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SCHEME-THEORETIC AND SET-THEORETIC COMPLETE
INTERSECTION OF POINTS

WEILE HUANG

ABSTRACT. This paper explores whether a general set of closed points in the projective
space is an intersection of n hypersurfaces. We study both the scheme-theoretic and the
set-theoretic intersection. The scheme-theoretic part is understood by Bezout’s theorem
and computations in Chow ring, while extra details are needed in exploiting the set-
theoretic intersection part of this topic.
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1. INTRODUCTION

Among all projective varieties, (scheme-theoretic) complete intersections are particu-
larly important because of both simplicity and generality. They are more structured and
well behaved (for example, they are Gorenstein, hence Cohen-Macaulay), yet still general
enough-to include many interesting examples. In addition, the computational nature
for complete intersections is also better. For example, the normal bundle and canonical
bundle can be directly written down using the degrees of the intersected hypersurfaces:
Suppose X is a complete intersection of degree dy, ds, ...,d,,, then the conormal bundle
is NV =Z/1? = Ox(—d;) ® Ox(—ds)... ® Ox(—d,) and hence by adjunction formula,
the canonical bundle Kx = Ox(dy + dy... +d,, —n —1).
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2 WEILE HUANG

Set-theoretic complete intersections are less researched by mathematicians but they
still motivate a family of interesting open questions, among which the most famous one is
whether each irreducible curve in P? is a set-theoretic intersection of two surfaces. This
question remains open even for smooth curves in P* with genus 0 and degree 4.

Determining all complete intersection of given dimension d is a difficult moduli problem.
While in lower dimensions, mathematicians have managed to introduce some tools to
understand why some specific variety is a scheme-theoretic complete intersection-or not,
the problem of determining set-theoretic complete intersections in most cases, as stated
in the previous paragraph, is still wildly open.

In this paper we use elementary arguments to give a complete description of the integer
m such that given m general points on P, whether we can always write them as a complete
intersection. Also, we prove that in P2, any set of points can be a set-theoretic'complete
intersection. Now we state our theorems here:

Theorem. A general set of m discrete points on P" is a complete intersection if and only
if one of the following condition holds:
(Hn>4, m=1or2 (2)n=3 me{l,2,8 3)n=2mec{l, 24}

Theorem. Any set of points on P? is a set-theoretic_compléte intersection.

These theorem will also be stated in chapter 4-and-the sketech of the proof will be
introduced there.

A simple example is a set of 3 general distinct pointston P2, If it is a complete
intersection, then it must be an intersection of. two curves of degree 1 and 3, which
means these three points must be colinearso if the three points are general enough (not
colinear), then this set is not a complete intersection./However, for any three points, one
can always find a conic passing through all three points, and choose two lines connecting
two of them, so that this set is the.intersection of a conic and a degenerate quadratic
surface consisting of the union of those two lines.

Y

X %

I/

(a) Completeintersection iff colinear (b) Always set-theoretic complete intersection
We will also make comments to some consequential results and new questions emerged
in the last chapter. Some part of this paper is also closely related to the interpolation
theory, which is a very interesting and active topic in algebraic geometry. For example
in [LV23], Eric Larson and Isabel Vogt determine the number of general points through
which a Brill-Noether curve of fixed degree and genus in any projective space can be
passed.
The main tool we use in this paper is Bezout’s theorem and its general version on P".

2. PRELIMINARIES

2.1. Algebraic sets and ring of regular functions. We start by introducing basic
concepts in elementary algebraic geometry. For simplicity, we always suppose that our
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groundfield is C but keep in mind all results could work in any algebraically closed field
(at least for char 0).

Denote A™ by the vector space C" equipped with polynomial functions. In order to
study zeros of polynomials, we make the following definition:

Definition 2.1. A subset Z of A" is called an algebraic set if there exist finitely many
polynomials fi, fo, ..., fm, such that Z is the set of common zeros of them on A”".

If we allow ring theory to play a role here, this definition is equivalent to Z is.the set of
common zeros of the polynomials in the ideal I = (f1, fa, ..., fm), in which case we write
Z = Z(I). Now the following theorem makes sure that the finiteness in the definition is
always satisfied for any ideal I.

Theorem 2.2. (Hilbert Basis Theorem) Any ideal in a polynomial ring is finitely-gen-
erated. This property is called noetherian.

For a subset S of A", we can define Z(S) to be all polynemials vanishing on S. This
operation, together with the operation Z we have just definedy-have following properties.

Proposition 2.3. Suppose Iy, I are ideals of Clxi,2a,...@5], S1, 92 are subsets on A",
then we have:

(1) If Il Q IQ, then Z([l) D) Z(IQ) Slmllarly, If Sl C_: SQ, then I(Sl) D) I(Sg)

(2) Z(I115) = Z(11) U Z(1y), Z(I1 + I2) = Z(I1) 0 Z(13)

(3) Z(S1 U Ss) =Z(S1) NZ(Ss)

For an algebraic set Z in A", we define its coordinatering by A(Z) = Clzy, xa, ..., x,] /Z(Z).
These are equivalent classes of functions en Z in thesense of f ~ ¢ if f and g restrict to
the same function to Z. One important property.relating algebra and geometry tells that
the "algebraic” maps between algebraic sets are.completely determined by these maps on
coordinate rings.

Proposition 2.4. Suppose S, T &€A" are algebraic sets with coordinate rings A(S), A(T),
then there is an one to anescorrespondence between polynomial maps from T to S and
maps of C-algebra from A(S) to A(T), the correspondence is given by composition f —
f(@)(p) = o fp).

2.2. Zariski topology and’ algebraic varieties. Recall that a topology on a set is
given by a family of'subsets {A;}ic;, which we call closed sets, such that an arbitrary
intersection of closed sets is closed, a finite union of closed sets is closed. It’s easy to verify
that the algebraic sets gives a‘topology on A" where the closed sets are the algebraic sets.
We call this topology Zariski Topology.

For a locally closedisubspace of A™, we can restrict our topology and also call it Zariski
topology. One can check this coincide with the topological custom that closed sets are
zeros of "regular” functions.

A.set is called irreducible if it cannot be written as the union of two proper closed
subsets.” One checks that a Zariski closed set is irreducible if and only if its coordinate
ring is.an integral domain, and in that case we call it an algebraic variety.

There ‘are deep relations between Zariski closed sets on A" and radical ideals in
€[?yy-..25]. Recall that an ideal [ is called radical if and only if Rad(/) = I, where

Rad(l) = {f € Clxy, xo, ..., x,][there exists n such that f" € I.}

We state this important correspondence here:

Theorem 2.5. (Hilbert’s Nullstellensatz) For any ideal I in A(A™) = Clzy, 2, ..., T,
we have Z(Z(I)) = Rad(/). Hence the two operations: S — Z(S) and I — Z(I), induce
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an one-to-one correspondence between Zariski closed sets on A" and radical ideals in
A(A™) = Clzy,x2,...,x,). This result also extends to all algebraic sets, say that if S
is an algebraic set with coordinate ring A(S), then the Zariski closed sets in S one-to-
one corresponds to radical ideals in A(S). Furthermore, by remark above, the algebraie
varieties correspond to prime ideals.

We only make comments on the last correspondence: Suppose X is reducible, then
X = Z1 U Zy, then we can choose fi € Z(Z1) — Z(Zs), f2 € I(Zy) — I(Z,), while fi f» is
in Z(Z), we see that Z(Z) cannot be prime. Conversely, if Z is irreducible, suppose Z(Z)
is not prime, then there is f, g not in Z(Z) such that

(Z(2), N(Z(2),9) = 1(Z)

hence Z = Z(Z(2)) = Z(Z(Z), f)UZ(Z(Z), g) is a union of two proper closed.subsets,
a contradiction.

One further comment is that, for any algebraic set Z in A" 'we can-associate it with
the quotient ring Clzy, o, ..., x,]/Z(Z) and call this ring-its.coordinate ring A(Z). It’s
easy to verify that in Theorem 2.5, if we replace A™ by .Z; C[x1, #q, .., 4] by A(Z), the
statement remains true.

2.3. Graded structure, Projective space. Thecomplex projective space P (or CP")
is defined as the set of all lines through origin in"A?*. We can parametrize it by homo-
geneous coordinates [xg, 1, ..., ,| , where z;’ssarenot all.zero and [Azg, Axq, ..., A\x,] =
[0, 21, ..., z,] for any A € C*.

Elements in polynomial ring Clzg, z2,...32,) aremnot. well-defined functions on P"; but
we can still talk about ”zeros” of homogetieous polynomials since their zero sets in A"+
are stable multiplying by scalars. Henee we can define the Zariski closed sets as the
zero sets of homogeneous ideals, which are namely the ideals generated by homogeneous
elements. In this case we still have Hilbert/Nullstellensatz correspondence, but one should
notice that both the unit ideal.and the.ideal (y, x1, ..., x,,) correspond to empty set since
the origin in A"*! does not appear in any equivalent class in P*. In addition, it’s easy to
check that Proposition 2.3 also holds.

One important idea is to regard'P™as the compactification or completion of A™. This
is by the following observation: Denote U,, the open subset defined by x; # 0, then one
see that . v .

[Il, X9, ...,In+1] — (—1, ceey Z_l, H_l, ceey n+1)
defines an.one to one correspondence between U,, and A”. While the rest part Z(z;) is
obviously isomoérphie to P% !, we see that P" is constructed by adding an ”infinite line”
to A". One also netiees that U,,, i =0,1,2,...,n covers P", so P" is “glued up” by A".

In the following contexts, we also call the irreducible locally closed subsets (namely,
closed in anopen subset) in P (quasi-projective) algebraic varieties, and we will call a
variety affine/ifsit can be embedded as a closed subset in A™ by fractional-polynomial
maps.

Modernalgebraic geometry establishes conventions for schemes. However, in our case
this‘classical package of language consists of algebraic sets, varieties, coordinate rings and
ideals works well, so we choose not to introduce schemes here.

2.4. Localization, Local rings. Consider X = A!, we wish to consider the open subset
U = A' — {0}. Tt is open in X, but we can define a bijection of U with the hyperbola
xy =1 in A%

1
xEU%(m,;)EZ(my—l)
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So we can give U a variety structure with coordinate ring C|x,y|/(zy — 1). Notice that
this ring is the same as making x invertible in A(A%).

In another situation, we want to investigate the behavior of a single point x = 1 in
Al. Then we want ignore all other points, which means by discussion above, (z — a) are
all invertible for a # 1. Then for any f having nonzero value at x = 1, by fundamental
theorem of algebra, f splits into linear factors (z — x1)(z — x9)...(x — x,,) where z; & 1 for
all 7, which means it should also be invertible. And we can actually find such aring: in
the function field C(z), let R be the ring consisting of fractions g with ¢g(1) # 0.

Based on these two examples, we can make the following definition:

Definition 2.6. Suppose R is a coordinate ring of some variety (or simply seme algebraic
set), U is a subset of R closed under multiplication, define U1 R to be-theset of-equivalent

. r . .
classes of fractions — under the equivalence relation:
u

Do i w(rv —su) =0 for some(w € U

u v
It’s easy to verify that the usual addition and multiplication of fractions-are well-defined
for these equivalent classes, which makes U 'R a ring. We call this/ting the localization

of R by U.

For any affine algebraic variety X with coordinate ring-R.and f € R, let U = {f|i €
Z}, we see that this Ry is the coordinate ring.of the varietg-in X x A! defined by equation
yf(z) = 1, which can be identified with the open subset Uy = {z € X|f(z) # 0} in X
by bijection as above, hence gives Uy an affine structure. One also verifies by noetherian
property that Uy form a basis for Zariski'topology on' X, so we have a nice family of
”distinguished neighborhoods”.

Continue with the set up above, For any point.p on X, if we wish to investigate the
local nature near p, we should take.the intersection of all such neighborhood containing
p, that is to make all f €“R,f(p) #.0.invertible. Now by Hilbert Nullstellensatz, p
corresponds to a unique maximal ideal m inR, f vanishes at p if and only if f € m, hence
localizing all f € R, f(p) # 0 is the same as localizing all elements outside m. Hence we
can define the local ring Ry, near p as the localization (R —m) ! R. Here is an important
property for Ry:

Proposition <2.7. Prime‘ideals in R, are one-to-one correspond to prime ideals in R
contained i m. In particular, Ry, has a unique maximal ideal mRy,

One cantalso find @analogy in this to projective space: for any projective variety X with
projective coordinate ring R (depends on embedding) and f € R a homogeneous element,
let.U; = {z € X|f(z) # 0}, then one can show that Uy is affine with coordinate ring
Rypyi the zero.degree part of the localization of R by f. Similarly, for any point p € X,
we define the local ring to be R, the zero degree part of the localization R,. One
checks easily that when restricting to affine atlas, this is compatible with our previous
affine ‘constructions.

With those terminology we are able to talk about further topics, such as the multiplicity
andHintersection multiplicity, which is crucial in solving our problem.

3. INTERSECTION THEORY

In this chapter we introduce some most basic intersection theory, including the inter-
section multiplicity and Bezout’s theorem.
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3.1. Dimension, Hypersurfaces and linear system. We start by talking about di-
mension:

Definition 3.1. The dimension of a topological space is the largest integer n such that
there is an strict including chain of irreducible closed subsets: Zy C Z; C Zy C ... 2

For example, In the category of algebraic sets, the zero dimensional objects aregpoints,
1 dimensional objects are curves. For an algebraic variety X, algebraic geometers are
particularly interested in subvariety of dimension dimX — 1, which they call diwisors. We
only care about the most simple divisors, namely the divisors for A" and P™:

Definition 3.2. A hypersurface in A" (respectively, P") is an (n — 1)-dimensional alge-
braic variety.

The following characterization of hypersurface is a consequence.of Krull’sprincipal
ideal theorem:

Proposition 3.3. X is a hypersurface in A™ (respectively, P™) if and only.if X is defined
by a single irreducible polynomial (respectively, irreducible homogeneous polynomial).

This gives a reason for us to extend the definitionof hypersurfaceto all algebraic sets
of pure dimension n — 1, i.e., algebraic sets that areunion of irreducible hypersurfaces.
Then the hypersurfaces in A™ (respectively, P").are exactly ‘the zeros of polynomials
(respectively homogeneous polynomials), and by Hilbert, Nullstellensatz, two polynomials
f and g define the same hypersurface if and only.if f = Xg for'some nonzero \.

For P, as we have shown that the "moduli” of hypersurfaces is actually the projec-
tive space |J;—,P(Sq), where Sy is the C-vector-space’of homogeneous polynomials of
degree d in S = Clzg, x1, X2, ..., T,), it is reasonableto define degree of a hypersurface
to be the degree of the polynomial-determining it. Notice that if H = H; U H,, then
degH =degH +degHs>.

The following terminology is from medern. algebraic geometry but it’s useful in our
situation:

Definition 3.4. A linear system 0. of hypersurfaces of degree d on P" is the family of
hypersurfaces determined by the polynomials in a vector subspace V of S;. If V= Sy,
we call it a complete_ linear system.

By definition and ‘comments‘above, a linear system is naturally parametrized by P(V),
the projective space consisting of all lines passing through origin in V. We close this
section by introducing base point and base component,

Definition, 3.5. Alvariety X on P” is called to be in a base component of a linear
system 0.if all hypersurfaces in 0 contain X. The maximal ones of such X are called base
components. If X is a’point that lies in all hypersurfaces in 0, it is called a base point.

3.2. Multiplicity and intersection multiplicity. Let’s start from A%, Without loss
of generality, suppose C' is a curve defined by binary polynomial f which passes through
origin/(0,0). Then the homogeneous decomposition of f is f = fy+ fa—1 + ... + fr where
d =.degf and k > 1, f;, # 0. Then all i*" order of partial derivatives of f vanishes at
origin. for i = 0,1,2,...,k — 1, and there is at least one k" order of derivative of f that
does not vanish at origin, so it is reasonable for us to say (0,0) is a zero of f of degree k,
or the curve passes through (0,0) with multiplicity k.
Generalize this idea, we get

Definition 3.6. Suppose f defines a hypersurface H in A™ and P € H. Translate P to
origin O = (0,0, ...,0) and suppose f have homogeneous decomposition f = f; + fq_1 +
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. + fr where k > 1, fi. # 0. Then the multiplicity mp(H) of H at P is defined as the
integer k.

For a hypersurface H in P" and a point P € H, the multiplicity is defined by firstly
restricted to one affine atlas U,, (defined in the previous chapter) that contains P @and
obtain multiplicity of H NU,, at P. One checks easily that this definition is independent
of the choice for x;, it is actually the unique integer k such that f € m* while f & mt+!
in the local ring Op with maximal ideal m.

Going back to our example in A%, suppose that two different curves C' : f = 0 and
D : g = 0 intersect at P, then as long as P is isolated (means P ig"not contained
in any common component of C' and D), then it follows from results in.commutative
algebra (artinian local rings) that the quotient ring O,/(f,¢) is a finite dimensional C
vector space. Now if f = y, then C is the x-axis, which is isomorphic to Al,“and
[ = dimc Op/(f,g) is the multiplicity of g|s: at P. So it’s reasonable to.say. ”C and D”
intesect at P with multiplicity {. This leads to the definition:

Definition 3.7. Suppose Hi, Ho, ..., H, are n hypersurfacesdefined by fi, fo, ..., fn in-
tersecting at P which is isolated, then the C vector space Op /{fi/ foy+., fn) is finite-
dimensional. The intersection multiplicity of Hy, Hs, .., H, is then defined by

mP(H17H27 ey Hn) = dlm(c OP/(f17f27 7fn)

Similarly, the intersection multiplicity in P” is defined.by firstly restricting to one affine
atlas and then obtaining the local intersection multiplicity as'our intersection multiplicity,
it is also independent of the atlas you choose.

One important relation between these two multiplicities is given in the following the-
orem:

Theorem 3.8. Let Hy, Ho, ..., H, be n hypersurfaces in P whose intersection set is 0-
dimensional, then mp(Hy, Hy, .&, Hy,) > mp(Hy) - mp(H3)... - mp(H,)

The proof is by irritating the inequalitymp(X,Y) > mp(X)-mp(Y) in [Ful84], chapter
12.

3.3. Bezout’s theorem:and Chow ring. One can generalize the notion of degree to
all subvarieties in P™ as“a numerical data computed by Hilbert polynomial, which we
don’t bother introducing the whole theory here but make comment that the degree of a
set of points S“isthe number.of points in S counting with multiplicity. A fundamental
result for intersection theory.is cited here from [Har77] chapter 1:

Theorem 3.9. LetY ‘be a variety of dimension > 1 in P", let H be a hypersurface not
containing Y. Let Zy,4s, ..., Zs be the irreducible components of Y N H. Then

> mz (Y, H) deg Z; = deg - deg H

J=1

Here my (Y, H) is also a generalization of intersection multiplicity at a point to the
notion along a subvariety in the intersection. Now for the case that Hy, Ho, ..., H, be n
hypersurfaces whose intersection set is 0-dimensional, Irritating this formula we get:

Corollary 3.10. Suppose Hy, Hs, ..., H, are n hypersurfaces in P whose intersection set
1s 0-dimensional, then

deg(Hi N HyN...N H,) =deg H; - deg Hs... - deg H,

Take n = 2 we get the most famous and classical result in intersection theory:
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Corollary 3.11. (Bezout’s Theorem) Let Y, Z be curves in P? of degree d and e, if
YNZ={P,P,,..., P} is zero dimensional, then:

> mp (Y, Z) = de
i=1
One can also understand this series of results using Chow ring: Define the Chow group

Ch(P™) of P as the free abelian group generated by all subvarieties in P" imodulo the
rational equivalence: Two subvariety X and Y is rationally equivalent if they are different
sections of a subvariety Z € P" x P! at two points s and ¢ on P'. Then-Ch(P") has-a
natural grading by dimension. Intersection theorists have given a complete description
of this object,

Theorem 3.12. Ch(P™) has a ring structure such that [A][B] = [A N B] for-any two
subvarieties A and B. We have an isomorphism

Ch(P") = Z[o]/ (")

of rings, and under this isomorphism, o represents a hyperplane (hypersurface defined by
linear function) in P".

A proof of which can be found in [EHI6]. Using this tool; one can translate (3.7~
3.9) by regarding all varieties as the linear variety. rationally equivalent to it and then
calculating the intersection using linear algebra.

4. MAIN RESULT AND SKETCH OF THE PROOF

As stated in the Introduction, we aremnaturally interested in whether a given algebraic
set X in P" can be represented as a intersectionof.a codimension number of hyperplanes.
By Hilbert Nullstellensatz, this means Z(X) istheradical of an ideal generated by codim X
elements. It is a relative easy conditionthat Z(X) itself can be generated by codimX
elements, so we distribute the'idea into.two cases and make the following definition:

Definition 4.1. Suppose X is an algebraic set on P™ with dimension r. Denote the ideal
of vanishing function Z(X), then:

(1) If Z(X) can be generated/by.n—r elements, we say X is a scheme-theoretic complete
intersection or simplycomplete intersection.

(2) If there exist hypersurfaces'H;, Hs, ..., H,_, such that X = H; N Hy... N H,_, as
subsets on P", we say X is.a set-theoretic complete intersection.

Determining. whether a'set of dimension > 1 is a complete intersection or set-theoretic
complete intersection is'a wildly open question, so in this paper we focus on the zero-
dimensional algebraic sets, i.e. the sets of discrete points. The core question this paper
cares about is: Given‘an integer m and a general set S of discrete points on P* with |S| =
m,’it i possible to S as a complete intersection or set-theoretic complete intersection? For
scheme-theoretic part, we have figured out the possible m for all n and for set-theoretic
part, we work out the situation for n = 2. We restate our main theorems here:

Theorem 4.2. A general set of m discrete points on P™ is a complete intersection if and
only-if one of the following condition holds:
(WUn>4,m=1o0r2 (2)n=3, me{l,2,8 B)n=2 me{l,2,4}

Theorem 4.3. Any set of points on P? is a set-theoretic complete intersection.

The idea for proving Theorem 4.2 comes from the observation: any 2 points determine

a line, 5 points determine a conic,... a degree d curve will be determined by (dﬂ)zﬂ —1
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points on it. More generally, a hypersurface of degree d in P" should be determined by
(”Id) —1 general points on it, this will be proved in chapter 5 as part of the ”interpolation
theory”. Hence in a complete intersection, if the degrees of the hypersurface is given, then
this gives a upper bound for the number of points in the intersection. Simultaneously;
one have an equality indicated by Bezout’s theorem, or more explicitly Corollary 3.10 for
n > 3, so comparing these two restrictions one can get some numerical relationsy-which
leads to the result of Theorem 4.2.

The proof of Theorem 4.3 follows the similar idea but to manually ”assign™ each point
a multiplicity, so that there are hypersurfaces passing through them by multiplicity.that
is big enough such that by Bezout’s theorem, no more intersection is ‘allowed excepts
those given points. This method could possibly generated to dimension.n, however, as
we will see in chapter 7, it is a hard work to make sure the intersection has dimension
zero. There in chapter 7 we use some technical details to show.that we can construct
linear system of curves determined by passing those given points by some multiplicities
without fixed components, so there must be two curves having 0-dimensinoal intersection.

5. INTERPOLATION USING HYPERSURFACES

The proof of both Theorem 4.2 and Theorem 4.3 requires interpolating points using
hypersurfaces, so we isolate a whole chapter talking about this.

5.1. dimension reduction while interpolating points. Suppose S = C|xg, 1, ..., T,
As discussed after Proposition 3.3, hypersurfaces of degree d are one-to-one correspond
to 1-dimensional linear subspace of degree d part Sy 0f+S, which has dimension (”Zd). We
call a homogeneous polynomial of degree d-a'd-form on P". Now suppose we are given
m different points p; = [xgj), xgj), . o

_ 10 .01 i
f= E WigigoinTo T1' e T

the hypersurface H determined.by.f passes through all p; if and only if the vector con-
sisting of all coefficients of f is‘contained in the null space of the matrix

l,j=1,2,...,m in P". Given a d-form

MO By ) () (@)

where the rows ‘are(indexed by j and columns are indexed by (i1,1s,...,%,) such that
19 + 11 + ... + 4,;=.d in the same order as the coefficient vector for f.
An important result about M (py, ps, ..., ) Which leads to the dimension reduction is:

Proposition 5.1. Forgeneral m points py, pa, ...0m, M(p1,p2, .., Dm) has full rank.

Proof. 1t'sufficesto check m = (":d) since in that case when m < (”:d), it is the first m
rows.of M (py; pas ...,p(n+d)) for any general Prmt1; Pt 2o, P () and full rank of the later

matrix implies linear independence; when m > (":d), the square matrix of first (”:d)

rows i8S M(py, p2, - p<n:d)), which generally has rank equal to (":d).

If.m = (":d), it suffice to find a set of m such points such that the determinant of

M(py,pas-..,pm) does not vanish. For this, let x(()j) =1 for all 5 and :v,(gj) = (xgj))(d“)k.
(:cé”)lo(xgj))“...(acf;]))’" _ (xgj))zo+zl(d+1)+12(d+1) +ootin (d+1)

Since iy < d and d > 1, those integers ig + i1(d + 1) + ia(d + 1)? + ... + i,(d + 1)"

for different (g, 41, ...,1,) are naturally different and are greater than 1 by the uniqueness

of (d + 1)-adic representation of integers. Hence if we denote mgj ) = a; we have an
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d N " o
) X (”: ) or m x m matrix with rows (a"',a’?,a’?,...,a’) and t;’s are distinct (here

Jog gy
: : L . o tory to to(m
t; = 0). The determinant of this matrix is a linear combination of a;”"ay®...a;™

with coefficient (—1) (here ¢ runs through all permutations o of {1,2,...,m}). Since
those exponents are different, those terms are linear independent in the polynomial ring
Cla1, ag, ..., a,,). Hence the determinant is not a zero polynomial in ay, as, ..., a,,, there
must be a set of value for ay, as, ..., a,, such that the determinant is not zero, completing
the proof. [

(n;ll-d

As a consequence of this proposition, we can verify the comment for Theorem 4.2 in
the previous chapter:

Corollary 5.2. If m < ("+d), for general points p1,pa, ..., Pm, thewdimension of the

n
vector space of d-forms vanishing on those points is ("::d) — m, hence the dimension of

the linear subvariety in P(Sy) consisting of all hypersurface passing through-these points
is (":d) —m—1.
Proof. Obvious by previous proposition and basic linear algebra. U

5.2. dimension reduction while adding multiplicity condition. In the previous
subsection, we discussed the ”dimension loss” when'you add interpolating condition:
Passing through one point "reduces the dimension.by 1” {or the moduli space of hyper-
surfaces. Since we have discussed the multiplicity.of a point, we can naturally talk about
the dimension loss when requiring a hypersurface passing’through one point of given
degree, and we have the following result:

Proposition 5.3. For hypersurfaces in P*, The condition “passing through a point p

with multiplicity a reduce the dimension at most by (”Zf;l)

Proof. Since multiplicity is local; we may restrict to A™ and suppose p = (0,0, ...,0). The
restrictions on d-forms are just linear equations

O(f]4n)
oYy
here Y = (y1, ..., y,) arethe local coordinates in A" and I = (i1, a...,1,), |I| = i1+i2...4+1n,
oY = 0y,0yy...0" Y. Hence'we have in total

f(n—;Jrk) :i(n—;k)_(nzﬁzl) _ (”ZT)

k=0 k=0

(0,0,:4,0)=0, for all |[I| <a-—1,

linear functions, which reduce the dimension at most by (":f;l) U

6. O-DIMENSIONAL SCHEME-THEORETIC COMPELETE INTERSECTION ON P"

In this'chapter we prove Theorem 4.2.

Suppose we are given a general set of m points on P” that is a complete intersection
of hypersurfaces Hy, Hs, ..., H,, then with degree di,ds,...,d,,. Then by Corollary 5.2,
in.order to really have hypersurface of degree d; pass through these points, one should
have ("“;d") —m —12> 0. If we suppose d; < dy < ... < d,, then this is equivalent to
m < ("J;dl) — 1 or simply m < ("+d1). While Corollary 3.10 tells us m = dyd»...d,, based

n
on d; is minimal among d;’s we have an inequality

d
(”J;L 1) >m = didy...d, > d"
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which is
> d
n-(n—1)..-1
hence equivalent to
1 1.1 1 1
— 4+ =) (— 1 1
(+ )G+ el + D> 8
1 1 1.1 1.1 1 15
If n >4 and d; > 2, then the LHS < (= +1)(=+ =)=+ )(=+-) = —< 1,
n > 4 and d; > en the S_(2+)(2+2)(2+3)(2+4) = L%

contradiction. Hence for n > 4, we should have d; = 1, but this means m < ("+d1) I=mn
and H; is a hyperplane containing it. With the 1somorphlsm H, = P** and the fact
that d-forms on H; are exactly restrictions of d-forms on P" , we see that this réduce to
the case of n — 1. If n — 1 > 4, we can repeat our argument to get do =.1 and m < n— 1.
So finally we can reduce to the case that n = 3 and m < 4.

1 1.1 T. 1
Now we suppose n = 3, then (x) implies (d— + §)<d_ + 2>(d 4 1)->! This holds
1 1
1.1 1.1 40
only for d; = 1 or 2 since (§ + g)(g + 5)(§ +1) = o Ly

If di =1, we see m < ("J;dl) — 1 = 3 and the set_is contained in a plane, which is
P2. While in P2, if m = 3, any three point is a complete intersection if and only if it
is an intersection of a cubic curve and a line, which’ means the three points must be
colinear, so we have lost our generality for this point set. For m = 2, and two point can
be represented by a complete intersection of'a conic passing through them and the line
connecting them, so m = 2 works. For m(= 1, obyiotsly any points can be represented
by intersection of two different lines going through it: Hence m = 1 or 2 in the case
dy = 1.

If di = 2, then m < ("J;dl) — 1 =9, while m> d} = 8, we see m = 8 or 9. However,
by m = dids...d,, di = 2 is a factor-of m, se the only possible choiceism =8 =2-2-2.
Now the problem is to show*general 8 points on P? is always a complete intersection of
three quadratic surfaces. To see.this, wehave to use some tools from modern algebraic
geometry.

Suppose given general points p; ¢pg-.., ps on P2, consider the linear system of quadratic
surfaces 0. By proposition 5.1, we seethat this linear system has dimension (3+2) 8§—1=
1. For any general point ¢ on IP3,'we'see that the condition

rank M(p17p27 "'7p87q) = rank M(plap27 "'7p8)

. 1 ~N. . . .
imposes (90) = 10 restrictions on coordinates for ¢, and one can easily come up with an

examplefor pi;ps, .4, ps. when the points satisfies this 10 condition has dimension 0 (for
example, find three quadratic surfaces that intersect at dimension zero, then the linear
system of quadratic surfaces containing those points does not have fixed components).
Henee generally; the set of points satisfying rank M (pq, pa, ..., ps, ¢) = rankM (p1, pa, ..., Ps)
have-dimension ), which means the linear system 9 does not have fixed component, so
there are three quadratic surfaces whose intersection is zero dimensional and contains
P1, P2, wss Ps. Again by Corollary 3.10, we see that py,ps, ..., ps are the only points in
theit. intexsection, hence general 8 points on P? is always a complete intersection of three
quadratie surfaces.

Thus we can conclude all situation for n > 3 now: for n = 3, we have m € 1, 2,8, for
n > 4, we have m < 4 and all points is contained in a some linear subspace isomorphic
to P2, hence m =1 or 2.

It remains to check n = 2. In this case, inequality (x) implies (- +1)(5-+3) > 1, then
dy < 3, which means m < (3+2) 1 =9. Now we can check each possible m by hand:
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For m = 1, any point is a intersection of 2 different lines through it, so m = 1 works;

For m = 2, and two point can be represented by a complete intersection of a conic
passing through them and the line connecting them, so m = 2 works;

For m = 3, m = dids implies d; = 1, contradict to m < (”J;Ldl) — 1 = 2 (or equivalently;
general three points are not colinear).

For m = 4, any general 4 points is a complete intersection of two conics passing through
them, so m = 4 works.

For m =5, m = dids implies d; = 1, contradicts to m < ("J;dl) —1=2.
For m = 6, m = didy implies d; < 2, contradicts to m < ("Zdl) —1<5.
For m =7, m = dyds implies d; = 1, contradicts to m < ("+d1) —1=2

For m = 8, m = dyds implies d; < 2, contradicts to m < (”J;dl) —1°<5.

For m = 9, m = dyd, implies d; < 3. If d; < 2, this contradicts to m_< ("+d1) —
1 < 5. If dy = 3, then dy = 3. However, for general 9 points p1,ps., ;5 Pes the matrix
M (p1,p2, ..., p9) has full rank by Proposmon 5.1, so the null space of it-has dimension 1,
i.e., there is only one cubic curve passing through all those points, a contradiction. This
completes the proof.

7. 0-DIMENSIONAL SET-THEORETIC COMPEETE INTERSECTION ON P2

In the previous chapter, we see that the reason why a setof points cannot be represented
by a complete intersection is that the restriction m = djds...d,, imposes an upper bound
for the degree passing through those points, but this upper bound could prevent a general
such hyperplane passing through so many points.

However, set-theoretic intersection allows us to have higher degree hypersurfaces: If we
suppose Hy, Hs, ..., H,, intersect at py, pg, s, p, With intersection multiplicity s1, s, ..., Sm,
then Corollary 3.10 becomes

dldg...dn =81 +S2+ ... +Sn

This gives possibility for d; to.be bigger than before.

In order to control the intersection multiplicity, we can use Theorem 3.8 to impose
higher multiplicity for the hypersutfaces passing through thoses points, namely, suppose
H; passes through p; with multiplicity ¢;; then by Theorem 3.8, s; > ty;t9;...t,,;, hence
dldg...dn Z Z;nzl tljt2j~--tnj

Let consider this situation in anether direction: If we can find n hypersurfaces Hy, Ho, ..., H,
of degree dy, ds, ..., d,, which'passes through p1, ps, ..., py, with multiplicity ¢;; for H; passes
p;, and we have didy..d,, = Z;n:l t1taj...tn; as a prerequisite, then if Hy N Hy... N H,
is O-dimensional, then Theorem 3.8 will make sure that there is no point other than
D1, P2, .-, Pm lying in the intersection H; N Hy... N H,. Since by Proposition 5.3, pass-
ing~through p; with multiplicity ¢;; would cause at most (”jjﬁ;l) dimension lost for
the“space of degree d; hypersurfaces, it would help us a lot to give a set of integers
di, tij, 1 =1,2, .. j 1,2,...,m such that

(1) dydy-.. Ztlthj njs (2) (TL ;dl) - ; (n thi 1 1) >1

However this is generally not enough: Firstly, if two tuple of integers (d;, t;1, tio, ..., tim)
and.(d;, t;1,1j2, ..., t;m) equal each other, then we should have at least two different hyper-
surfaces in the linear system consisting of degree d; hypersurfaces passing through p; with
multiplicity ¢;;, so condition (2) should be (2%) ("+d) - > (nztﬁil) > 2. However,
since we are manually choosing d;,t;;,1 = 1,2,..n; j = 1,2,..., m,]it shouldn’t be hard
to avoid this situation or to replace (2) by (2%) for some 7. The really difficult part is
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to find a hypersurface in each linear system such that their intersection is O-dimensional,
which is possible by some local argument but far beyond this paper’s level if n > 3.
For n = 2, The problem would be solved if we prove the following statement:

Proposition 7.1. Given general points py,pa, ..., pm on P", there exists a set of positive
integers d,ay, as, ..., ay, such that d* = a?+ a3+ ... +a2, and the linear system 0 consisting
of degree d curves passing through p; with multiplicity a; s nonempty and does.not have
base component of dimension 1.

If this statement is true, then it suffices to pick two general curves in 0 and then-they
should intersect at a zero dimensional set, which means a set of points. Then Corollary
3.10 and d* = a? + a3+ ...+ a2, tells us that py, pa, ..., Py are the only intersection.of these
two curves, so this set of points is represented as a set-theoretic complete intersection of
this two curves, which will complete the proof for Theorem 4.3. Thus it suffices for us to
prove this proposition.

In order to prove Proposition 7.1, we need the following lemma:

Lemma 7.2. Suppose 0 is a linear system of degree d_ctirves on B2 /and p is a base
point of 0 such that all curves passes through p by.multiplicity a.. Then if the order a
tangent directions of the curves in 0 at p can be arbitrary, then p.is. not contained in any
1-dimensional base component of 0.

We should firstly make clear what are the "tangent directions” of order a:

Definition 7.3. Suppose a curve C' : f =0 on.A? passes through p with multiplicity a.
Then after removing p to (0,0), the order a~tangentdirections of C' at p is defined as the
linear factors of f,, where f = f;+ fqo1... + f, is the homogeneous decomposition of f.

For this notion in P? one firstly loealize in some affine atlas and get the tangent direc-
tions there, the result should be independent of the atlas you choose since it’s equivalent
to factorize in the local ring.

Proof of Lemma 7.2. Let’s consider-locally, without loss of generality we can suppose
P = (0,0) in A2, If there is.a fixed component passing through p, namely some h = 0
for some polynomial h, then any cutves in ? should be of the form f = gh = 0 for some
polynomial g, so the-lowest degree part of f can be divided by the lowest degree part of
h, which cannot be arbitrary. O

This lemma essentially shows that if there is a base component E passing through p,
then tangent directions of any curve in 0 at p has a tangent direction coming from £, as
showed in‘the following graph,

There must be one tangent direction coming from base component

Now we can prove Proposition 7.1:

Proof of Theorem 7.1. Suppose we are given positive integers d, ay, as, ..., a,, and the lin-
ear system 0 consists of degree d curves passing through p; with multiplicity a;. Then for
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any point p; and a given complete set T of order a tangent directions (which means you
have exactly a directions in your set), the condition ”the order a tangent directions of
the curves in 0 at p is T 7 imposes exactly a linear restriction on the linear system, hence
in order to have all possible T" as the set of tangent directions of curves in 0 at any p;, it

suffices to have dim? — a; > 0. By proposition 5.3, dim?d > (dzz) —->" (Zli) YT

(djf) —->" (‘“;1) — 1, so if we suppose a; > as > ... > a,,, then it suffice for us‘to.find
the following data: A set of positive integers (d, ay, asg, ..., @) With a3 > age> .02 ay

such that

Zm d+2 Zm a; +1
1 2 = 2 2 - ’ - - 1 >
While (1) holds, (2) is equivalent to 3d — 3a; — Y., a; > 0, so these two_conditions

turns into homogeneous condition:
m

m
(1) Z(%)? —1 2) 3% + Z% <3
i=1 i=2

Hence it suffices for us to find positive rational numbers ry, &5, .sx,, with x1 > x5 >

. > @y, such that Y7" 2? = 1 and 3z1 + > 1", x; <-3 and then we can let d to be
the least common multiple of denominators of z;’s‘and let a;.= d;x;. The last step is
to find such a set of positive rational numbers, it iS*equivaleént to'find a rational point
(21,2, ..., ) on the unit sphere ™1 C R™ such that x; >0] 3z + >, z; < 3.

Now consider the set

R ={(x1, 22, ..., xp)|@; >0,327 + le <3}
1=2

I'— (m~2)e  [1—(m—2)e
2 ’\/ 2

it has nonempty interior: the point (\/ L€, €..., €) 1S con-

tained in R° for sufficiently small.e > 0 sinee

lim 3\/1_(m_2)62+\/1_(m_2)62+(m—2)e:2\/§<3

e—0t 2 2
By a very classic result in JoAAD], rational points on the sphere are dense, so there
must be a rational peint.contained in' R°, completing the proof.

i

8. FURTHER EXPLORATIONS

As we'showed in Theorem 4.2, not all set of points is a complete intersection of hyper-
surfaces. Then a natural question emerged:

Question 8.1. Canwe construct a moduli space for all 0-dimensional complete intersec-
tion of given index?

If weiconsider the sequence of points, i.e., we do not ignore the order, then this could
be a subset of P x P".... x P" If we only consider "set”, then it could be a subvariety
(or.simply subset) in the punctured Hilbert scheme Hp.

Amnother similar question is

Question 8.2. Given a set of points that is a complete intersection, construct a moduli
space of all tuples of hypersurfaces (Hy, Ho, ..., H,) whose intersections are compelete and
consists of those points.

Based on our method proving Theorem 4.3, we can make the following conjecture:



SCHEME-THEORETIC AND SET-THEORETIC COMPLETE INTERSECTION OF POINTS 15

Conjecture 8.3. Any set of points on P" is a set-theoretic complete intersection.

And there should be a similar way controlling the lowest degree of the forms at givené
terms to avoid base components. This work could be possible but tedious, so we leave&

for future exploration. (b



16 WEILE HUANG

REFERENCES

[EH16] David Eisenbud and Joe Harris, 3264 and all that: A second course in algebraic
geometry, Cambridge University Press, Cambridge, 2016.

[Ful84] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Gren-
zgebiete, vol. 2, Springer-Verlag, Berlin, 1984.

[Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol:'52,
Springer, 1977.

[LV23] Eric Larson and Isabel Vogt, Interpolation for brill-noether curves, Forum of
Mathematics, Pi (2023), Published online Jan. 24 2022; formally-in 2023.

[0AAD] Diophantus of Alexandria, Arithmetica, 3rd century AD, Greek.treatise; only six
of the original thirteen books survive.



SCHEME-THEORETIC AND SET-THEORETIC COMPLETE INTERSECTION OF POINTS 17

ACKNOWLEDGEMENTS

[ am deeply grateful to my advisor, Dr. Yue Zhao, for her guidance throughout this
project. She introduced me to foundational tools in commutative algebra and algebraic
geometry, and helped me situate the problem in its broader context. In particular;.a
motivating open question in intersection theory asks whether every irreducible curyve.in
P3 is a set-theoretic intersection of two surfaces. My project was inspired by a.simipler,
related direction: whether a general finite set of closed points in P? is a set=theoretic
intersection of two curves, and whether a general finite set of points in P" can be realized
as a scheme-theoretic complete intersection of n hypersurfaces.

After studying the necessary background, I established the scheme-theoretic complete
intersection result in P2, With minor suggestions from my advisor-—primarily about
organizing the argument and verifying dimension counts—I extended the result to P* for
n > 2, using Bézout’s theorem and computations in the Chow ring to control degrees and
intersection multiplicities.

For the set-theoretic part, I derived two conditions under which a setwof m points in
P? is a complete intersection of two curves of the same degree: (i) a-numerical equality
matching the global intersection number with the sum of local intersection multiplicities,
and (ii) a dimension inequality ensuring the existence of a positive-dimensional linear
system with the prescribed multiplicities. A substantive difficulty arose in ruling out
the existence of a fixed one-dimensional base component ‘of the linear system 0 passing
through the given points. With my advisor’s.feedback, 1" addressed this by imposing
general order-a jet conditions at the points.(i.e., allowing arbitrary tangent directions for
the order-a parts). This ensures that, for two general members of 9, the local intersection
multiplicity at each base point achieves the expected. product of orders and that no
unintended common component persists:“This réselves the base-locus issue and validates
the set-theoretic complete interseetion.construction.

[ am also thankful for other teachers at.my.school for their encouragement and support
of my participation in the S.T. Yau High School Science Award. Finally, I am deeply
indebted to my parents for their unwayvering support throughout the research and writing
of this paper.



	1. Introduction
	2. Preliminaries
	2.1. Algebraic sets and ring of regular functions
	2.2. Zariski topology and algebraic varieties
	2.3. Graded structure, Projective space
	2.4. Localization, Local rings

	3. Intersection Theory
	3.1. Dimension, Hypersurfaces and linear system
	3.2. Multiplicity and intersection multiplicity
	3.3. Bezout's theorem and Chow ring

	4. Main result and sketch of the proof
	5. Interpolation using hypersurfaces
	5.1. dimension reduction while interpolating points
	5.2. dimension reduction while adding multiplicity condition

	6. 0-dimensional scheme-theoretic compelete intersection on Pn
	7. 0-dimensional set-theoretic complete intersection on P2
	8. Further explorations
	References
	Acknowledgements

