice in a dominating trail at the two distinct occurrences.

The following is our main result. We characterize the root graphs whose line graphs can be
decomposable into three Hamilton cycles.

Theorem 2.2. The graph G of Problem 1, when k = 3, is either K1,7, or the first subdivision
of a 6-regular graph G′ that decomposes into three Hamilton cycles, a (3, 5)-biregular graph
that contains three quasi-compatible dominating trails, or a 4-regular graph with three quasi-
compatible dominating trails.

SG is the first subdivision of a graph G, obtained by subdividing every edge into a path of
length 2.

The first case gives line graph K7, which is obviously a solution to Problem 1 when k = 3.

In the second case, Sivaramana and Zaslavskyb [8] gave a construction of the decomposition
of L(G) for G = SG′ of a graph 2h − regular G′, h ≥ 2, which decomposes into h Hamilton
cycles H ′

1, . . . ,H
′
h.

For the third and the fourth case, this paper will explain how the line graph decomposes in
terms of the three quasi-compatible dominating graphs.

3 Construction

We describe the construction of the Hamilton decomposition of our 6-regular L(G) in each
case other than K7.

Example 1. Suppose G is a (3, 5)-biregular graph with three quasi-compatible dominating
trails.

There are only four different ways to partition the five edges at a 5-valent vertex v. As each
edge incident to v can only be visited either not or twice and each vertex is visited by each
quasi-compatible dominating trail at least once, at least three 2 paths and at most five 2-path is
visited at the v. The first case is three 2-paths in the dominating trails at v in G, visiting three
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Figure 1: Case 1 and Case 2 in Example 1

Figure 2: Case 3 and Case 4 in Example 1

edges incident to v twice each. It is straightforward to verify that no 2-path can be visited twice
in this case (see Fig. 1 Case 1, different colors represent different dominating trails). The second
case is four distinct 2-path in the dominating trails at v in G, visiting four edges incident to v
twice each, while all 2-path is visited once (see Fig. 1 Case 2). The third case is two distinct
2-paths with no overlapping edges in the dominating trails at v in G, visited twice each (see Fig.
2 Case 3). The fourth case is five 2-paths in the dominating trails at v in G. By inspection, we
know that the 2-paths have to be distinct (see Fig. 2 Case 4).

Each partition of the five edges at the 5-valent vertex v in G can correspond to one way of
partitioning the 5-clique L(v) in the line graph.

Here, we demonstrate one method of partitioning the 5-cliques in L(G) into H1, H2 and H3

according to how the three quasi-compatible dominating trails T1, T2 and T3 partitioned the 2-
paths at 5-valent vertices. Let there be 5n 3-valent vertices and 3n 5-valent vertices. Consider a
5-valent vertex v, let the 3-valent vertices adjacent to v in G be u1, u2, u3, u4 and u5, thus L(v) is
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Figure 3: Coloring the edges and the vertices of the 5-cliques (Case 1 to 4, from left to right)

the 5-clique with vertices vu1, vu2, vu3, vu4 and vu3 (referred to as e1, e2, e3, e4, e5 respectively in
the rest of the Example 1). Let Ti, Tj and Tk be the three distinct dominating trails (i ̸= j ≠ k).

We start by coloring the edges and the vertices of the 5-cliques with the colors cqp (p = 1, 2, 3
and q = 1, 2). We demonstrate a mapping from e1, e2, e3, e4, e5 to the vertices numbered 1,2,3,4
and 5 in Fig. 3.

If the partitioning of the 2-paths at v is isomorphic to Case 1 in Fig. 1: let the colored
2-paths be in the three dominating trails respectively, while u2 ∈ Ti and u4 ∈ Tj , since u2 and
u4 are both contained by two distinct dominating trails. As shown in the partitioning of K5(v)
of Case 1 in Fig. 3, the red, green and blue path are colored in ci, cj and ck respectively, where
e1 is the edge in both Tj and Tk, e3 is the edge in both Ti and Tj and e5 is the edge in both Ti

and Tk. Additionally, e1 is colored c1j and c1k; e3 is colored c1i and c1j ; e5 is colored c1i and c1k; e2
is colored c2i and e4 is colored c2i in L(G).

If the partitioning of the 2-paths at v is isomorphic to Case 2 or 3 in Fig. 1 and Fig. 2:
let the colored 2-paths be in the three dominating trails respectively, and vu3 be the edge not
visited by the three dominating trails. Let Ti be the dominating trail that visited v twice. As
each u is included by at least two distinct dominating trails, let u3 ∈ V (Tj). Thus, as shown in
the partitioning of K5(v) in L(G) of Case 2 or Case 3 (respectively) in Fig. 3, the red, green
and blue path are colored in ci, cj and ck respectively, where in e1 and e5 are the two edges in
both Ti and Tk and e2 and e4 are the two edges in both Ti and Tj . Differently, in Case 2 e1 and
e2 are adjacent in Ti while in Case 3 e1 and e5 are adjacent in Ti. Additionally, e1 and e5 are
colored c1i and c1k, e2 and e4 are colored c1i and c1j , and e3 is colored c2j in L(G).

If the partitioning of the 2-paths at v is isomorphic to Case 4 in Fig. 2: let the colored
2-paths be in the three dominating trails respectively. Let Ti be the dominating trail that only
visited v once. As shown in the partitioning of K5(v) in L(G) of Case 4 (respectively) in Fig.
3, the blue, red and green path are colored in ci, cj and ck respectively, where e1 is the edge in
both Ti and Tj , e5 is the edge in both Ti and Tk, and e2, e3 and e4 are the edges in both Tj and
Tk. Additionally, e2 and e5 are adjacent in Tk while e1 and e4 are adjacent in Tj . We color e1
with both c1i and c1j , e5 with both c1i and c1k, and e2, 23 and e4 with both c1j and c1k in L(G).

Then, we partition the edges in the 3-cliques in L(G) according to our coloring. First, in
each 3-clique, we partition each edge that connect the vertices colored in c1i (i = 1, 2, 3) into Hi.
Then, if the other vertex is colored in c2i , we substitute the edge with the two other edge in the
3-clique.

In the line graph L(G) partitioned into H1, H2, H3, in each 5-clique, the vertices are either

5

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



visited by paths through the 5-clique or colored and visited by a 2-path in the 3-clique. Thus all
vertices are visited exactly once by each Hamilton cycle, by the paths in 5-cliques and 3-cliques.
The paths are connected as the terminal vertices are connected because only the terminal vertices
of a path partitioned in Hi (i = 1, 2, 3) is colored c1i and made the terminal vertices of the path
partitioned into Hi in the 3-cliques. Thus, we have proved that H1, H2 and H3 constructed are
three distinct Hamilton cycles of L(G).

Example 2. Suppose G is a 4-regular graph with three quasi-compatible dominating trials.

We know that the three quasi-compatible dominating trails satisfy the following conditions:
first, each 2-path can be visited at most three times; second, each vertex v is visited by at
least two of the quasi-compatible dominating trails; third, each edge can only be visited once
or three times by the dominating trails; fourth, two vertices that are visited only by two of the
dominating trails and visited by the same pair can not be adjacent to the same vertex that is
visited twice in a dominating trail at a specific occurrence; fifth, two vertices that are visited
only by two of the dominating trails and visited by the two distinct pairs can not be adjacent
to the same vertex that is visited twice in a dominating trail at the two distinct occurrences.

There are only are only five different ways to partition the four edges each vertex v. As each
edge incident to v can only be visited either once or trice and each vertex is visited by at least
two distinct quasi-compatible trails. Thus each v is visited by at least two 2-paths and at most
six 2-paths. Fig. 4 and Fig. 5 below are the five cases, with each color representing 2-paths in
one dominating trails and different shade of the same color signify two different visits of v by
the same dominating trails. The first case is two 2-paths, visiting each edge incident to v once
(see Fig. 4 Case 1). The second case is three 2-path, visiting one edge incident to v trice and
the three other edges incident to v once (see Fig. 4 Case 2). There are two cases when there are
four 2-paths of the three quasi-compatible dominating trails at v. The third case has only two
distinct 2-paths, with one visited three times by the three dominating trails (see Fig. 5 Case
3). The fourth case has only three distinct 2-paths, with one visited twice (see Fig. 5 Case 4).
It can be proven that v cannot be visited for five times by the three dominating trails. Since
there are five 2-paths from the three dominating trails and that each edge can only be visited
once or trice, thus, there must be one edge visited once and three edges visited trice. Since each
dominating trail can only visit each edge once, three edges are in all three of the dominating
trails. Thus, the vertex must be visited twice by each dominating trail, resulting in six 2-paths
instead of five. In the fifth case, v is visited six times by the three quasi-compatible dominating
trails. From the 4-clique K4(v) in the line graph L(G), there is only 6 edges and thus only one
way to partition it into 6 paths. Since each dominating trail can only visit each edge once, the
only case when v is visited six times is when all six distinct 2-paths at v is visited once (see Fig.
5 Case 5).

Each partitioning of the four edges at the vertices in the root graph G corresponds to ways
of partitioning the 4-cliques in the line graph.

We demonstrate one method of partitioning the 4-cliques in L(G) into H1, H2 and H3 accord-
ing to how the three quasi-compatible dominating trails T1, T2 and T3 partitioned the 2-paths at
the vertices. Let there be n (n ≥ 3) vertices. Consider a vertex v, let the vertices adjacent to v
in the root graph G be v1, v2, v3 and v4. Thus K4(v) is the 4-clique with the vertices vv1, vv2, vv3
and vv4 (referred to as ei1 , ei2 , ei3 and ei4 ({i1, i2, i3, i4} = {1, 2, 3, 4}) respectively in the rest of
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Figure 4: Case 1 and Case 2 in Example 2

Figure 5: Case 3, Case 4 and Case 5 in Example 2

Figure 6: Coloring the edges and the vertices of the 4-cliques (Case 1 to 3, from left to right)
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Figure 7: Coloring the edges and the vertices of the 4-cliques (Case 4 to 6, from left to right)

the Example 2). Let Ti, Tj and Tk be the three distinct dominating trails (i ̸= j ̸= k).

First, we color some of the vertices in the line graph L(G) in color ci (i = 1, 2, 3). An
edge e in the root graph is incident to two vertices. If the edge is only visited once by the
three dominating trails and only one of the vertex that its incident to is visited by all three
of the dominating trails. Let the other vertex incident to e be visited by Ti and Tj , we color
the vertex e in the line graph with ck. Next, we partition the 4-cliques according to the three
quasi-compatible dominating trails.

If a vertex v is visited by one dominating trail twice in G, let ei1vei2 and ei3vei4 be the two
distinct 2-paths visited by Ti. Then, in the line graph L(G), the edges ei1ei2 and ei3ei4 in K4(v)
are partitioned into Hi.

If the partitioning of the 2-paths at v is isomorphic to Fig. 5 Case 5: the six 1-paths in
K4(v) in L(G) is already partitioned into H1, H2 and H3 in the previous step.

We partition all the 4-cliques K4(v) of vertex v that is isomorphic to Fig. 4 Case 1. If a
vertex v in the root graph G is only visited by two of the dominating trails (Case 1): the paths
are only partitioned into two of the dominating cycles. Let e1 and e3 be the edges in Ti and e2
and e4 be the edges in Tj . As shown in the partitioning of K4(v) in L(G) of Case 1 in Fig. 6,
the blue and red paths are partitioned into Hi and Hj respectively. In the line graph, we color
e1, e2, e3, e4 in ck.

If the partitioning of the 2-paths at v is isomorphic to Fig. 4 Case 2: let e4 be the edge
incident to v that is visited by all three of the dominating trails in the root graph, and let
e1, e2, e3 be in Ti, Tj , Tk in the root graph respectively. If e1, e2, e3 are colored by three distinct
colors: let ei1 , ei2 , ei3 ({i1, i2, i3} = {1, 2, 3}) be the vertices in L(G) that are colored ci, cj , ck
respectively. ei1 can not be e1 because we only vertices not visited by one dominating trail can
be painted with the corresponding color. Similarly, e2 ̸= ei2 and e3 ̸= ei3 . We partition the path
that pass through the vertices e1, ei1 , e4 in K4(v) in L(G) into Hi and color the other vertex in
ci, e2, ei2 , e4 into Hj and color the other vertex in cj , and e3, ei3 , e4 into Hk and color the other
vertex in ck (see Case 2 in in Fig. 6). If e1, e2, e3 are colored by two distinct colors: let ei1 be
colored ci and ei2 , ei3 be colored cj . ei1 can not be e1 because we only vertices not visited by
one dominating trail can be painted with the corresponding color. Similarly, ei2 , ei3 ̸= e2. We
partition the path that pass through the vertices e1, ei1 , e4 in K4(v) in L(G) into Hi and color
the other vertex in ci, e2, ei2 , ei3 , e4 into Hj , and e3, e4 into Hk and color the other two vertices
in ck (see Case 3 in in Fig. 6).
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If the partitioning of the 2-paths at v is isomorphic to Fig. 5 Case 3: let Ti be the dominating
trail that visited v twice, two 1-path is already partitioned into Hi in the previous step. Let e1
and e3 be the two edges in G visited by all three of the dominating trails. Let e2 be colored in
cj . We partition the path that pass through the vertices e1, e2, e3 in K4(v) in L(G) into Hj and
e1, e4, e3 into Hk (see Case 4 in Fig. 7). e2, e4 can not be colored in the same color because, by
definition of the quasi-compatible dominating trails, two vertices that are visited only by two
of the dominating trails and visited by the same pair can not be adjacent to the same vertex
that is visited twice in a dominating trail at a specific occurrence. Additionally, we color e2, e4
in ck, cj respectively.

If the partitioning of the 2-paths at v is isomorphic to Fig. 5 Case 4: let Ti be the dominating
trail that visited v twice, two 1-path is already partitioned into Hi in the previous step. Let e1
and e3 be the two edges in G visited by all three of the dominating trails. Let e2, e4 be colored
in cj . We partition the path that pass through the vertices e1, e2, e4, e3 in K4(v) in L(G) into Hj

and e1, e3 into Hk. e2, e4 can not be colored in two distinct colors because by definition of the
quasi-compatible dominating trails, two vertices that are visited only by two of the dominating
trails and visited by the two distinct pairs can not be adjacent to the same vertex that is visited
twice in a dominating trail at the two distinct occurrences. Additionally, we color e2, e4 in ck.

After partitioning all 4-cliques in L(G) for vertices isomorphic to Fig. 5 Case 1 and Fig.
6 Case 5 in the root graph G. We partition the 4-cliques in L(G) in which all vertices e,
corresponding to an edge that is not included by all three dominating trails, are colored. If all
the 4-cliques in L(G) are not colored: for vertex in the root graph as Fig. 5 Case 2, we arbitrarily
color the vertices ei1 , ei2 , ei3 ({i1, i2, i3} = {1, 2, 3}) in ci, cj , ck respectively (see Case 2 in Fig.
6); for vertex in the root graph as Fig. 6 Case 3, we color the vertices ei1 , ei2 ({i1, i2} = {2, 4})
in cj , ck respectively (see Case 4 in Fig. 7); for vertex in the root graph as Fig. 6 Case 4, we
color the vertices ei1 , ei2 ({i1, i2} = {2, 4}) in cj (see Case 5 in Fig. 7).

Now, we prove that the paths in partitioned into each Hi (i = 1, 2, 3) are connected and
are Hamilton cycles. In the line graph L(G) partitioned into H1, H2, H3, each vertex either
correspond to an edge is visited by one or three distinct dominating trails in the root graph G.
All the vertex that correspond to an edge that is visited by all three distinct dominating trails
in G are the terminal vertices for three paths partitioned into each of H1, H2, H3 respectively
in both 4-cliques that it is in. The vertices that correspond to an edge that is visited only by
Ti is the end terminal of a path partitioned into Hi for both 4-cliques that it is in. Let the
two 4-cliques that it is in be K4(v) and K4(u), partitioned in this order. It must be visited
in the path partitioned into Hj (j ∈ {1, 2, 3} and j ̸= i). Thus, it will be colored in the color
corresponding to ck (k ∈ {1, 2, 3} and k ̸= i, j). Thus, it will be visited by the path partitioned
into Hk in K4(u) by the partitioning method above. Thus H1, H2, H3 passes through each vertex
in L(G) exactly once and are three edge-disjoint 2-factors of L(G). As each 4-cliques in L(G)
is visited by each Hi in the order of the corresponding vertex in G in Ti, each Hi is a complete
Hamilton cycle.
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4 Proof

We prove that the examples in Theorem 2 are the only ones. We assume given a line graph
L = L(G), but not the root graph G, and a decomposition of L into Hamilton cycles H1, H2

and H3. A root graph can be quickly calculated from L, thus the vertex cliques in L are known.
Because the line graph can be decomposed completely into three Hamilton cycles, the line graph
is 6-regular. Thus each edge in G is adjacent with 6 distinct edges. In particular, we know when
G = K1,7 because then L is a 7-clique. If it is not, then we know when G is (6,2)-biregular by the
existence of 6-cliques in L, G is (5, 3)-biregular by the existence of 5-cliques and 3-cliques, and
G is 4-regular in the remaining case. Thus, we can consider each type of root graph separately.
(L = K7 . . . )

Case 1.(Sivaraman and Zaslavsky, 2022) [13] Suppose G is (6, 2)-biregular. We can reconstruct
G′′, a graph isomorphic to G′, directly from the 6-cliques in L. The vertices ki of G

′′ are the
6-cliques in L, and there is an edge kikj of G′′ for each edge between a vertex of L in L(ki) and
one in L(kj). We know G′′ ∼= G′ because each vertex of G′′ is the vertex clique of L = L(G)
that corresponds to a quadrivalent vertex in SG′, that is, a vertex of G′.

The graph G′′ enables us to deduce the two Hamilton cycles H ′′
i of G′′ from Hi in L. Since

a vertex in G′′, considered as a 6-clique in L, is quadrivalent, each Hamilton cycle Hiof L must
enter and leave that 6-clique exactly once using separate edges from those used by the other
one. Thus, Hi acts as a divalent subgraph H ′′

i of G′′. This H ′′
i is connected because Hi is,

hence it is a Hamilton cycle of G′′. That proves the characterization of G in the (6, 2)-biregular
case of L. Note that, if we begin with G′ and its Hamilton cycles H ′

i, construct L = L(SG′)
and its Hamilton cycles H ′

i as in Example 1, and then construct H ′′
i in G′′, then the natural

isomorphism of G′′ to G carries each H ′′
i to Hi.

Case 2 Suppose G is (5, 3)-biregular We reconstruct the dominating trails in G from L. Let
G be a (5, 3)-biregualr graph with 5n 3-valent vertices and 3n 5-valent vertices. The vertices
vj(0 < j ≤ 3n, j ∈ N) (uk(0 < k ≤ 5n, k ∈ N), respectively) of G are the 5-cliques (3-cliques) in
L(G). There is edge vjuk for each edge between a vertex of L(G) in L(vj) and one in L(uk).

Let the trails Ti (i = 1, 2, 3) be reconstructed from the Hamilton cycles Hi (i = 1, 2, 3) in
L. There is an edge vjuk ∈ Ti in G for each edge between a vertex of Hi of L in L(vj) and one
in L(uk). For each Hi (i = 1, 2, 3), for each 3-clique L(u) in L(G), the two 5-cliques connected
by the longest path of Hi in L(u) is connected in the root graph G by a 2-path through u.

Each 5-clique has 10 edges; since only 4 edges can be visited without repeating vertices, we
know that each 5-clique had to be partitioned into all three of the Hamilton cycles of L. Thus,
each Hamilton cycle passed through all 5-cliques in L. Therefore, each trail reconstructed from
the Hamilton cycles contain all 5-valent vertices and is thus a dominating trail. Each 3-clique
can be partitioned into three 1-path, one in each Hamilton cycle, or one 1-path and one 2-path
in two distinct Hamilton cycles. Thus each 3-valent vertex in the root graph is contained by at
least two dominating trails. Finally, since all of the vertices have a degree of four in the 5-cliques
in the line graph L(G) it can only be the terminal vertex of an even number of paths in the
5-clique. Additionally, there are only three Hamilton cycles, and thus at most three terminal
vertex of three distinct paths, each vertex in the 5-clique can only be the terminal vertex of zero
or two paths. Therefore, each edge in the root graph G can only be visited not or twice by the
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three quasi-compatible dominating trails.

Case 3 Suppose G is 4-regular We reconstruct the dominating trials in G from L. Let G be a
4-regular graph with n (n ≥ 5) vertices. The vertices are the 4-cliques in L(G). There is an edge
vivj in the root graph G for each edge between a vertex of L(G) in K4(vi) and one in K4(vj).

Let the dominating trails Ti (i = 1, 2, 3) be reconstructed from the Hamilton cycles Hi (i
= 1, 2, 3) in L(G). There is an edge vjvk ∈ Ti in G for each edge between a vertex of Hi of L
in K4(vj) and one in K4(vk). In each 4-clique in L(G), the edges can be either partitioned into
two or three Hamilton cycles. Thus, each vertex v in the root graph is visited by at least two
of the quasi-compatible dominating trails. As the root graph is 4-regular, the structure of the
L(G) is connected 4-cliques. Inside each 4-clique in the line graph, each vertex has a valency of
3 thus a 2-paths can not be visited more than three times. By experimentation, it is possible
for a 2-path to be visited three times. Additionally, there are only three Hamilton cycles, and
thus each vertex can only be at most the terminal vertex for three distinct paths in a 4-clique.
Because the vertices in 4-cliques in the line graph L(G) are 3-valent, each vertex can only be
the terminal vertex of and odd number of paths, thus one or three paths. Therefore, each edge
in the root graph G can only be visited once or trice by the three quasi-compatible dominating
trails.

We prove that the two conditions left are true by contradiction. Let the three Hamilton
cycles of L(G) be Hi, Hj , Hk. First, if two vertices that are visited only by two of the dominating
trails and visited by the same pair are adjacent to the same vertex v that is visited twice in a
dominating trail at a specific occurrence. Thus, the 4-clique K4(v) in L(G) is partitioned into
two 1-paths in an Hamilton cycle and two paths in each on the two other Hamilton cycles left.
Two of its vertices must be the terminal vertex of three distinct paths partitioned into each of
the Hamilton cycles. We number the vertices of the 4-clique K4(v) in L(G) be e1, e2, e3 and e4.
Let the paths e1e2 and e3e4 be partitioned into Hi in the line graph and let e1, e2 be the two
vertices that are the terminal vertex of three paths. Thus, e3, e4 are each included in a 4-clique
beside K4(v) that is visited by only two Hamilton cycles. We know from the condition that the
two Hamilton cycles are the same pair, Hi and Hj , because e3, e4 are both terminal vertex of
a path in Hi in K4(v). Thus, e3, e4 are internal vertices of a path in Hj in the other 4-cliques
they are in. Therefore, they must be the internal vertices of a path in Hk in K4(v) and must
include the paths e1e3e2 and e1e4e2, which revisits e1 and e2 and contradicts with the nature
of Hamilton cycle Hk. Two vertices that are visited only by two of the dominating trails and
visited by the same pair can not be adjacent to the same vertex v that is visited twice in a
dominating trail at a specific occurrence. Second, if two vertices that are visited only by two of
the dominating trails and visited by the two distinct pairs are adjacent to the same vertex that
is visited twice in a dominating trail at the two distinct occurrences. Thus, the 4-clique K4(v)
in L(G) is partitioned into two 1-paths in an Hamilton cycle and two paths in each on the two
other Hamilton cycles left. Two of its vertices must be the terminal vertex of three distinct paths
partitioned into each of the Hamilton cycles. We number the vertices of the 4-clique K4(v) in
L(G) be e1, e2, e3 and e4. Let the paths e1e2 and e3e4 be partitioned into Hi in the line graph
and let e1, e3 be the two vertices that are the terminal vertex of three paths. Thus, e2, e4 are
each included in a 4-clique beside K4(v) that is visited by only two Hamilton cycles. We know
from the condition that the two Hamilton cycles are the distinct pair, (Hi, Hj) and (Hi, Hk),
because e3, e4 are both terminal vertex of a path in Hi in K4(v). Thus, e2, e4 are internal vertices
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of a path in Hj , Hk respectively in the other 4-cliques they are in. Therefore, e2, e4 must be the
internal vertices of a path in Hk, Hj respectively in K4(v). Thus the paths e1e4e2 and e3, e2e4
must be in Hj , Hk respectively. As Hj and Hk are two edge-disjoint Hamilton cycles of L(G),
e2, e4 can not be in both Hamilton cycles. Therefore, two vertices that are visited only by two
of the dominating trails and visited by the two distinct pairs can not be adjacent to the same
vertex that is visited twice in a dominating trail at the two distinct occurrences.

Thus, we have prove that the three dominating trails visited each 2-paths at most three
times, visited each vertex v at least two of the quasi-compatible dominating trails, and each
edge can only be visited once or trice by the dominating trails. Two vertices that are visited
only by two of the dominating trails and visited by the same pair can not be adjacent to the
same vertex that is visited twice in a dominating trail at a specific occurrence. Two vertices
that are visited only by two of the dominating trails and visited by the two distinct pairs can
not be adjacent to the same vertex that is visited twice in a dominating trail at the two distinct
occurrences.
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