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On an inverse problem of Bermond’s conjecture

Yuhan Zhou

Abstract

A Hamilton cycle is a spanning cycle that visits each vertex exactly.once and the Hamilton
cycle problem is the problem of determining whether a Hamilton cycle exists'in.a given
graph. The Hamilton cycle problem is one of the crucial problems in graph theory and
the Hamilton decomposability of line graphs has been studied extensively. A long-standing
conjecture of Bermond stated that the line graph of @ Hamilton: decomposable graph is
Hamilton decomposable. In this paper, we study an inverse-problem of Bermond’s conjecture
and characterize the root graphs whose line graphs can be completely decomposed into three
Hamilton cycles.
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1. Introduction

Throughout this paper, a graph G = (V(G), E(G)) is a finite undirected graph with no
multiple edges or loops. We say that a cycle in a graph G is a Hamilton cycle when it contains
all vertices of G without repetition. A graph is defined as Hamiltonian if it contains a Hamilton
cycle. The line graph of a graph G, written as L(G), is constructed by assigning a vertex to an
edge of G, with two vertices connected if and only if their associated edges in G share a common
endpoint. The graph G is the root graph of L(G). If the edges of a graph G can be decomposed



into a set of Hamilton cycles in G so that every edge belongs to exactly one cycle, this collection
is called a Hamilton decomposition of G. A graph is Hamilton decomposable if it possesses a
Hamilton decomposition. The Hamilton cycle problem concerns deciding if a Hamiltonian ¢ycle
is present in a specified graph. It is well-known that these problems are very hard to solve,
which are NP-complete. For the standard terminology and notation, we follow [2].

In 1988, Bermond [1] proposed the following famous conjecture in graph theory,

Conjecture 1.1. A Hamilton decomposable graph has a line graph that is-Hamilton decompos-
able.

Here, we present the progress of previous works that suppert'the conjecture.of Bermond.
Kotzig’s 1964 result [9] states that a cubic graph is Hamiltonian‘exactly«when its line graph is
Hamilton decomposable. In 1983, Jaeger [8] proved that.whenever a simple graph G with an
even number of edges has a Hamiltonian decomposition of its edge set, the line graph of G is
1-factorizable. Moreover, if a graph G can be completely ‘decomposed into an even (respectively,
odd) number of Hamilton cycles, then L(G) can be decomposed. into Hamilton cycles (respec-
tively, into Hamilton cycles along with a 2-factor).~Inaddition, for a 2k-regular graph G that
contains a Hamilton cycle, L(G) admits a decompesition into'Hamilton cycles together with a
2-factor (A. Muthusamy and P. Paulraja, 1995) [10]. This‘settles Bermond’s conjecture for all
graphs which have a Hamilton cycle decomposition with évennumber cycles. It was also proved
that when a bipartite (2k 4+ 1)-graph G is decomposable,/then L(G) is also Hamilton decom-
posable (Pike, 1995) [11]. It was further proved that/some bipartite Hamilton decomposable
graphs which are regular graphs and with degree 6.= 2.(mod 4) have Hamilton decomposable
line graphs. It settles the conjecture of Bermond-for every bipartite Hamilton decomposable
graph G with vertex connectivity #(G).= 2 (Pike, 2005) [12]. Recently, Bryant et al. [3] claimed
that they have fully proved Bermond’s.conjecture and the paper can be found in arXiv. Other
related results can be found in 4, 5, 7]

In 2022, Sivaraman and Zaslaysky. [13] ‘asked an inverse problem of Bermond’s conjecture:
Problem 1. If L(G)"is decomposable into k Hamilton cycles. What is G?
In the same paper, they studied the case when k£ = 2.

Theorem 1.1. [13] The graph G of Problem 1, when k = 2, is either K 5, or the first subdivision
of a 4-reqular_graph G that decomposes into two Hamilton cycles, or a Hamilton cubic graph.

In this paper; we study the Problem 1 when k& = 3 and characterize the root graphs G whose
line graphs can:be decomposable into three Hamilton cycles.

2/ Preliminary and main results
Extensive work has been carried out by various researchers on Hamiltonian cycles of line
graphs. The first contribution to this topic was given by Harary and Nash-Williams in 1965 [6].

Theorem 2.1. [6] For a graph G, L(G) is Hamiltonian if and only if G has a dominating closed
trail.



Here, we define the three quasi-compatible dominating trails for (5,3)-biregular graphs-and
4-regular graph respectively.

A quasi-compatible dominating trial for (5, 3)-biregular graphs T; (i = 1,2,3) is defined as
follows: T; visits all 5-valent vertices of the root graph G at least once. If a vertex u is not“in
T;, it is in both the other two dominating trails. Additionally, each edge is visited either not or
twice by the three dominating trails.

The three quasi-compatible dominating trails for 4-regular graphs T; (i = 14 2, 3) satisty the
following. First, each 2-path can be visited at most three times. Second, each vertex v is visited
by at least two of the quasi-compatible dominating trails. Third, each edge can only be visited
once or three times by the dominating trails. Fourth, two vertices that are visitedwonlyby two of
the dominating trails and visited by the same pair can not be‘adjacent to the same vertex that
is visited twice in a dominating trail at a specific occurrence. Fifthytwo vertices-that are visited
only by two of the dominating trails and visited by the two. distinct pairs ¢an not be adjacent
to the same vertex that is visited twice in a dominating trail at the two distinct occurrences.

The following is our main result. We characterize/the,root graphs whose line graphs can be
decomposable into three Hamilton cycles.

Theorem 2.2. The graph G of Problem 1, when k = 3, is eithery 7, or the first subdivision
of a 6-regular graph G’ that decomposes finto.three Hamilton cycles, a (3,5)-bireqular graph
that contains three quasi-compatible dominating trails, or/a.4-reqular graph with three quasi-
compatible dominating trails.

SG is the first subdivision of algraph G, obtained by subdividing every edge into a path of
length 2.

The first case gives line graph K7, which is obviously a solution to Problem 1 when k = 3.

In the second case, Sivaramana and.Zaslavskyb [8] gave a construction of the decomposition
of L(G) for G = SG' of a graph 2h ~ regular G', h > 2, which decomposes into h Hamilton
cycles Hi,..., Hj.

For the third and the fourth-case, this paper will explain how the line graph decomposes in
terms of the three quasi-compatible dominating graphs.

3 Construction

Wedescribe the construction of the Hamilton decomposition of our 6-regular L(G) in each
case other than K.

Example 1., Suppose G is a (3, 5)-biregular graph with three quasi-compatible dominating
trails.

There are only four different ways to partition the five edges at a 5-valent vertex v. As each
edge incident to v can only be visited either not or twice and each vertex is visited by each
quasi-compatible dominating trail at least once, at least three 2 paths and at most five 2-path is
visited at the v. The first case is three 2-paths in the dominating trails at v in G, visiting three



Figure 2: Case 3 and Case 4 in Example 1

edges incident to v twice each. It.is straightforward to verify that no 2-path can be visited twice
in this case (see Fig. 1 Case 1, different colors represent different dominating trails). The second
case is four distinct 2-path in the dominating trails at v in G, visiting four edges incident to v
twice each; while all 2-path is visited once (see Fig. 1 Case 2). The third case is two distinct
2-paths with no‘overlapping edges in the dominating trails at v in G, visited twice each (see Fig.
2 Case 3). The fourth case is five 2-paths in the dominating trails at v in G. By inspection, we
know that.the/2-paths have to be distinct (see Fig. 2 Case 4).

Each partition of the five edges at the 5-valent vertex v in GG can correspond to one way of
partitioning the 5-clique L(v) in the line graph.

Here, we demonstrate one method of partitioning the 5-cliques in L(G) into Hi, Hy and Hj
according to how the three quasi-compatible dominating trails 77,75 and T3 partitioned the 2-
paths at 5-valent vertices. Let there be 5n 3-valent vertices and 3n 5-valent vertices. Consider a
5-valent vertex v, let the 3-valent vertices adjacent to v in G be uy, ug, us, ug and us, thus L(v) is
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Figure 3: Coloring the edges and the vertices of the 5-cliques (Case 1 to 4, from left to.right)

the 5-clique with vertices vuy, vug, vus, vus and vus (referred to as e, eg,es, eq, ez respectively in
the rest of the Example 1). Let T3, T and T}, be the three distinct dominating trails (i # j # k).

We start by coloring the edges and the vertices of the 5=cliqués with the colors ¢f (p =1,2,3
and ¢ = 1,2). We demonstrate a mapping from ey, es, e3, s, €5.to the vertices numbered 1,2,3,4
and 5 in Fig. 3.

If the partitioning of the 2-paths at v is isomorphic to Case 1/in Fig. 1: let the colored
2-paths be in the three dominating trails respectively, while‘us € T; and uy € T}, since ug and
uy4 are both contained by two distinct dominating trails. As'shown in the partitioning of K5(v)
of Case 1 in Fig. 3, the red, green and blue pathare colored in ¢;, ¢; and c¢;, respectively, where
e1 is the edge in both T and T}, e3 is the edge/in both T; and T and e5 is the edge in both T;
and T}. Additionally, ey is colored cjl- and c}C; e3 is colored ci1 and cjl-; es is colored c% and c,lg; €9
is colored ¢? and ey is colored ¢? in L(G).

If the partitioning of the 2-paths at v is“isomorphic to Case 2 or 3 in Fig. 1 and Fig. 2:
let the colored 2-paths be in the.three“dominating trails respectively, and vus be the edge not
visited by the three dominating trails. ‘Let«T; be the dominating trail that visited v twice. As
each u is included by at least two distinct dominating trails, let uz € V(T}). Thus, as shown in
the partitioning of K5(v) in L(G)sof Case'2 or Case 3 (respectively) in Fig. 3, the red, green
and blue path are colored in c¢;, ¢; and c respectively, where in e; and e5 are the two edges in
both T; and T}, and e; ‘and ey4 are the two edges in both 7; and Tj. Differently, in Case 2 e; and
eo are adjacent in"Tj while in Case 3 e; and e; are adjacent in 7;. Additionally, e; and es are
colored c} and c,lc, eo and €4 are.colored c} and c}, and e3 is colored c? in L(G).

If the/partitioning of'the 2-paths at v is isomorphic to Case 4 in Fig. 2: let the colored
2-paths be in the three dominating trails respectively. Let T; be the dominating trail that only
visited v once. As'shown in the partitioning of K5(v) in L(G) of Case 4 (respectively) in Fig.
3, the-blue, red and greéen path are colored in ¢;, ¢; and ¢;, respectively, where e is the edge in
both T;j'and T}, es5.is the edge in both T; and T}, and ez, e3 and e4 are the edges in both 7 and
Tj,. Additionally, es and e5 are adjacent in T}, while e; and ey are adjacent in 7. We color eq
with both ci1 and cjl-, es5 with both ci1 and C}C, and e, 23 and e4 with both cjl- and C]1€ in L(G).

Then, we partition the edges in the 3-cliques in L(G) according to our coloring. First, in
each.3-clique, we partition each edge that connect the vertices colored in cz1 (1 =1,2,3) into H;.
Then, if the other vertex is colored in c?, we substitute the edge with the two other edge in the
3-clique.

In the line graph L(G) partitioned into Hy, He, H3, in each 5-clique, the vertices are either



visited by paths through the 5-clique or colored and visited by a 2-path in the 3-clique. Thus.all
vertices are visited exactly once by each Hamilton cycle, by the paths in 5-cliques and 3-cliques.
The paths are connected as the terminal vertices are connected because only the terminal vertices
of a path partitioned in H; (i = 1,2, 3) is colored cZ1 and made the terminal vertices of the path
partitioned into H; in the 3-cliques. Thus, we have proved that H{, Ho and Hs constructed are
three distinct Hamilton cycles of L(G).

Example 2. Suppose G is a 4-regular graph with three quasi-compatible:dominating trials.

We know that the three quasi-compatible dominating trails satisfy the following conditions:
first, each 2-path can be visited at most three times; second, each vertex v=is visited by at
least two of the quasi-compatible dominating trails; third, eachredge can only be.visited once
or three times by the dominating trails; fourth, two vertices that are visited only by two of the
dominating trails and visited by the same pair can not be adjacent to the same vertex that is
visited twice in a dominating trail at a specific occurrence; fifth, two vertices that are visited
only by two of the dominating trails and visited by the ‘two distinct pairs can not be adjacent
to the same vertex that is visited twice in a dominating trail at the two distinct occurrences.

There are only are only five different ways to partition the four edges each vertex v. As each
edge incident to v can only be visited either once oritrice’and each vertex is visited by at least
two distinct quasi-compatible trails. Thus each v.is visited by/at least two 2-paths and at most
six 2-paths. Fig. 4 and Fig. 5 below are the five cases, ‘with each color representing 2-paths in
one dominating trails and different shade of the same color signify two different visits of v by
the same dominating trails. The firsticaseuis two 2-paths, visiting each edge incident to v once
(see Fig. 4 Case 1). The second casetis three 2-path, visiting one edge incident to v trice and
the three other edges incident to v.once (see Fig:.4 Case 2). There are two cases when there are
four 2-paths of the three quasi-compatible dominating trails at v. The third case has only two
distinct 2-paths, with one visited three times by the three dominating trails (see Fig. 5 Case
3). The fourth case has only three distinet 2-paths, with one visited twice (see Fig. 5 Case 4).
It can be proven that v cannot be visited for five times by the three dominating trails. Since
there are five 2-paths from the three dominating trails and that each edge can only be visited
once or trice, thus, theremustsbe one edge visited once and three edges visited trice. Since each
dominating trail cantonly visit each edge once, three edges are in all three of the dominating
trails. Thus, the vertex must bevisited twice by each dominating trail, resulting in six 2-paths
instead offive. In the fifth case, v is visited six times by the three quasi-compatible dominating
trails. From the 4-clique Kj4(v) in the line graph L(G), there is only 6 edges and thus only one
way to partition it'into 6 paths. Since each dominating trail can only visit each edge once, the
only case when'v is visited six times is when all six distinct 2-paths at v is visited once (see Fig.
5 Case b).

Each.partitioning of the four edges at the vertices in the root graph G corresponds to ways
of'partitioning the 4-cliques in the line graph.

We demonstrate one method of partitioning the 4-cliques in L(G) into Hy, Hy and Hs accord-
ing to-hew the three quasi-compatible dominating trails 77,75 and T3 partitioned the 2-paths at
the vertices. Let there be n (n > 3) vertices. Consider a vertex v, let the vertices adjacent to v
in the root graph G be vy, v9,v3 and vy. Thus K4(v) is the 4-clique with the vertices vvy, vvg, vvs
and vvy (referred to as e;,, €;,, €5, and e;, ({i1,12,13,94} = {1,2,3,4}) respectively in the rest of
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ase 4 and Case 5 in Example 2

Figure 6: Coloring the edges and the vertices of the 4-cliques (Case 1 to 3, from left to right)
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Figure 7: Coloring the edges and the vertices of the 4-cliques (Case.4'to 6, from left to right)

the Example 2). Let T;,T; and T}, be the three distinct dominating trails (¢ #.# k).

First, we color some of the vertices in the line graphw[(G) in“color.c; (i = 1,2,3). An
edge e in the root graph is incident to two vertices. Ifithe edge ds/only visited once by the
three dominating trails and only one of the vertex that its incident 4o is visited by all three
of the dominating trails. Let the other vertex incident to e/be Visited by T; and T}, we color
the vertex e in the line graph with ¢;. Next, we partition the 4-cliques according to the three
quasi-compatible dominating trails.

If a vertex v is visited by one dominating trail twice in.G, let e; ve;, and e;,ve;, be the two
distinct 2-paths visited by T;. Then, in the line graph L(G), the edges e;, e;, and e;e;, in K4(v)
are partitioned into H;.

If the partitioning of the 2-paths at,v is‘isomorphic to Fig. 5 Case 5: the six 1-paths in
K,(v) in L(G) is already partitioned into Hj,Ha.and Hj in the previous step.

We partition all the 4-cliques K4(v) of vertex v that is isomorphic to Fig. 4 Case 1. If a
vertex v in the root graph*G is only visited by two of the dominating trails (Case 1): the paths
are only partitioned into two of the dominating cycles. Let e; and e3 be the edges in T; and eq
and ey4 be the edges in T As shown in‘the partitioning of K4(v) in L(G) of Case 1 in Fig. 6,
the blue and red paths are partitioned into H; and H; respectively. In the line graph, we color
€1,€2,€3,€4 in Ck-

If the partitioning of the 2-paths at v is isomorphic to Fig. 4 Case 2: let es be the edge
incident to w.that is visited by all three of the dominating trails in the root graph, and let
e1, ez, ez be in T;, Tj, T}, in-the root graph respectively. If ey, e2, e3 are colored by three distinct
colors: let e;,, €y, €55 ({81,172,73} = {1,2,3}) be the vertices in L(G) that are colored ¢;, ¢j, ci
respectively. e;;.can not be e; because we only vertices not visited by one dominating trail can
be painted with the corresponding color. Similarly, ea # e;, and e3 # e;,. We partition the path
that pass through the vertices ey, e;,,eq in K4(v) in L(G) into H; and color the other vertex in
€i, €2, €qeqiinto H; and color the other vertex in c¢j, and e, €;,, e4 into Hj, and color the other
vertex in ¢ (see Case 2 in in Fig. 6). If ej, e, e3 are colored by two distinct colors: let e;, be
colored c;.and e;,,e;, be colored c;. e;; can not be e; because we only vertices not visited by
onewdominating trail can be painted with the corresponding color. Similarly, e;,, e, # e2. We
partition the path that pass through the vertices e1,e;,,es in Ky4(v) in L(G) into H; and color
the other vertex in ¢;, €2, €;,, €;,, ¢4 into Hj, and e3, e4 into Hy, and color the other two vertices
in ¢ (see Case 3 in in Fig. 6).



If the partitioning of the 2-paths at v is isomorphic to Fig. 5 Case 3: let T; be the dominating
trail that visited v twice, two 1-path is already partitioned into H; in the previous step. Let e;
and e3 be the two edges in G visited by all three of the dominating trails. Let e2 be colored in
c¢;. We partition the path that pass through the vertices ey, e2, e3 in K4(v) in L(G) into H; and
e1,eyq,e3 into Hy (see Case 4 in Fig. 7). ey, e4 can not be colored in the same color because, by
definition of the quasi-compatible dominating trails, two vertices that are visited=only by two
of the dominating trails and visited by the same pair can not be adjacent-to'the same vertex
that is visited twice in a dominating trail at a specific occurrence. Additionally, we color esiey
in ¢y, ¢j respectively.

If the partitioning of the 2-paths at v is isomorphic to Fig. 5 Cased: let T; be the:dominating
trail that visited v twice, two 1-path is already partitioned inte"H; in the previous:step. Let e;
and e be the two edges in G visited by all three of the dominating trails: Let €s,e4 be colored
in ¢;. We partition the path that pass through the verticesie;, e2, €4, e3.in K4(v) in L(G) into H;
and e, e3 into H. e2, e4 can not be colored in two distinet colors because by definition of the
quasi-compatible dominating trails, two vertices that arevisited only by two of the dominating
trails and visited by the two distinct pairs can not beadjacent to the same vertex that is visited
twice in a dominating trail at the two distinct oecurrences. Additionally, we color es, e4 in cg.

After partitioning all 4-cliques in L(G) for/ vertices isomorphic to Fig. 5 Case 1 and Fig.
6 Case 5 in the root graph G. We partition the 4-cliqués/in L(G) in which all vertices e,
corresponding to an edge that is not included by all three dominating trails, are colored. If all
the 4-cliques in L(G) are not colored: for vertex in the root graph as Fig. 5 Case 2, we arbitrarily
color the vertices e;,, €;,, €, ({11,142, 13} = {1,2, 3}) in'¢;, ¢j, ¢, respectively (see Case 2 in Fig.
6); for vertex in the root graph as Fig..6 Case 3, we color the vertices e;,, e;, ({i1,i2} = {2,4})
in ¢j, ¢, respectively (see Case«d in Fig. 7); for vertex in the root graph as Fig. 6 Case 4, we
color the vertices e;,, €;, ({i1,i2} = {2,4}).in ¢; (see Case 5 in Fig. 7).

Now, we prove that the paths in partitioned into each H; (i = 1,2,3) are connected and
are Hamilton cycles. Inuthe line/graph L(G) partitioned into Hi, Ho, H3, each vertex either
correspond to an edge is wvisited by one or three distinct dominating trails in the root graph G.
All the vertex that correspond to an edge that is visited by all three distinct dominating trails
in G are the terminal vertices for three paths partitioned into each of Hy, Ho, H3 respectively
in both 4-cliques that it is in. The vertices that correspond to an edge that is visited only by
T; is the énd terminal-of.a path partitioned into H; for both 4-cliques that it is in. Let the
two 4-cliques that it.is.in be Ky(v) and K4(u), partitioned in this order. It must be visited
in the path partitioned into H; (j € {1,2,3} and j # i). Thus, it will be colored in the color
corresponding to ¢; (k€ {1,2,3} and k # i, 7). Thus, it will be visited by the path partitioned
into Hy/in K4(u) by the partitioning method above. Thus H;, He, H3 passes through each vertex
in L(G) exactly once and are three edge-disjoint 2-factors of L(G). As each 4-cliques in L(QG)
is visited by each H; in the order of the corresponding vertex in G in Tj, each H; is a complete
Hamilton.cycle.



4 Proof

We prove that the examples in Theorem 2 are the only ones. We assume given a line graph
L = L(G), but not the root graph G, and a decomposition of L into Hamilton cycles Hy,Hy
and Hs. A root graph can be quickly calculated from L, thus the vertex cliques in 4 are known.
Because the line graph can be decomposed completely into three Hamilton cycles, the line graph
is 6-regular. Thus each edge in G is adjacent with 6 distinct edges. In particular;we know. when
G = K 7 because then L is a 7-clique. If it is not, then we know when G is (6,2)-biregular-bythe
existence of 6-cliques in L, G is (5, 3)-biregular by the existence of &-cliques and 3-eliques, and
G is 4-regular in the remaining case. Thus, we can consider each type of root graph separately.
(L=K7...)

Case 1.(Sivaraman and Zaslavsky, 2022) [13] Suppose G is (6, 2)-biregular. "We can reconstruct
G", a graph isomorphic to G’, directly from the 6-cliques in. L. The vertices k; of G are the
6-cliques in L, and there is an edge k;k; of G” for each edge between‘avertex of L in L(k;) and
one in L(k;). We know G” = G’ because each vertex of G” is«the vertex clique of L = L(G)
that corresponds to a quadrivalent vertex in SG’, thatuis, a vertex of G.

The graph G” enables us to deduce the two-Hamilton:cycles H;" of G” from H; in L. Since
a vertex in G”, considered as a 6-clique in Ly is quadrivalent; each Hamilton cycle H;of L must
enter and leave that 6-clique exactly once.using separate edges from those used by the other
one. Thus, H; acts as a divalent subgraph “H" of G". This H]' is connected because H; is,
hence it is a Hamilton cycle of G”. That proves the characterization of G in the (6, 2)-biregular
case of L. Note that, if we begin with G’ and’its Hamilton cycles H/, construct L = L(SG’)
and its Hamilton cycles H] as in, Example 1, and then construct H;' in G”, then the natural
isomorphism of G” to G carries each H] to H;:

Case 2 Suppose G is (5, .3)-biregular We reeonstruct the dominating trails in G from L. Let
G be a (5, 3)-biregualr graph withr 5n 3-valent vertices and 3n 5-valent vertices. The vertices
vj(0 < j < 3n,j € N) (u(0< k £ 5n,k € N), respectively) of G are the 5-cliques (3-cliques) in
L(G). There is edge vjuy for each'edge between a vertex of L(G) in L(v;) and one in L(uy).

Let the trails T; (4 = 1, 2,.8) be reconstructed from the Hamilton cycles H; (i = 1, 2, 3) in
L. There is;an edge vjuy € T; in'G for each edge between a vertex of H; of L in L(v;) and one
in L(ug)./For each H; (i'= 1,2, 3), for each 3-clique L(u) in L(G), the two 5-cliques connected
by the longest'path of H; in L(u) is connected in the root graph G by a 2-path through wu.

Fach 5-clique has 10/edges; since only 4 edges can be visited without repeating vertices, we
know that each.5-clique had to be partitioned into all three of the Hamilton cycles of L. Thus,
each Hamilton cycle passed through all 5-cliques in L. Therefore, each trail reconstructed from
the Hamilton cycles contain all 5-valent vertices and is thus a dominating trail. Each 3-clique
can be‘partitioned into three 1-path, one in each Hamilton cycle, or one 1-path and one 2-path
in two distinct Hamilton cycles. Thus each 3-valent vertex in the root graph is contained by at
least.two dominating trails. Finally, since all of the vertices have a degree of four in the 5-cliques
in the line graph L(G) it can only be the terminal vertex of an even number of paths in the
5-clique. Additionally, there are only three Hamilton cycles, and thus at most three terminal
vertex of three distinct paths, each vertex in the 5-clique can only be the terminal vertex of zero
or two paths. Therefore, each edge in the root graph G can only be visited not or twice by the
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three quasi-compatible dominating trails.

Case 3 Suppose G is 4-reqular We reconstruct the dominating trials in G from L. Let . G+be a
4-regular graph with n (n > 5) vertices. The vertices are the 4-cliques in L(G). There is an edge
v;v; in the root graph G for each edge between a vertex of L(G) in K4(v;) and one'in K4 (v;).

Let the dominating trails 7; (i = 1, 2, 3) be reconstructed from the Hamilton cycles H; (i
=1, 2, 3) in L(G). There is an edge vju, € T; in G for each edge between a, vertex of 'H; of L
in K4(v;) and one in K4(vi). In each 4-clique in L(G), the edges can be either partitioned-into
two or three Hamilton cycles. Thus, each vertex v in the root graph isvisited by-at least two
of the quasi-compatible dominating trails. As the root graph is 4-regular, the-structure of the
L(G) is connected 4-cliques. Inside each 4-clique in the line graph, each vertéx hasa valency of
3 thus a 2-paths can not be visited more than three times. By<experimentation,.it is possible
for a 2-path to be visited three times. Additionally, there are only three Hamilton cycles, and
thus each vertex can only be at most the terminal vertex forithree distinct paths in a 4-clique.
Because the vertices in 4-cliques in the line graph L(G) are 3-valent, each vertex can only be
the terminal vertex of and odd number of paths, thus one or three paths: Therefore, each edge
in the root graph G can only be visited once or trice.by-the three-quasi-compatible dominating
trails.

We prove that the two conditions left are true by_contradiction. Let the three Hamilton
cycles of L(G) be H;, H;, Hy,. First, if two vertices that are visited only by two of the dominating
trails and visited by the same pair are adjacent to.the same vertex v that is visited twice in a
dominating trail at a specific occurrence. Thus, the 4-clique K4(v) in L(G) is partitioned into
two 1-paths in an Hamilton cycle and:two paths‘in each on the two other Hamilton cycles left.
Two of its vertices must be the terminal vertex‘of three distinct paths partitioned into each of
the Hamilton cycles. We number the vertices of the 4-clique K4(v) in L(G) be ey, ea, e3 and ey.
Let the paths ejes and ezes be partitioned into H; in the line graph and let ey, eo be the two
vertices that are the terminal vertex of three paths. Thus, e3, e4 are each included in a 4-clique
beside K4(v) that is visited by only two Hamilton cycles. We know from the condition that the
two Hamilton cycles are the same pair,H; and H;, because e3,e4 are both terminal vertex of
a path in H; in K4(v). Thus,ce3, eprare internal vertices of a path in H; in the other 4-cliques
they are in. Therefore, they must be the internal vertices of a path in Hy in K4(v) and must
include the paths ejeszes and eyejes, which revisits e; and es and contradicts with the nature
of Hamilton cycle Hj. Two wvertices that are visited only by two of the dominating trails and
visited by the'same_pair can not be adjacent to the same vertex v that is visited twice in a
dominating trail at a specific occurrence. Second, if two vertices that are visited only by two of
the dominating trails and visited by the two distinct pairs are adjacent to the same vertex that
is visited twice in.a dominating trail at the two distinct occurrences. Thus, the 4-clique K4(v)
in L(G) is'partitioned into two 1-paths in an Hamilton cycle and two paths in each on the two
other Hamilton cycles left. Two of its vertices must be the terminal vertex of three distinct paths
partitioned into each of the Hamilton cycles. We number the vertices of the 4-clique K4(v) in
L(G) be e1yea,e3 and ey4. Let the paths ejes and esey be partitioned into H; in the line graph
and let €1, es be the two vertices that are the terminal vertex of three paths. Thus, es, ey are
eachincluded in a 4-clique beside K4(v) that is visited by only two Hamilton cycles. We know
from the condition that the two Hamilton cycles are the distinct pair, (H;, H;) and (H;, Hy),
because e3, e4 are both terminal vertex of a path in H; in K4(v). Thus, eg, e4 are internal vertices
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of a path in H;, Hj, respectively in the other 4-cliques they are in. Therefore, e2, e4 must be.the
internal vertices of a path in Hy, H; respectively in K4(v). Thus the paths ejeses and ezyegeq
must be in Hj, Hy, respectively. As H; and Hy, are two edge-disjoint Hamilton cycles of L(G),
e2, e4 can not be in both Hamilton cycles. Therefore, two vertices that are visited only, by two
of the dominating trails and visited by the two distinct pairs can not be adjacent to the same
vertex that is visited twice in a dominating trail at the two distinct occurrences.

Thus, we have prove that the three dominating trails visited each 2<paths at most three
times, visited each vertex v at least two of the quasi-compatible dominating trails; and each
edge can only be visited once or trice by the dominating trails. Two ‘vertices that are visited
only by two of the dominating trails and visited by the same pair“canwnot be adjacent to the
same vertex that is visited twice in a dominating trail at a specific_occurrence. Two vertices
that are visited only by two of the dominating trails and visited by the ‘two distinct pairs can
not be adjacent to the same vertex that is visited twice in‘a dominating trailat the two distinct
occurrences.
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