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SCHEME-THEORETIC AND SET-THEORETIC COMPLETE
INTERSECTION OF POINTS

WEILE HUANG

Abstract. This paper explores whether a general set of closed points in the projective
space is an intersection of n hypersurfaces. We study both the scheme-theoretic and the
set-theoretic intersection. The scheme-theoretic part is understood by Bezout’s theorem
and computations in Chow ring, while extra details are needed in exploiting the set-
theoretic intersection part of this topic.

Keywords: algebraic geometry, complete intersections, projective space, interpolation,
Bezout’s theorem

Contents

1. Introduction 1
2. Preliminaries 2
2.1. Algebraic sets and ring of regular functions 2
2.2. Zariski topology and algebraic varieties 3
2.3. Graded structure, Projective space 4
2.4. Localization, Local rings 4
3. Intersection Theory 5
3.1. Dimension, Hypersurfaces and linear system 6
3.2. Multiplicity and intersection multiplicity 6
3.3. Bezout’s theorem and Chow ring 7
4. Main result and sketch of the proof 8
5. Interpolation using hypersurfaces 9
5.1. dimension reduction while interpolating points 9
5.2. dimension reduction while adding multiplicity condition 10
6. 0-dimensional scheme-theoretic compelete intersection on Pn 10
7. 0-dimensional set-theoretic complete intersection on P2 12
8. Further explorations 14
References 16
Acknowledgements 17

1. Introduction

Among all projective varieties, (scheme-theoretic) complete intersections are particu-
larly important because of both simplicity and generality. They are more structured and
well behaved (for example, they are Gorenstein, hence Cohen-Macaulay), yet still general
enough to include many interesting examples. In addition, the computational nature
for complete intersections is also better. For example, the normal bundle and canonical
bundle can be directly written down using the degrees of the intersected hypersurfaces:
Suppose X is a complete intersection of degree d1, d2, ...,dm, then the conormal bundle
is N ∨ = I/I2 = OX(−d1) ⊕ OX(−d2)... ⊕ OX(−dn) and hence by adjunction formula,
the canonical bundle KX = OX(d1 + d2...+ dn − n− 1).
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2 WEILE HUANG

Set-theoretic complete intersections are less researched by mathematicians but they
still motivate a family of interesting open questions, among which the most famous one is
whether each irreducible curve in P3 is a set-theoretic intersection of two surfaces. This
question remains open even for smooth curves in P3 with genus 0 and degree 4.

Determining all complete intersection of given dimension d is a difficult moduli problem.
While in lower dimensions, mathematicians have managed to introduce some tools to
understand why some specific variety is a scheme-theoretic complete intersection or not,
the problem of determining set-theoretic complete intersections in most cases, as stated
in the previous paragraph, is still wildly open.

In this paper we use elementary arguments to give a complete description of the integer
m such that givenm general points on Pn, whether we can always write them as a complete
intersection. Also, we prove that in P2, any set of points can be a set-theoretic complete
intersection. Now we state our theorems here:

Theorem. A general set of m discrete points on Pn is a complete intersection if and only
if one of the following condition holds:

(1) n ≥ 4, m = 1 or 2 (2) n = 3, m ∈ {1, 2, 8} (3) n = 2, m ∈ {1, 2, 4}
Theorem. Any set of points on P2 is a set-theoretic complete intersection.

These theorem will also be stated in chapter 4 and the sketch of the proof will be
introduced there.

A simple example is a set of 3 general distinct points on P2. If it is a complete
intersection, then it must be an intersection of two curves of degree 1 and 3, which
means these three points must be colinear, so if the three points are general enough (not
colinear), then this set is not a complete intersection. However, for any three points, one
can always find a conic passing through all three points, and choose two lines connecting
two of them, so that this set is the intersection of a conic and a degenerate quadratic
surface consisting of the union of those two lines.

(a) Complete intersection iff colinear (b) Always set-theoretic complete intersection

We will also make comments to some consequential results and new questions emerged
in the last chapter. Some part of this paper is also closely related to the interpolation
theory, which is a very interesting and active topic in algebraic geometry. For example
in [LV23], Eric Larson and Isabel Vogt determine the number of general points through
which a Brill–Noether curve of fixed degree and genus in any projective space can be
passed.

The main tool we use in this paper is Bezout’s theorem and its general version on Pn.

2. Preliminaries

2.1. Algebraic sets and ring of regular functions. We start by introducing basic
concepts in elementary algebraic geometry. For simplicity, we always suppose that our
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SCHEME-THEORETIC AND SET-THEORETIC COMPLETE INTERSECTION OF POINTS 3

groundfield is C but keep in mind all results could work in any algebraically closed field
(at least for char 0).

Denote An by the vector space Cn equipped with polynomial functions. In order to
study zeros of polynomials, we make the following definition:

Definition 2.1. A subset Z of An is called an algebraic set if there exist finitely many
polynomials f1, f2, ..., fm such that Z is the set of common zeros of them on An.

If we allow ring theory to play a role here, this definition is equivalent to Z is the set of
common zeros of the polynomials in the ideal I = (f1, f2, ..., fm), in which case we write
Z = Z(I). Now the following theorem makes sure that the finiteness in the definition is
always satisfied for any ideal I.

Theorem 2.2. (Hilbert Basis Theorem) Any ideal in a polynomial ring is finitely gen-
erated. This property is called noetherian.

For a subset S of An, we can define I(S) to be all polynomials vanishing on S. This
operation, together with the operation Z we have just defined, have following properties.

Proposition 2.3. Suppose I1, I2 are ideals of C[x1, x2, ...xn], S1, S2 are subsets on An,
then we have:

(1) If I1 ⊆ I2, then Z(I1) ⊃ Z(I2). Similarly, If S1 ⊆ S2, then I(S1) ⊃ I(S2).
(2) Z(I1I2) = Z(I1) ∪ Z(I2), Z(I1 + I2) = Z(I1) ∩ Z(I2)
(3) I(S1 ∪ S2) = I(S1) ∩ I(S2)

For an algebraic set Z in An, we define its coordinate ring byA(Z) = C[x1, x2, ..., xn]/I(Z).
These are equivalent classes of functions on Z in the sense of f ∼ g if f and g restrict to
the same function to Z. One important property relating algebra and geometry tells that
the ”algebraic” maps between algebraic sets are completely determined by these maps on
coordinate rings.

Proposition 2.4. Suppose S, T ∈ An are algebraic sets with coordinate rings A(S), A(T ),
then there is an one to one correspondence between polynomial maps from T to S and
maps of C-algebra from A(S) to A(T ), the correspondence is given by composition f →
f.(ϕ)(p) = ϕ ◦ f(p).

2.2. Zariski topology and algebraic varieties. Recall that a topology on a set is
given by a family of subsets {Ai}i∈I , which we call closed sets, such that an arbitrary
intersection of closed sets is closed, a finite union of closed sets is closed. It’s easy to verify
that the algebraic sets gives a topology on An where the closed sets are the algebraic sets.
We call this topology Zariski Topology.

For a locally closed subspace of An, we can restrict our topology and also call it Zariski
topology. One can check this coincide with the topological custom that closed sets are
zeros of ”regular” functions.

A set is called irreducible if it cannot be written as the union of two proper closed
subsets. One checks that a Zariski closed set is irreducible if and only if its coordinate
ring is an integral domain, and in that case we call it an algebraic variety.
There are deep relations between Zariski closed sets on An and radical ideals in

C[x1, ...xn]. Recall that an ideal I is called radical if and only if Rad(I) = I, where

Rad(I) = {f ∈ C[x1, x2, ..., xn]|there exists n such that fn ∈ I.}
We state this important correspondence here:

Theorem 2.5. (Hilbert’s Nullstellensatz) For any ideal I in A(An) = C[x1, x2, ..., xn],
we have I(Z(I)) = Rad(I). Hence the two operations: S → I(S) and I → Z(I), induce

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



4 WEILE HUANG

an one-to-one correspondence between Zariski closed sets on An and radical ideals in
A(An) = C[x1, x2, ..., xn]. This result also extends to all algebraic sets, say that if S
is an algebraic set with coordinate ring A(S), then the Zariski closed sets in S one-to-
one corresponds to radical ideals in A(S). Furthermore, by remark above, the algebraic
varieties correspond to prime ideals.

We only make comments on the last correspondence: Suppose X is reducible, then
X = Z1 ∪ Z2, then we can choose f1 ∈ I(Z1)− I(Z2), f2 ∈ I(Z2)− I(Z1), while f1f2 is
in I(Z), we see that I(Z) cannot be prime. Conversely, if Z is irreducible, suppose I(Z)
is not prime, then there is f, g not in I(Z) such that

(I(Z), f)(I(Z), g) = I(Z)
hence Z = Z(I(Z)) = Z(I(Z), f)∪Z(I(Z), g) is a union of two proper closed subsets,

a contradiction.
One further comment is that, for any algebraic set Z in An, we can associate it with

the quotient ring C[x1, x2, ..., xn]/I(Z) and call this ring its coordinate ring A(Z). It’s
easy to verify that in Theorem 2.5, if we replace An by Z, C[x1, x2, ..., xn] by A(Z), the
statement remains true.

2.3. Graded structure, Projective space. The complex projective space Pn (or CPn)
is defined as the set of all lines through origin in An+1. We can parametrize it by homo-
geneous coordinates [x0, x1, ..., xn] , where xi’s are not all zero and [λx0, λx1, ..., λxn] =
[x0, x1, ..., xn] for any λ ∈ C∗.

Elements in polynomial ring C[x0, x2, ..., xn] are not well-defined functions on Pn, but
we can still talk about ”zeros” of homogeneous polynomials since their zero sets in An+1

are stable multiplying by scalars. Hence we can define the Zariski closed sets as the
zero sets of homogeneous ideals, which are namely the ideals generated by homogeneous
elements. In this case we still have Hilbert Nullstellensatz correspondence, but one should
notice that both the unit ideal and the ideal (x0, x1, ..., xn) correspond to empty set since
the origin in An+1 does not appear in any equivalent class in Pn. In addition, it’s easy to
check that Proposition 2.3 also holds.

One important idea is to regard Pn as the compactification or completion of An. This
is by the following observation: Denote Uxi

the open subset defined by xi ̸= 0, then one
see that

[x1, x2, ..., xn+1] → (
x1

xi

, ...,
xi−1

xi

,
xi+1

xi

, ...,
xn+1

xi

)

defines an one to one correspondence between Uxi
and An. While the rest part Z(xi) is

obviously isomorphic to Pn−1, we see that Pn is constructed by adding an ”infinite line”
to An. One also notices that Uxi

, i = 0, 1, 2, ..., n covers Pn, so Pn is “glued up” by An.
In the following contexts, we also call the irreducible locally closed subsets (namely,

closed in an open subset) in Pn (quasi-projective) algebraic varieties, and we will call a
variety affine if it can be embedded as a closed subset in An by fractional-polynomial
maps.

Modern algebraic geometry establishes conventions for schemes. However, in our case
this classical package of language consists of algebraic sets, varieties, coordinate rings and
ideals works well, so we choose not to introduce schemes here.

2.4. Localization, Local rings. Consider X = A1, we wish to consider the open subset
U = A1 − {0}. It is open in X, but we can define a bijection of U with the hyperbola
xy = 1 in A2:

x ∈ U → (x,
1

x
) ∈ Z(xy − 1)

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



SCHEME-THEORETIC AND SET-THEORETIC COMPLETE INTERSECTION OF POINTS 5

So we can give U a variety structure with coordinate ring C[x, y]/(xy − 1). Notice that
this ring is the same as making x invertible in A(A1).

In another situation, we want to investigate the behavior of a single point x = 1 in
A1. Then we want ignore all other points, which means by discussion above, (x− a) are
all invertible for a ̸= 1. Then for any f having nonzero value at x = 1, by fundamental
theorem of algebra, f splits into linear factors (x−x1)(x−x2)...(x−xn) where xi ̸= 1 for
all i, which means it should also be invertible. And we can actually find such a ring: in
the function field C(x), let R be the ring consisting of fractions f

g
with g(1) ̸= 0.

Based on these two examples, we can make the following definition:

Definition 2.6. Suppose R is a coordinate ring of some variety (or simply some algebraic
set), U is a subset of R closed under multiplication, define U−1R to be the set of equivalent

classes of fractions
r

u
under the equivalence relation:

r

u
∼ s

v
iff w(rv − su) = 0 for some w ∈ U

It’s easy to verify that the usual addition and multiplication of fractions are well-defined
for these equivalent classes, which makes U−1R a ring. We call this ring the localization
of R by U .

For any affine algebraic variety X with coordinate ring R and f ∈ R, let U = {f i|i ∈
Z}, we see that this Rf is the coordinate ring of the variety in X×A1 defined by equation
yf(x) = 1, which can be identified with the open subset Uf = {x ∈ X|f(x) ̸= 0} in X
by bijection as above, hence gives Uf an affine structure. One also verifies by noetherian
property that Uf form a basis for Zariski topology on X, so we have a nice family of
”distinguished neighborhoods”.

Continue with the set up above, For any point p on X, if we wish to investigate the
local nature near p, we should take the intersection of all such neighborhood containing
p, that is to make all f ∈ R, f(p) ̸= 0 invertible. Now by Hilbert Nullstellensatz, p
corresponds to a unique maximal ideal m in R, f vanishes at p if and only if f ∈ m, hence
localizing all f ∈ R, f(p) ̸= 0 is the same as localizing all elements outside m. Hence we
can define the local ring Rm near p as the localization (R−m)−1R. Here is an important
property for Rm:

Proposition 2.7. Prime ideals in Rm are one-to-one correspond to prime ideals in R
contained in m. In particular, Rm has a unique maximal ideal mRm

One can also find analogy in this to projective space: for any projective variety X with
projective coordinate ring R (depends on embedding) and f ∈ R a homogeneous element,
let Uf = {x ∈ X|f(x) ̸= 0}, then one can show that Uf is affine with coordinate ring
R(f), the zero degree part of the localization of R by f . Similarly, for any point p ∈ X,
we define the local ring to be R(m), the zero degree part of the localization Rm. One
checks easily that when restricting to affine atlas, this is compatible with our previous
affine constructions.

With those terminology we are able to talk about further topics, such as the multiplicity
and intersection multiplicity, which is crucial in solving our problem.

3. Intersection Theory

In this chapter we introduce some most basic intersection theory, including the inter-
section multiplicity and Bezout’s theorem.
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6 WEILE HUANG

3.1. Dimension, Hypersurfaces and linear system. We start by talking about di-
mension:

Definition 3.1. The dimension of a topological space is the largest integer n such that
there is an strict including chain of irreducible closed subsets: Z0 ⊊ Z1 ⊊ Z2 ⊊ ...Zn.

For example, In the category of algebraic sets, the zero dimensional objects are points,
1 dimensional objects are curves. For an algebraic variety X, algebraic geometers are
particularly interested in subvariety of dimension dimX−1, which they call divisors. We
only care about the most simple divisors, namely the divisors for An and Pn:

Definition 3.2. A hypersurface in An (respectively, Pn) is an (n− 1)-dimensional alge-
braic variety.

The following characterization of hypersurface is a consequence of Krull’s principal
ideal theorem:

Proposition 3.3. X is a hypersurface in An (respectively, Pn) if and only if X is defined
by a single irreducible polynomial (respectively, irreducible homogeneous polynomial).

This gives a reason for us to extend the definition of hypersurface to all algebraic sets
of pure dimension n − 1, i.e., algebraic sets that are union of irreducible hypersurfaces.
Then the hypersurfaces in An (respectively, Pn) are exactly the zeros of polynomials
(respectively homogeneous polynomials), and by Hilbert Nullstellensatz, two polynomials
f and g define the same hypersurface if and only if f = λg for some nonzero λ.

For Pn, as we have shown that the ”moduli” of hypersurfaces is actually the projec-
tive space

⋃∞
d=0 P(Sd), where Sd is the C-vector space of homogeneous polynomials of

degree d in S = C[x0, x1, x2, ..., xn], it is reasonable to define degree of a hypersurface
to be the degree of the polynomial determining it. Notice that if H = H1 ∪ H2, then
degH =degH1+degH2.

The following terminology is from modern algebraic geometry but it’s useful in our
situation:

Definition 3.4. A linear system d of hypersurfaces of degree d on Pn is the family of
hypersurfaces determined by the polynomials in a vector subspace V of Sd. If V = Sd,
we call it a complete linear system.

By definition and comments above, a linear system is naturally parametrized by P(V ),
the projective space consisting of all lines passing through origin in V . We close this
section by introducing base point and base component,

Definition 3.5. A variety X on Pn is called to be in a base component of a linear
system d if all hypersurfaces in d contain X. The maximal ones of such X are called base
components. If X is a point that lies in all hypersurfaces in d, it is called a base point.

3.2. Multiplicity and intersection multiplicity. Let’s start from A2. Without loss
of generality, suppose C is a curve defined by binary polynomial f which passes through
origin (0, 0). Then the homogeneous decomposition of f is f = fd + fd−1 + ...+ fk where
d = degf and k ≥ 1, fk ̸= 0. Then all ith order of partial derivatives of f vanishes at
origin for i = 0, 1, 2, ..., k − 1, and there is at least one kth order of derivative of f that
does not vanish at origin, so it is reasonable for us to say (0, 0) is a zero of f of degree k,
or the curve passes through (0, 0) with multiplicity k.
Generalize this idea, we get

Definition 3.6. Suppose f defines a hypersurface H in An and P ∈ H. Translate P to
origin O = (0, 0, ..., 0) and suppose f have homogeneous decomposition f = fd + fd−1 +

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



SCHEME-THEORETIC AND SET-THEORETIC COMPLETE INTERSECTION OF POINTS 7

... + fk where k ≥ 1, fk ̸= 0. Then the multiplicity mP (H) of H at P is defined as the
integer k.

For a hypersurface H in Pn and a point P ∈ H, the multiplicity is defined by firstly
restricted to one affine atlas Uxi

(defined in the previous chapter) that contains P and
obtain multiplicity of H ∩Uxi

at P . One checks easily that this definition is independent
of the choice for xi, it is actually the unique integer k such that f ∈ mk while f /∈ mk+1

in the local ring OP with maximal ideal m.
Going back to our example in A2, suppose that two different curves C : f = 0 and

D : g = 0 intersect at P , then as long as P is isolated (means P is not contained
in any common component of C and D), then it follows from results in commutative
algebra (artinian local rings) that the quotient ring Op/(f, g) is a finite dimensional C
vector space. Now if f = y, then C is the x-axis, which is isomorphic to A1, and
l = dimC OP/(f, g) is the multiplicity of g|A1 at P . So it’s reasonable to say ”C and D”
intesect at P with multiplicity l. This leads to the definition:

Definition 3.7. Suppose H1, H2, ..., Hn are n hypersurfaces defined by f1, f2, ..., fn in-
tersecting at P which is isolated, then the C vector space OP/(f1, f2, ..., fn) is finite-
dimensional. The intersection multiplicity of H1, H2, ..., Hn is then defined by

mP (H1, H2, ..., Hn) = dimC OP/(f1, f2, ..., fn)

Similarly, the intersection multiplicity in Pn is defined by firstly restricting to one affine
atlas and then obtaining the local intersection multiplicity as our intersection multiplicity,
it is also independent of the atlas you choose.

One important relation between those two multiplicities is given in the following the-
orem:

Theorem 3.8. Let H1, H2, ..., Hn be n hypersurfaces in Pn whose intersection set is 0-
dimensional, then mP (H1, H2, ..., Hn) ≥ mP (H1) ·mP (H2)... ·mP (Hn)

The proof is by irritating the inequalitymP (X, Y ) ≥ mP (X)·mP (Y ) in [Ful84], chapter
12.

3.3. Bezout’s theorem and Chow ring. One can generalize the notion of degree to
all subvarieties in Pn as a numerical data computed by Hilbert polynomial, which we
don’t bother introducing the whole theory here but make comment that the degree of a
set of points S is the number of points in S counting with multiplicity. A fundamental
result for intersection theory is cited here from [Har77] chapter 1:

Theorem 3.9. Let Y be a variety of dimension ≥ 1 in Pn, let H be a hypersurface not
containing Y . Let Z1, Z2, ..., Zs be the irreducible components of Y ∩H. Then

s∑
j=1

mZi
(Y,H) · degZi = deg Y · degH

Here mZi
(Y,H) is also a generalization of intersection multiplicity at a point to the

notion along a subvariety in the intersection. Now for the case that H1, H2, ..., Hn be n
hypersurfaces whose intersection set is 0-dimensional, Irritating this formula we get:

Corollary 3.10. Suppose H1, H2, ..., Hn are n hypersurfaces in Pn whose intersection set
is 0-dimensional, then

deg(H1 ∩H2 ∩ ... ∩Hn) = degH1 · degH2... · degHn

Take n = 2 we get the most famous and classical result in intersection theory:
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8 WEILE HUANG

Corollary 3.11. (Bezout’s Theorem) Let Y, Z be curves in P2 of degree d and e, if
Y ∩ Z = {P1, P2, ..., Ps} is zero dimensional, then:

s∑
i=1

mPi
(Y, Z) = de

One can also understand this series of results using Chow ring : Define the Chow group
Ch(Pn) of Pn as the free abelian group generated by all subvarieties in Pn modulo the
rational equivalence: Two subvariety X and Y is rationally equivalent if they are different
sections of a subvariety Z ∈ Pn × P1 at two points s and t on P1. Then Ch(Pn) has a
natural grading by dimension. Intersection theorists have given a complete description
of this object,

Theorem 3.12. Ch(Pn) has a ring structure such that [A][B] = [A ∩ B] for any two
subvarieties A and B. We have an isomorphism

Ch(Pn) ∼= Z[σ]/(σn+1)

of rings, and under this isomorphism, σ represents a hyperplane (hypersurface defined by
linear function) in Pn.

A proof of which can be found in [EH16]. Using this tool, one can translate (3.7∼
3.9) by regarding all varieties as the linear variety rationally equivalent to it and then
calculating the intersection using linear algebra.

4. Main result and sketch of the proof

As stated in the Introduction, we are naturally interested in whether a given algebraic
set X in Pn can be represented as a intersection of a codimension number of hyperplanes.
By Hilbert Nullstellensatz, this means I(X) is the radical of an ideal generated by codimX
elements. It is a relative easy condition that I(X) itself can be generated by codimX
elements, so we distribute the idea into two cases and make the following definition:

Definition 4.1. Suppose X is an algebraic set on Pn with dimension r. Denote the ideal
of vanishing function I(X), then:
(1) If I(X) can be generated by n−r elements, we say X is a scheme-theoretic complete

intersection or simply complete intersection.
(2) If there exist hypersurfaces H1, H2, ..., Hn−r such that X = H1 ∩ H2... ∩ Hn−r as

subsets on Pn, we say X is a set-theoretic complete intersection.

Determining whether a set of dimension ≥ 1 is a complete intersection or set-theoretic
complete intersection is a wildly open question, so in this paper we focus on the zero-
dimensional algebraic sets, i.e. the sets of discrete points. The core question this paper
cares about is: Given an integer m and a general set S of discrete points on Pn with |S| =
m, it is possible to S as a complete intersection or set-theoretic complete intersection? For
scheme-theoretic part, we have figured out the possible m for all n and for set-theoretic
part, we work out the situation for n = 2. We restate our main theorems here:

Theorem 4.2. A general set of m discrete points on Pn is a complete intersection if and
only if one of the following condition holds:

(1) n ≥ 4, m = 1 or 2 (2) n = 3, m ∈ {1, 2, 8} (3) n = 2, m ∈ {1, 2, 4}

Theorem 4.3. Any set of points on P2 is a set-theoretic complete intersection.

The idea for proving Theorem 4.2 comes from the observation: any 2 points determine

a line, 5 points determine a conic,... a degree d curve will be determined by (d+1)(d+2)
2

− 1
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SCHEME-THEORETIC AND SET-THEORETIC COMPLETE INTERSECTION OF POINTS 9

points on it. More generally, a hypersurface of degree d in Pn should be determined by(
n+d
n

)
−1 general points on it, this will be proved in chapter 5 as part of the ”interpolation

theory”. Hence in a complete intersection, if the degrees of the hypersurface is given, then
this gives a upper bound for the number of points in the intersection. Simultaneously,
one have an equality indicated by Bezout’s theorem, or more explicitly Corollary 3.10 for
n ≥ 3, so comparing these two restrictions one can get some numerical relations, which
leads to the result of Theorem 4.2.

The proof of Theorem 4.3 follows the similar idea but to manually ”assign” each point
a multiplicity, so that there are hypersurfaces passing through them by multiplicity that
is big enough such that by Bezout’s theorem, no more intersection is allowed excepts
those given points. This method could possibly generated to dimension n, however, as
we will see in chapter 7, it is a hard work to make sure the intersection has dimension
zero. There in chapter 7 we use some technical details to show that we can construct
linear system of curves determined by passing those given points by some multiplicities
without fixed components, so there must be two curves having 0-dimensinoal intersection.

5. Interpolation using hypersurfaces

The proof of both Theorem 4.2 and Theorem 4.3 requires interpolating points using
hypersurfaces, so we isolate a whole chapter talking about this.

5.1. dimension reduction while interpolating points. Suppose S = C[x0, x1, ..., xn].
As discussed after Proposition 3.3, hypersurfaces of degree d are one-to-one correspond
to 1-dimensional linear subspace of degree d part Sd of S, which has dimension

(
n+d
n

)
. We

call a homogeneous polynomial of degree d a d-form on Pn. Now suppose we are given

m different points pi = [x
(j)
0 , x

(j)
1 , ..., x

(j)
n ], j = 1, 2, ...,m in Pn. Given a d-form

f =
∑

i0+i1+...+in=d

ai0i1...inx
i0
0 x

i1
1 ...x

in
n

the hypersurface H determined by f passes through all pi if and only if the vector con-
sisting of all coefficients of f is contained in the null space of the matrix

M(p1, p2, ..., pm) =
(
(x

(j)
0 )i0((x

(j)
1 )i1 ...((x(j)

n )in
)
m×(n+d

n )

where the rows are indexed by j and columns are indexed by (i1, i2, ..., in) such that
i0 + i1 + ...+ in = d in the same order as the coefficient vector for f .
An important result about M(p1, p2, ..., pm) which leads to the dimension reduction is:

Proposition 5.1. For general m points p1, p2, ...pm, M(p1, p2, ..., pm) has full rank.

Proof. It suffices to check m =
(
n+d
n

)
since in that case when m <

(
n+d
n

)
, it is the first m

rows of M(p1, p2, ..., p(n+d
n )) for any general pm+1, pm+2..., p(n+d

n ) and full rank of the later

matrix implies linear independence; when m >
(
n+d
n

)
, the square matrix of first

(
n+d
n

)
rows is M(p1, p2, ..., p(n+d

n )), which generally has rank equal to
(
n+d
n

)
.

If m =
(
n+d
n

)
, it suffice to find a set of m such points such that the determinant of

M(p1, p2, ..., pm) does not vanish. For this, let x
(j)
0 = 1 for all j and x

(j)
k = (x

(j)
1 )(d+1)k .

Then
(x

(j)
0 )i0(x

(j)
1 )i1 ...(x(j)

n )in = (x
(j)
1 )i0+i1(d+1)+i2(d+1)2+...+in(d+1)n

Since ik ≤ d and d ≥ 1, those integers i0 + i1(d + 1) + i2(d + 1)2 + ... + in(d + 1)n

for different (i0, i1, ..., in) are naturally different and are greater than 1 by the uniqueness

of (d + 1)-adic representation of integers. Hence if we denote x
(j)
1 = aj we have an
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10 WEILE HUANG(
n+d
n

)
×

(
n+d
n

)
or m×m matrix with rows (at1j , a

t2
j , a

t3
j , ..., a

tm
j ) and ti’s are distinct (here

t1 = 0). The determinant of this matrix is a linear combination of a
tσ(1)

1 a
tσ(2)

2 ...a
tσ(m)
m

with coefficient (−1)σ (here σ runs through all permutations σ of {1, 2, ...,m}). Since
those exponents are different, those terms are linear independent in the polynomial ring
C[a1, a2, ..., am]. Hence the determinant is not a zero polynomial in a1, a2, ..., am, there
must be a set of value for a1, a2, ..., am such that the determinant is not zero, completing
the proof. □

As a consequence of this proposition, we can verify the comment for Theorem 4.2 in
the previous chapter:

Corollary 5.2. If m ≤
(
n+d
n

)
, for general points p1, p2, ..., pm, the dimension of the

vector space of d-forms vanishing on those points is
(
n+d
n

)
−m, hence the dimension of

the linear subvariety in P(Sd) consisting of all hypersurface passing through these points
is

(
n+d
n

)
−m− 1.

Proof. Obvious by previous proposition and basic linear algebra. □

5.2. dimension reduction while adding multiplicity condition. In the previous
subsection, we discussed the ”dimension loss” when you add interpolating condition:
Passing through one point ”reduces the dimension by 1” for the moduli space of hyper-
surfaces. Since we have discussed the multiplicity of a point, we can naturally talk about
the dimension loss when requiring a hypersurface passing through one point of given
degree, and we have the following result:

Proposition 5.3. For hypersurfaces in Pn, The condition ”passing through a point p
with multiplicity a reduce the dimension at most by

(
n+a−1
a−1

)
.

Proof. Since multiplicity is local, we may restrict to An and suppose p = (0, 0, ..., 0). The
restrictions on d-forms are just linear equations

∂(f |An)

∂IY
(0, 0, ..., 0) = 0, for all |I| ≤ a− 1,

here Y = (y1, ..., yn) are the local coordinates in An and I = (i1, i2..., in), |I| = i1+i2...+in,
∂IY = ∂i1y1∂

i2y2...∂
inyn. Hence we have in total

a−1∑
k=0

(
n− 1 + k

k

)
=

a−1∑
k=0

(
n+ k

k

)
−
(
n+ k − 1

k − 1

)
=

(
n+ a− 1

a− 1

)
linear functions, which reduce the dimension at most by

(
n+a−1
a−1

)
. □

6. 0-dimensional scheme-theoretic compelete intersection on Pn

In this chapter we prove Theorem 4.2.
Suppose we are given a general set of m points on Pn that is a complete intersection

of hypersurfaces H1, H2, ..., Hn, then with degree d1, d2, ..., dn. Then by Corollary 5.2,
in order to really have hypersurface of degree di pass through these points, one should
have

(
n+di
n

)
− m − 1 ≥ 0. If we suppose d1 ≤ d2 ≤ ... ≤ dn, then this is equivalent to

m ≤
(
n+d1
n

)
− 1 or simply m <

(
n+d1
n

)
. While Corollary 3.10 tells us m = d1d2...dn, based

on d1 is minimal among di’s we have an inequality(
n+ d1

n

)
> m = d1d2...dn ≥ dn1
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SCHEME-THEORETIC AND SET-THEORETIC COMPLETE INTERSECTION OF POINTS 11

which is
(d1 + n)(d1 + n− 1)...(d1 + 1)

n · (n− 1)... · 1
> dn1

hence equivalent to

(
1

d1
+

1

n
)(

1

d1
+

1

n− 1
)...(

1

d1
+ 1) > 1 (⋆)

If n ≥ 4 and d1 ≥ 2, then the LHS ≤ (
1

2
+ 1)(

1

2
+

1

2
)(
1

2
+

1

3
)(
1

2
+

1

4
) =

15

16
< 1, a

contradiction. Hence for n ≥ 4, we should have d1 = 1, but this meansm ≤
(
n+d1
n

)
−1 = n

and H1 is a hyperplane containing it. With the isomorphism H1
∼= Pn−1 and the fact

that d-forms on H1 are exactly restrictions of d-forms on Pn , we see that this reduce to
the case of n− 1. If n− 1 ≥ 4, we can repeat our argument to get d2 = 1 and m ≤ n− 1.
So finally we can reduce to the case that n = 3 and m ≤ 4.

Now we suppose n = 3, then (⋆) implies (
1

d1
+

1

3
)(

1

d1
+

1

2
)(

1

d1
+ 1) > 1. This holds

only for d1 = 1 or 2 since (
1

3
+

1

3
)(
1

3
+

1

2
)(
1

3
+ 1) =

40

54
< 1.

If d1 = 1, we see m ≤
(
n+d1
n

)
− 1 = 3 and the set is contained in a plane, which is

P2. While in P2, if m = 3, any three point is a complete intersection if and only if it
is an intersection of a cubic curve and a line, which means the three points must be
colinear, so we have lost our generality for this point set. For m = 2, and two point can
be represented by a complete intersection of a conic passing through them and the line
connecting them, so m = 2 works. For m = 1, obviously any points can be represented
by intersection of two different lines going through it. Hence m = 1 or 2 in the case
d1 = 1.

If d1 = 2, then m ≤
(
n+d1
n

)
− 1 = 9, while m ≥ dn1 = 8, we see m = 8 or 9. However,

by m = d1d2...dn, d1 = 2 is a factor of m, so the only possible choice is m = 8 = 2 · 2 · 2.
Now the problem is to show general 8 points on P3 is always a complete intersection of
three quadratic surfaces. To see this, we have to use some tools from modern algebraic
geometry.

Suppose given general points p1, p2..., p8 on P3, consider the linear system of quadratic
surfaces d. By proposition 5.1, we see that this linear system has dimension

(
3+2
3

)
−8−1 =

1. For any general point q on P3, we see that the condition

rank M(p1, p2, ..., p8, q) = rank M(p1, p2, ..., p8)

imposes
(
10
9

)
= 10 restrictions on coordinates for q, and one can easily come up with an

example for p1, p2, ..., p8 when the points satisfies this 10 condition has dimension 0 (for
example, find three quadratic surfaces that intersect at dimension zero, then the linear
system of quadratic surfaces containing those points does not have fixed components).
Hence generally, the set of points satisfying rankM(p1, p2, ..., p8, q) = rankM(p1, p2, ..., p8)
have dimension 0, which means the linear system d does not have fixed component, so
there are three quadratic surfaces whose intersection is zero dimensional and contains
p1, p2, ..., p8. Again by Corollary 3.10, we see that p1, p2, ..., p8 are the only points in
their intersection, hence general 8 points on P3 is always a complete intersection of three
quadratic surfaces.

Thus we can conclude all situation for n ≥ 3 now: for n = 3, we have m ∈ 1, 2, 8, for
n ≥ 4, we have m ≤ 4 and all points is contained in a some linear subspace isomorphic
to P3, hence m = 1 or 2.

It remains to check n = 2. In this case, inequality (⋆) implies ( 1
d1
+1)( 1

d1
+ 1

2
) > 1, then

d1 ≤ 3, which means m ≤
(
3+2
2

)
− 1 = 9. Now we can check each possible m by hand:
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12 WEILE HUANG

For m = 1, any point is a intersection of 2 different lines through it, so m = 1 works;
For m = 2, and two point can be represented by a complete intersection of a conic

passing through them and the line connecting them, so m = 2 works;
For m = 3, m = d1d2 implies d1 = 1, contradict to m ≤

(
n+d1
n

)
−1 = 2 (or equivalently,

general three points are not colinear).
Form = 4, any general 4 points is a complete intersection of two conics passing through

them, so m = 4 works.
For m = 5, m = d1d2 implies d1 = 1, contradicts to m ≤

(
n+d1
n

)
− 1 = 2.

For m = 6, m = d1d2 implies d1 ≤ 2, contradicts to m ≤
(
n+d1
n

)
− 1 ≤ 5.

For m = 7, m = d1d2 implies d1 = 1, contradicts to m ≤
(
n+d1
n

)
− 1 = 2.

For m = 8, m = d1d2 implies d1 ≤ 2, contradicts to m ≤
(
n+d1
n

)
− 1 ≤ 5.

For m = 9, m = d1d2 implies d1 ≤ 3. If d1 ≤ 2, this contradicts to m ≤
(
n+d1
n

)
−

1 ≤ 5. If d1 = 3, then d2 = 3. However, for general 9 points p1, p2., , , p9, the matrix
M(p1, p2, ..., p9) has full rank by Proposition 5.1, so the null space of it has dimension 1,
i.e., there is only one cubic curve passing through all those points, a contradiction. This
completes the proof.

7. 0-dimensional set-theoretic complete intersection on P2

In the previous chapter, we see that the reason why a set of points cannot be represented
by a complete intersection is that the restriction m = d1d2...dn imposes an upper bound
for the degree passing through those points, but this upper bound could prevent a general
such hyperplane passing through so many points.

However, set-theoretic intersection allows us to have higher degree hypersurfaces: If we
suppose H1, H2, ..., Hn intersect at p1, p2, ..., pm with intersection multiplicity s1, s2, ..., sm,
then Corollary 3.10 becomes

d1d2...dn = s1 + s2 + ...+ sm

This gives possibility for di to be bigger than before.
In order to control the intersection multiplicity, we can use Theorem 3.8 to impose

higher multiplicity for the hypersurfaces passing through thoses points, namely, suppose
Hi passes through pj with multiplicity tij then by Theorem 3.8, sj ≥ t1jt2j...tnj, hence
d1d2...dn ≥

∑m
j=1 t1jt2j...tnj.

Let consider this situation in another direction: If we can find n hypersurfacesH1, H2, ..., Hn

of degree d1, d2, ..., dn which passes through p1, p2, ..., pm with multiplicity tij for Hi passes
pj, and we have d1d2...dn =

∑m
j=1 t1jt2j...tnj as a prerequisite, then if H1 ∩ H2... ∩ Hn

is 0-dimensional, then Theorem 3.8 will make sure that there is no point other than
p1, p2, ..., pm lying in the intersection H1 ∩ H2... ∩ Hn. Since by Proposition 5.3, pass-
ing through pj with multiplicity tij would cause at most

(
n+tij−1
tij−1

)
dimension lost for

the space of degree di hypersurfaces, it would help us a lot to give a set of integers
di, tij, i = 1, 2, ...n; j = 1, 2, ...,m such that

(1) d1d2...dn =
m∑
j=1

t1jt2j...tnj; (2)

(
n+ di
di

)
−

m∑
j=1

(
n+ tij − 1

tij − 1

)
≥ 1

However this is generally not enough: Firstly, if two tuple of integers (di, ti1, ti2, ..., tim)
and (dj, tj1, tj2, ..., tjm) equal each other, then we should have at least two different hyper-
surfaces in the linear system consisting of degree di hypersurfaces passing through pj with

multiplicity tij, so condition (2) should be (2*)
(
n+di
di

)
−

∑m
j=1

(
n+tij−1
tij−1

)
≥ 2. However,

since we are manually choosing di, tij, i = 1, 2, ...n; j = 1, 2, ...,m, it shouldn’t be hard
to avoid this situation or to replace (2) by (2*) for some i. The really difficult part is
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SCHEME-THEORETIC AND SET-THEORETIC COMPLETE INTERSECTION OF POINTS 13

to find a hypersurface in each linear system such that their intersection is 0-dimensional,
which is possible by some local argument but far beyond this paper’s level if n ≥ 3.
For n = 2, The problem would be solved if we prove the following statement:

Proposition 7.1. Given general points p1, p2, ..., pm on Pn, there exists a set of positive
integers d, a1, a2, ..., am such that d2 = a21+a22+ ...+a2m and the linear system d consisting
of degree d curves passing through pi with multiplicity ai is nonempty and does not have
base component of dimension 1.

If this statement is true, then it suffices to pick two general curves in d and then they
should intersect at a zero dimensional set, which means a set of points. Then Corollary
3.10 and d2 = a21+a22+ ...+a2m tells us that p1, p2, ..., pm are the only intersection of these
two curves, so this set of points is represented as a set-theoretic complete intersection of
this two curves, which will complete the proof for Theorem 4.3. Thus it suffices for us to
prove this proposition.

In order to prove Proposition 7.1, we need the following lemma:

Lemma 7.2. Suppose d is a linear system of degree d curves on P2 and p is a base
point of d such that all curves passes through p by multiplicity a. Then if the order a
tangent directions of the curves in d at p can be arbitrary, then p is not contained in any
1-dimensional base component of d.

We should firstly make clear what are the ”tangent directions” of order a:

Definition 7.3. Suppose a curve C : f = 0 on A2 passes through p with multiplicity a.
Then after removing p to (0, 0), the order a tangent directions of C at p is defined as the
linear factors of fa, where f = fd + fd−1...+ fa is the homogeneous decomposition of f .

For this notion in P2 one firstly localize in some affine atlas and get the tangent direc-
tions there, the result should be independent of the atlas you choose since it’s equivalent
to factorize in the local ring.

Proof of Lemma 7.2. Let’s consider locally, without loss of generality we can suppose
P = (0, 0) in A2. If there is a fixed component passing through p, namely some h = 0
for some polynomial h, then any curves in d should be of the form f = gh = 0 for some
polynomial g, so the lowest degree part of f can be divided by the lowest degree part of
h, which cannot be arbitrary. □

This lemma essentially shows that if there is a base component E passing through p,
then tangent directions of any curve in d at p has a tangent direction coming from E, as
showed in the following graph,

There must be one tangent direction coming from base component

Now we can prove Proposition 7.1:

Proof of Theorem 7.1. Suppose we are given positive integers d, a1, a2, ..., am and the lin-
ear system d consists of degree d curves passing through pi with multiplicity ai. Then for
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14 WEILE HUANG

any point pi and a given complete set T of order a tangent directions (which means you
have exactly a directions in your set), the condition ”the order a tangent directions of
the curves in d at p is T ” imposes exactly a linear restriction on the linear system, hence
in order to have all possible T as the set of tangent directions of curves in d at any pi, it
suffices to have dim d − ai ≥ 0. By proposition 5.3, dim d ≥

(
d+2
d

)
−

∑m
i=1

(
ai+1
ai−1

)
− 1 =(

d+2
d

)
−
∑m

i=1

(
ai+1
2

)
− 1, so if we suppose a1 ≥ a2 ≥ ... ≥ am, then it suffice for us to find

the following data: A set of positive integers (d, a1, a2, ..., am) with a1 ≥ a2 ≥ ... ≥ am
such that

(1) d2 =
m∑
i=1

a2i (2)

(
d+ 2

2

)
−

m∑
i=1

(
ai + 1

2

)
− a1 − 1 ≥ 0

While (1) holds, (2) is equivalent to 3d − 3a1 −
∑m

i=2 ai ≥ 0, so these two conditions
turns into homogeneous condition:

(1)
m∑
i=1

(
ai
d
)2 = 1 (2) 3

a1
d

+
m∑
i=2

ai
d

≤ 3.

Hence it suffices for us to find positive rational numbers x1, x2, ..., xm with x1 ≥ x2 ≥
... ≥ xm such that

∑m
i=1 x

2
i = 1 and 3x1 +

∑m
i=2 xi ≤ 3 and then we can let d to be

the least common multiple of denominators of xi’s and let ai = dixi. The last step is
to find such a set of positive rational numbers, it is equivalent to find a rational point
(x1, x2, ..., xm) on the unit sphere Sm−1 ⊂ Rm such that xi > 0, 3x1 +

∑m
i=2 xi ≤ 3.

Now consider the set

R = {(x1, x2, ..., xm)|xi > 0, 3x1 +
m∑
i=2

xi ≤ 3}

it has nonempty interior: the point (

√
1− (m− 2)ϵ2

2
,

√
1− (m− 2)ϵ2

2
, ϵ, ϵ..., ϵ) is con-

tained in R◦ for sufficiently small ϵ > 0 since

lim
ϵ→0+

3

√
1− (m− 2)ϵ2

2
+

√
1− (m− 2)ϵ2

2
+ (m− 2)ϵ = 2

√
2 < 3

By a very classic result in [oAAD], rational points on the sphere are dense, so there
must be a rational point contained in R◦, completing the proof.

□

8. Further explorations

As we showed in Theorem 4.2, not all set of points is a complete intersection of hyper-
surfaces. Then a natural question emerged:

Question 8.1. Can we construct a moduli space for all 0-dimensional complete intersec-
tion of given index?

If we consider the sequence of points, i.e., we do not ignore the order, then this could
be a subset of Pn × Pn.... × Pn, If we only consider ”set”, then it could be a subvariety
(or simply subset) in the punctured Hilbert scheme Hm

Pn .
Another similar question is

Question 8.2. Given a set of points that is a complete intersection, construct a moduli
space of all tuples of hypersurfaces (H1, H2, ..., Hn) whose intersections are compelete and
consists of those points.

Based on our method proving Theorem 4.3, we can make the following conjecture:
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SCHEME-THEORETIC AND SET-THEORETIC COMPLETE INTERSECTION OF POINTS 15

Conjecture 8.3. Any set of points on Pn is a set-theoretic complete intersection.

And there should be a similar way controlling the lowest degree of the forms at given
terms to avoid base components. This work could be possible but tedious, so we leave it
for future exploration.
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