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Flow Matching-based Text-to-Speech for Low-Resource

Automatic Speech Recognition Augmentation

Aiden Ruipeng Zhou

Abstract

Many low-resource languages still lack high-quality Automatic Speech Recognition (ASR)

systems, limiting access to information, education, and AI-powered applications. While

text-to-speech (TTS) data augmentation has emerged as a promising solution, existing ap-

proaches face two critical limitations: (i) low-diversity, single-speaker synthesis restricts

accent and prosody coverage, leading to Word Error Rate (WER) plateaus; and (ii) the

absence of principled guidance on dataset preparation, synthetic-to-real data mixing, and

training pipeline design makes current solutions inefficient and non-generalizable.

To address these challenges, we propose a unified framework leveraging Flow Matching-

based TTS for scalable low-resource ASR augmentation. Our approach significantly re-

duces dependence on costly human-recorded annotations by synthesizing high-quality, accent-

diverse speech using minimal reference data. Furthermore, it demonstrates strong cross-

lingual transfer, enabling efficient adaptation from high-resource languages to unseen low-

resource languages with only limited in-domain audio. We also introduce a mathematical

model that predicts WER as a function of real and synthetic data volumes. Validated on

two typologically distinct languages—Spanish and Vietnamese—this model shows strong

predictive power and broad generalizability.

Applying our framework to Vietnamese, we achieve state-of-the-art performance on

Common Voice (6.55% WER), competitive results on GigaSpeech2 (10.22% WER), and

FLEURS (11.41% WER), matching or surpassing industrial-scale systems such as Whisper

Large-v3. These findings demonstrate that our framework enables effective, scalable ASR

training for underserved languages and provides a principled strategy for optimizing data

augmentation at scale.

Keywords: Automatic speech recognition; text-to-speech; low-resource language;
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1 Introduction

Technological progress has deepened the global “digital divide” between developed and under-

developed regions, particularly in access to speech technologies that power modern AI systems

and applications. While high-resource languages such as English enjoy near-perfect automatic

speech recognition (ASR) performance, low-resource languages remain severely underserved, lim-

iting equitable access to education, information, and AI-driven tools. For English, ASR systems

have achieved word error rates (WER) as low as 1% [1]. However, despite the existence of over

7,000 living languages worldwide [2], WER for many low-resource languages remains as high as

30–50% [3], further exacerbating accessibility gaps.

A major cause of this disparity is the scarcity of high-quality, annotated audio datasets, as

collecting and labeling speech data is expensive and time-consuming. One promising direction

explored by prior work [4]–[7] is text-to-speech (TTS) augmentation, where synthetic audio

is generated from text using a TTS system and combined with real speech to train ASR models.

While they achieved modest gains, current approaches face three key challenges: (C1) Insuffi-

cient diversity in synthetic augmentation: Most existing approaches rely on single-speaker

or low-variation synthesis, limiting accent, prosody, and speaking-style coverage and resulting in

synthetic datasets that fail to generalize. (C2) Limited scalability of prior methods: Even

with modern generative TTS, prior studies report WER gains plateauing at synthetic-to-real

ratios of only ∼1.35:1 [8]. Beyond this threshold, additional synthetic data yields diminishing

returns, indicating the need for more linguistically and accoustically diverse synthesis methods.

(C3) Lack of principled strategies for augmented training: Existing research offers little

guidance on how much synthetic data to generate or how best to combine it with real speech.

In the absence of predictive models, practitioners must rely on ad-hoc experimentation, which is

inefficient, dataset-specific, and difficult to generalize across languages.

In this paper, we propose a unified framework to address these challenges:

1. Flow Matching-based TTS for ASR augmentation. To tackle C1, we integrate

flow matching-based TTS models—a recent generative modeling technique that improves

both synthesis quality and accent diversity—into ASR training pipelines for low-resource

languages. Our approach enables one-shot voice cloning : with only∼10 seconds of reference

audio, we can generate natural speech in any target voice with diverse accents and prosodic

styles. Furthermore, these models exhibit strong cross-lingual transferability : a system

pretrained on millions of hours of high-resource language data can be efficiently adapted

to a new language using only dozens [9] to a few hundred hours of in-language recordings.

2. Substantial improvements in WER scalability. Addressing C2, we demonstrate

continuous WER reductions even at high synthetic-to-real ratios (4:1 or higher). For Viet-

namese ASR, we achieve relative WER reductions of 37.6%, 27.0%, and 34.9% on the

Common Voice [10], FLEURS [11], and GigaSpeech2 [12] benchmarks, respectively. Under

certain configurations, diversity introduced by synthetic data yielded even more dramatic
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improvements, such as a relative 78.1% WER reduction when using attention decoding

without rescoring.

3. A predictive mathematical model for data augmentation. To solve C3, we propose

a simple parametric model that predicts WER as a function of real and synthetic data

volumes. Validated on Spanish and Vietnamese—two typologically distinct languages—

our model achieves R2 scores of 99.2% and 98.1%, enabling principled, scalable strategies

for optimizing synthetic-to-real data ratios during ASR training.

4. Systematic ablation studies of synthesis-critical factors. Through controlled ex-

periments, we quantify the impact of speaker diversity and text distribution on ASR per-

formance. Results show that flow matching-based TTS remains robust even when seed

speaker diversity is reduced from 2, 293 to 400 identities, but recognition accuracy is highly

sensitive to the domain relevance of text used for synthesis.

5. State-of-the-art results on Vietnamese benchmarks. Applying our framework to

Vietnamese yields a new state-of-the-art WER on Common Voice (6.55%), competitive

performance on GigaSpeech2 (10.22%), and near-SOTA results on FLEURS (11.41%),

surpassing or matching several industrial-scale systems such as Whisper Large-v3.

Contributions. This work advances low-resource ASR in three key ways: (1) We are the first

to integrate flow matching-based TTS for scalable, accent-diverse data augmentation, enabling

strong cross-lingual adaptation with minimal target-language data. (2) We introduce a simple

yet effective predictive model for optimizing synthetic-to-real ratios, validated on typologically

distinct languages. (3) We provide the most comprehensive evaluation to date of ASR perfor-

mance under high synthetic-to-real ratios (up to 6 : 1), achieving new state-of-the-art results on

Vietnamese benchmarks.

The remainder of this paper is structured as follows: Section 2 reviews prior work on mul-

tilingual ASR and data augmentation. Section 3 details our methodology, including model ar-

chitectures and training pipelines. Section 4 introduces both real and synthetic datasets we use.

Section 5 presents experimental results and analysis, and Section 6 concludes with key findings

and future directions.

2 Related Work

Research on low-resource ASR has progressed along two complementary axes: (i) reducing re-

liance on annotated speech audio via unsupervised or cross-lingual learning, and (ii) expanding

effective training data through augmentation—notably with synthetic speech.

Large-scale cross-lingual learning. Recent advances, particularly from industry, leverage

large-scale unsupervised and cross-lingual learning to reduce target-language labeling require-

ments. Representative systems include Whisper [3], which scales weakly supervised training to

420
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



5M hours (1M labeled and 4M pseudo-labeled) and achieves strong zero-shot transfer across

benchmarks; Google’s USM [13], pretrained on ∼12M hours spanning 300+ languages with effi-

cient fine-tuning using comparatively modest labeled data; Universal-1 [14], trained on ∼12.5M

hours across multiple languages; and NVIDIA’s Canary, trained on the ∼1M hours, 25-language

Granary dataset[15]. These systems reflect a broader trend toward massive multilingual pretrain-

ing. However, despite strong performance, their large model sizes and computational demands

limit deployment in resource-constrained, on-device, or low-latency scenarios. Furthermore, per-

formance on low-resource languages remains substantially weaker, highlighting the need for com-

plementary approaches.

Unsupervised and self-supervised learning. Midsize speech corpora such as YODAS

[16] and GigaSpeech2 [12] facilitate scalable self-supervised and semi-supervised pipelines by

offering extensive unlabeled and partially labeled audio. For instance, YODAS provides over 500k

hours of multilingual speech across more than 100 languages, with both labeled and unlabeled

subsets, while GigaSpeech2 contains 30K hours of automatically transcribed speech in languages

such as Thai, Indonesian, and Vietnamese, collected from YouTube. The inherent heterogeneity

of these datasets introduces persistent background noise and non-standard speech, even after

filtering. Moreover, automated transcription errors introduce label noise, reducing the reliability

of supervised signals. For Vietnamese, [17] demonstrates that pretraining on 73K hours of

unlabeled data followed by fine-tuning on only 50 hours of labeled speech achieves state-of-

the-art performance, underscoring the efficacy of unsupervised learning with large raw corpora.

Nevertheless, such approaches remain ineffective for low-resource languages for which large raw

datasets are unavailable.

Earlier TTS for data augmentation. Advances in TTS technology have enabled re-

searchers to use synthetic audio for generating automatically labeled data. Previous studies

have consistently reported reductions in WER by incorporating TTS-generated training sam-

ples. However, obtaining high-quality TTS models for low-resource languages remains a chal-

lenge. Early efforts demonstrated ASR improvements only on very small datasets with high

baseline WER [4]–[7]. For instance, experiments on West Germanic minority languages [5] used

only 168 minutes of synthetic and 24 minutes of real speech—a scale too limited to support broad

conclusions. Similarly, [18] used only 99 hours each of real and synthetic data. A larger-scale

study[6] observed a minor WER reduction from 8.66% to 7.29% using 480 hours of real data

augmented with 1150 hours of synthetic speech.

Generative TTS for data augmentation. Recent advances in generative speech synthesis

have significantly mitigated data scarcity in ASR training. Early efforts primarily utilized autore-

gressive (AR) models based on transformers, such as WaveNet [19], Tacotron [20], Tacotron 2 [21],

and FastSpeech [22]. While these achieve high quality, they are limited by slow inference. This

has prompted a shift toward non-autoregressive (NAR) methods, particularly diffusion-based

and flow-matching TTS models—including Glow-TTS [23], Grad-TTS [24], Seed-TTS [25], and

F5-TTS [26]. Such approaches offer notable improvements in naturalness, controllability, and
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efficiency, enabling the generation of high-fidelity speech with wide variations in timbre, accent,

and prosody across diverse speakers. As a result, synthetic corpora generated by modern TTS

systems can now approach the perceptual quality of human-recorded datasets [27]. Empirical

studies [8] further demonstrate that ASR models trained mainly on synthetic speech can perform

nearly on par with those trained solely on real data, especially when augmented with a small

amount of human recordings. However, performance gains exhibit diminishing returns as the

volume of synthetic data increases (with a synthetic-to-real ratio up to 1.35:1), highlighting the

importance of maximizing both linguistic and acoustic diversity in dataset construction.

Our work builds on these trends in three ways. First, we employ a flow matching-based

TTS model, which improves sample quality and training stability while enabling accent-diverse,

cross-lingual synthesis from limited in-language data [28]. Second, we introduce a quantitative

model relating WER to the volumes of real and synthetic audio, providing a principled way

to optimize data mixing and complementing prior empirical scaling studies. Finally, we con-

duct a comprehensive evaluation of ASR performance under large synthetic-to-real ratios—up to

6:1—on mid-sized datasets such as the 500-hour Common Voice Spanish corpus, demonstrating

effectiveness at scales not explored in prior work.

3 Flow-Matching TTS Augmented ASR

3.1 Overall Methodology

Goal. Our objective is to train high-accuracy ASR for a target low-resource language while

minimizing human annotation. We achieve this by:

(i) Curating a modest real-speech corpus;

(ii) Fine-tuning a flow-matching TTS to the target language with limited in-language audio;

(iii) Synthesizing large, diverse multi-speaker speech from a broad-coverage text pool; and

(iv) Mixing real and synthetic speech under a principled schedule to maximize downstream WER

gains while avoiding domain leakage and overfitting to TTS artifacts.

Notation. Let Dreal = {(xi, yi)} denote real audio–text pairs for training; T a large text pool

for the target language; S = {sk} a “seed” speaker set where each sk is an 8–12s reference clip

with text; and MTTS a flow-matching TTS adapted to the target language from a multilin-

gual base. We generate a synthetic set Dsyn = {(x̃j , ỹj)} by conditioning MTTS on (ỹj , sk(j))

with controlled variations (prosody, pace, SNR). The ASR encoder–decoder MASR is trained on

Dmix = Dreal ∪ Dsyn with a curriculum on the synthetic:real ratio.

Stage A — Curate real data and hold-out sets. We assemble Dreal from publicly avail-

able corpora in the target language, applying text normalization, deduplication, and strict

train/dev/test partitioning. To prevent leakage, we blocklist test transcripts and their near-

duplicates–identified via n-gram Jaccard or fuzzy matching–from any text used for TTS synthe-
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Figure 1: Flow-Matching TTS Augmented ASR Pipeline. Overview of the six-stage
methodology: (A) curate real data and prepare hold-out sets, B) adapt a flow-matching TTS
model for the target language, (C) synthesize diverse speech from a curated text pool, (D) mix
real and synthetic data under a scheduled ratio, and (E) train the Conformer-based ASR model
with hybrid CTC/Attention losses.

sis. Acoustic features, vocabulary construction, and the ASR architecture detailed are described

in Section 3.2.

Stage B — Adapt a flow-matching TTS to the target language. We begin with a high-

capacity, multilingual flow-matching TTS model (e.g., the F5-TTS family [26]) and perform

parameter-efficient fine-tuning to adapt it to the target language using only a few hundred hours

of in-language audio. For experiments, we use two pre-finetuned models for Spanish [29] and

Vietnamese [30]. We then construct a seed speaker bank S comprising thousands of 8–12 seconds

reference clips spanning diverse accents, regional variations, and recording conditions, sourced

from public corpora and carefully curated web materials. The adaptedMTTS supports: (i)multi-

speaker synthesis via speaker embeddings derived from S, (ii) controllable prosody and speaking

rate, and (iii) robust handling of out-of-vocabulary tokens through grapheme-to-phoneme backoff

and character-level conditioning.

Stage C — Text pool and diverse synthesis. We compile T from heterogeneous sources–

including conversational text, subtitles, news articles, novels, and technical documents – aggre-
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gating from datasets like WikiNews, WikiSource and Open Subtitles. To ensure both quality

and broad linguistic coverage, we apply filtering and stratification based on utterance length

(∼2–20 s), punctuation and numeral normalization, domain diversity, and difficulty level. For

each sampled ỹj ∈T , we select a speaker sk(j) ∈S through balanced sampling across attributes

such as gender, age, and geographic region, and synthesize (x̃j , ỹj) with randomized prosodic con-

trols to better capture natural speaker variability. Artificial room impulse responses or additive

noise are not introduced, as Stage A recordings already encompass diverse acoustic environments.

Stage D — Mixing policy and training schedule. We train the Conformer-based CTC/Attention

ASR model on mixed datasets with a scheduled proportion of synthetic data. Let |Dreal| and
|Dsyn| represent the amount (in hours) of real and synthetic audio, respectively, and let ρ denote

the synthetic-to-real ratio:

ρ =
|Dsyn|
|Dreal|

.

Given a midsize real dataset comprising |Dreal| hours of audio, starting from ρ = 0, we progres-

sively increase ρ until WER improvements plateau at |Dsyn| = ρmax · |Dreal|. We then randomly

sample five subsets from Dreal, each containing a portion of the audio:

Dreal =

{
0,

1

5
Dreal,

2

5
Dreal,

3

5
Dreal,

4

5
Dreal

}
.

For each Dreal(i) ∈ D, |Dsyn(i,j)| = ρj · |Dreal(i)| (ρi = 0, 1, ..., ρmax) hours of synthetic audio are

generated accordingly, and ASR models are trained on mixed sets Dmix = Dreal ∪ Dsyn.

Stage E — Losses, decoding, and rebalancing. Training follows the hybrid CTC/attention

objective (Section 3.2). During development, we evaluate four decoders (attention-only, attention-

rescoring, CTC greedy, CTC prefix beam). If WER gains saturate, we (i) increase text/domain

diversity in T , (ii) rebalance speaker strata with underrepresented accents, or (iii) modestly lower

ρmax to mitigate TTS-overfitting. This data-first loop complements model-side tuning.

We ensure a few pratical safeguards as below. (i) Leakage control : Exclude any devel-

opment/test text and enforce near-duplicate filtering. (ii) Domain balance: Maintain at least

20–30% in-domain text while retaining diverse out-of-domain data for generalization. (iii) Re-

producibility : Resample speaker–text assignments across synthetic datasets and retrain models

for variance estimation.

3.2 End-to-End ASR using Conformer and Hybrid CTC/Attention

We first extracted 80-channel filter banks features from audio recordings, computed using a

25ms window and a 10ms stride. We applied global Cepstral Mean and Variance Normalization

(CMVN) to normalize the features, enhancing the performance of the ASR system under varying
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recording conditions. CMVN mitigates channel/microphone effects and compensates for speaker

volume variations, while normalized distribution also contributes to more stable gradients during

model optimization.

Utilizing Byte Pair Encoding (BPE) [31], we decompose words in audio transcripts into re-

combinable subword units. This approach enables direct subword output in our end-to-end ASR

system, bypassing the alignment complexities inherent in phoneme-to-word conversion. Although

a shared multilingual BPE vocabulary is feasible, we deliberately construct language-specific vo-

cabularies for distinct ASR tasks (e.g., Spanish and Vietnamese) to isolate experimental variables.

Each BPE vocabulary contains 4,000-5,000 subword tokens.

Extracted audio features and tokenized transcripts are sent to an end-to-end ASR system

comprising an encoder and a decoder module. The encoder utilizes a standard Conformer [32]

architecture, while the decoder employs a hybrid CTC-attention loss function [33] during training.

Figure 2: Training Flow of a Conformer-based ASR Model

Following the original Conformer, the encoder consists of 12 Conformer blocks, each con-

taining an 8-head self-attention module, a convolution module, and a feed-forward module with

Swish activation.

Figure 3: Conformer Architecture

The hybrid CTC-attention loss is employed in decoder stage during training, leveraging the

CTC module’s faster convergence while benefiting from the attention module’s enhanced robust-
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ness. The combined loss function is defined as below, where λ is set as 0.3.

Lcombined = λLCTC + (1− λ)Lattention

When applying the trained model to speech recognition, multiple key strategies are available

for hybrid CTC-attention decoding: attention-only decoding, attention rescoring, CTC greedy

decoding, and CTC prefix beam search. We conducted comparative analysis of these approaches,

with experimental details provided in Section 5.

3.3 Flow Matching-based Text-to-Speech Engine

We employ the F5-TTS synthesis engine [26] to generate transcribed synthetic audio. F5-TTS is

a non-autoregressive text-to-speech system utilizing flow matching with a Diffusion Transformer

architecture. The base F5-TTS model was trained on 95,000 hours of carefully filtered English

and Chinese speech data derived from the multilingual Emilia dataset.

Although the base F5-TTS model exclusively supports Chinese and English speech gener-

ation, such flow matching-based models learn underlying, universal representations of human

speech rather than superficial language-specific rules. When sufficiently pretrained on one or

two languages (e.g., English and Chinese in the base F5-TTS model), it acquires core capabili-

ties for constructing natural speech. By fine-tuning the base F5-TTS model with a few hundreds

hours of target-language audio data (e.g., Spanish or Vietnamese), high-quality text-to-speech

models for new languages can be rapidly developed.

Fine-tuning essentially guides the model to adapt its acquired universal speech generation

capabilities to the specific patterns of new languages. This approach is grounded in two key

principles:

• Linguistic universals and shared acoustic properties: All human languages utilize identical

articulatory organs (vocal cords, tongue, lips, palate, etc.) to produce speech. Conse-

quently, phonemes – the fundamental acoustic units – and their acoustic properties exhibit

substantial cross-linguistic commonality. Many phonemes are identical or highly similar

across languages. The pretrained model has effectively learned to generate these shared

phonemes.

• Advantages of the flow matching architecture: The model inherently learns the conditional

probability distribution p(x|c) where x denotes the speech waveform and c comprises con-

ditioning inputs (text, speaker information, etc.). Pretrained on English and Chinese

corpora, the model develops precise generative control through conditional parameters

(phoneme sequences, speaker embeddings). When fine-tuning for new languages, the core

objective becomes accurate projection of novel phoneme sequences (including language-

specific phonemes) and prosodic patterns onto the model’s established universal acoustic

feature space.
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Figure 4: F5-TTS Model: Using ODE Solver and Vocoder During Inference

In cross-lingual TTS adaptation scenarios, flow matching-based systems demonstrate signif-

icant superiority over previous Diffusion Model approaches. While Diffusion Models excel at

synthesizing high-prosody audio within their training language domain, flow matching enables

efficient cross-lingual transfer through parameter reuse: most bottom-layer parameters encoding

universal speech features remain frozen during fine-tuning. Recent research [9] shows effective

adaptation of the F5-TTS base model to new languages by updating only 1.72% of total pa-

rameters. This substantially reduces adaptation costs, enabling stable training of new language

TTS models with merely dozens to hundreds of hours of target-language data. Crucially, our

systematic application of flow-matching’s cross-lingual transferability yields substantially greater

relative WER improvements in experiments (Section 5) than prior ASR augmentation studies

using earlier Diffusion-based TTS engines [8].

3.4 Open Source Tools and Models

To train the model described in Section 3.1 and implement the methodology outlined in Section

3.2 to develop Spanish and Vietnamese TTS engines, we used the following open source tools.
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3.4.1 WeNet

WeNet [33] is an open-source speech recognition toolkit designed with production readiness as

its core principle. The framework implements a standard Transformer/Conformer architecture,

incorporating multi-head attention mechanisms, positional encoding, feed-forward networks (for

Transformer), and convolutional modules (in Conformer model). By leveraging this toolkit, we

eliminated the need for implementing Conformer models from scratch, thereby enabling focused

investigation into how blending authentic and synthetic speech data impacts recognition accuracy

(i.e. word error rate).

We configure the training pipeline to employ PyTorch-implemented AdamW optimization

with dynamic learning rate scheduling (linear warmup followed by cosine decay). This configu-

ration accelerates convergence while reducing GPU memory overhead.

3.4.2 F5-TTS and its Multilingual Derivatives.

The F5-TTS training code is publicly available on GitHub [34], with pretrained base models

accessible via HuggingFace [35]. Leveraging its exceptional cross-lingual adaptation capabilities

(Section 3.3), numerous high-quality multilingual TTS engines have been fine-tuned from this

base. For our study, we utilize two such derivatives: a Spanish TTS model (F5-Spanish [29], 218

hours audio) and a Vietnamese model (EraX-Smile-UnixSex-F5 [30], about 1000 hours audio),

both adapted from the F5-TTS foundation.

To evaluate synthetic audio quality, we conducted a randomized sample assessment of 200

synthesized utterances per language. These were benchmarked against reference audio generated

by public TTS services (e.g., Google Translate) using identical transcripts. Perceptual evaluation

revealed better quality in Spanish model outputs compared to Vietnamese counterparts.

4 Training Datasets

4.1 Real Audio Datasets

Dataset Language Train (Hours) Validation (Hours)

Common Voice Spanish ˜500 4
Bud500 Vietnamese ˜500 ˜50
LSVSC Vietnamese ˜80 ˜10

VLSP 2020 Vietnamese ˜80 ˜10

Table 1: Annotated Human Speech Datasets for ASR

For Spanish ASR experiments, we use the publicly available Common Voice dataset, which

contains approximately 500 hours of training data, along with 4 hours each for development and

test splits. For Vietnamese, we leverage the Bud500 dataset [36], which offers a comparable
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training size (˜500 hours). Bud500 covers diverse topics—including podcasts, travel, literature,

and food—while capturing a wide range of accents from Vietnam’s Northern, Southern, and

Central regions.

To benchmark Vietnamese ASR performance against state-of-the-art (SOTA) systems, we

additionally evaluate on two widely recognized public datasets, LSVSC [37] and VLSP 2020 [38].

Both are noted for their high transcription accuracy and are frequently used in the Vietnamese

ASR research community. The characteristics of all real-speech datasets are summarized in

Table 1.

4.2 Synthetic Datasets

The synthesis process was Stage C in Section 3.1. Two inputs are required:

1. A “seed set” of audio samples from real human speakers, from real speakers, each contribut-

ing 8–12 seconds of recorded speech paired with the corresponding text. For Spanish, the

seed set includes 2,180 speakers; for Vietnamese, 4,808 speakers were used.

2. A large pool of target-language text, segmented into short sentences suitable for synthesis.

Dataset Type Language “Seed” Speakers Synthetic Audio (Hours)

TTS Spanish 2180 ˜2500
TTS Vietnamese 4808 ˜2500

Table 2: Synthesized Speech Datasets for ASR

Spanish. For Spanish, we utilize the VoxForge Spanish Corpus [39], which contains read

speech from 2,180 speakers (1,713 male, 467 female). One reference clip per speaker is selected to

form the seed set. A diverse Spanish text corpus is compiled from online sources, including movie

subtitles, official documents, novels, and TED transcripts. After cleaning and normalization, the

corpus is segmented into short sentences averaging approximately 100 characters, resulting in

∼4M entries. Each entry is synthesized into speech using the F5-Spanish model.

Vietnamese. Due to the lack of large, publicly available datasets with sufficient speaker

diversity, we collect 4,808 seed recordings (about 10 seconds each) from 186 YouTube channels.

The Vietnamese text corpus is constructed similarly to the Spanish pipeline, combining diverse

open-domain sources, normalized and segmented before synthesis.

For experiments in Section 5, we utilize subsets or the entirety of the synthesized speech from

the datasets summarized in Table 2.

5 Experiment Results

We evaluate all models using Word Error Rate (WER) as the primary metric. All our ASR

models are Conformer-based (Section 3.2) and uses one of four decoding strategies: attention-
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only decoding, attention rescoring, CTC greedy decoding, and CTC prefix beam search.

5.1 A Mathematical Model for WER with Real and Synthetic Data

We investigate the relationship between WER and the ratio of real to synthetic training data

using Spanish Common Voice V21 as the benchmark.

5.1.1 Effectiveness of Synthetic Data

Figure 5 shows how increasing synthetic data affects ASR performance. Starting with ∼500

hours of Common Voice Spanish (Section 4.1), we gradually augment the training set with 0.5×,

1×, 2×, 4×, and 6× synthetic audio (Section 4.2). Moderate augmentation consistently reduces

WER but yields diminishing returns. Beyond a certain point, excessive synthetic data slightly

degrades performance, likely due to overfitting on less diverse TTS-generated speech.
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Figure 5: WER Trends When Adding Synthetic Audio to the Training Set

We further evaluate models trained exclusively on synthetic datasets of varying sizes (Fig-

ure 6). WERs are much higher compared to mixed training but still decrease as the amount of

synthetic data grows.

Table 3 highlights that even when 95% of training data is synthetic and only 5% real (˜75

hours), performance improves substantially—achieving over 10 percentage points of WER reduc-

tion. This demonstrates the importance of small real-speech anchors.
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Figure 6: WER Trends When Training Exclusively on Synthetic Audio

Decoding Method 100% Synthetic 5% Real + 95% Synthetic

Attention 23.92 10.76
Attention Rescoring 22.03 9.16
CTC Greedy Search 24.14 10.51
CTC Prefix Beam Search 24.27 10.45

Table 3: Impact of Adding 5% Real Speech to Synthetic Training Sets

5.1.2 The Mathematical Model

Building on these findings, we hypothesize that WER systematically depends on the amounts of

real and synthetic data used for training. We propose the following parametric function:

WER(X,Y ) =
A

eEX · eFY
+

B

eEX
+

C

eFY
+D,

where X and Y denote the hours of real and synthetic data. Model parameters A to F are

optimized via least squares, and fit quality is measured using R2.

Spanish Vietnamese

Real Speech Audio 0-500 hours 0-500 hours
Synthetic Speech Audio 0-1000 hours 0-1800 hours

WER test points 35 45
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The model achieves excellent predictive accuracy, with R2 = 99.2% for Spanish and R2 =

98.1% for Vietnamese (Table 4), suggesting robustness across typologically distinct languages.

Decoding Method Spanish Vietnamese

Attention 0.992 0.975
Attention Rescoring 0.991 0.981
CTC Greedy Search 0.991 0.975
CTC Prefix Beam Search 0.991 0.969

Table 4: R2: the Goodness-of-Fit of WER(X,Y )

Figure 7 and Figure 8 show the matching between the surfaces of the mathematical model

(blue and green) and the test points (dots in red and orange).

Figure 7: Goodness-of-Fit: Spanish Figure 8: Goodness-of-Fit: Vietnamese

5.2 Ablation Study: Impact of Synthesis Critical Factors

We analyze two synthesis-related factors that affect ASR performance: (i) the number of distinct

seed speakers used for TTS, and (ii) the distribution of text used for generating synthetic audio.

5.2.1 Effect of Speaker Diversity

We train models on 500 hours of real speech and 1000 hours of synthetic audio, varying seed

speakers from 400 to 2293 (Table 5).

Results demonstrate that even after substantially reducing the number of distinct speaker

vocal identities used for synthesis from 2,293 to just 400, the impact on Automatic Speech

Recognition (ASR) performance remains remarkably minimal. Although a certain amount of
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Speaker# Attention Rescoring Attention CTC Greedy Search CTC Prefix Beam Search

2293 6.64 8.04 7.74 7.69
1600 6.50 8.04 7.58 7.57
1200 6.52 7.75 7.59 7.55
800 6.56 7.82 7.65 7.60
400 6.58 8.18 7.62 7.60

Table 5: ASR Performance (WER) Comparison with Varying Numbers of “Seed Speakers”

speaker variety is essential, this finding also suggests that in practical applications of ASR for

low-resource languages, it is feasible to collect seed audio from an acceptably small number of

speakers—each contributing as little as around 10 seconds of recording—and subsequently use

a TTS model to generate large quantities of synthetic speech for ASR training. Moreover,

seed recordings can be conveniently sourced from publicly available materials such as films, TV

programs, and online video platforms, reducing data acquisition costs.

5.2.2 Effects of Text Distribution

We examine four text sources—TED Talks, subtitles, books/news, and Common Voice tran-

scripts—and synthesize 500 hours from each. When combined with 500 hours of real speech,

in-domain text consistently yields the best results (Table 6).

Dataset Attention Rescoring Attention CTC Greedy Search CTC Prefix Beam Search

CV+ted 7.68 9.19 8.89 8.84
CV+subtitle 7.67 9.17 9.04 9.01
CV+book 7.74 8.81 8.91 8.88
CV+cv 7.12 8.63 8.29 8.23

Table 6: ASR Performance (WER) with Different Text Distributions for Synthetic Data

The results confirm that the choice of text distribution significantly affects model accuracy.

Synthetic audio derived from in-domain transcripts (CV+CV) yields the lowest WER, improving

recognition accuracy by up to 0.6 absolute points compared to out-of-domain text. We attribute

this to improved coverage of domain-specific vocabulary and phonetic patterns, enhancing the

model’s generalization and robustness to target test sets.

5.2.3 Key Insights

This ablation study highlights two practical findings:

• Speaker diversity is less critical: For flow-matching TTS; a small number of seed

speakers suffices for generating large, effective synthetic datasets.
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• Text distribution dominates: Using in-domain transcripts for synthesis substantially

boosts ASR performance.

Together, these results suggest that low-resource ASR systems can be built efficiently by

focusing on domain-relevant text while keeping seed speaker requirements minimal, improving

accessibility for underrepresented languages.

5.3 Application on a Low-Resource Language (Vietnamese)

Model
Parameter

(M)
Human Speech

(Hours)
Common
Voice

FLEURS
Giga

Speech2

Whisper large-v3 (OpenAI) 1542 1M+4M1 13.74 8.59 17.94
Whisper base (OpenAI) 72 - 44.07 40.41 39.88
MMS L1107 (Meta AI) 964 49K+55K2 43.88 55.35 46.62
GigaSpeech2 small 68 6039 18.81 13.50 14.72
GigaSpeech2 large 152 6039 14.43 11.59 12.83
Google USM - - 12.46 11.75 13.38
Azure Speech CLI 1.37.9 - - 10.21 11.88 11.78
Ours
Bud500+0H 121 500 16.37 18.72 16.04
Bud500+2000H 121 500 10.20 13.65 10.44
Bud500+LSVSC+VLSP 121 660 9.22 13.57 11.57
Bud500+LSVSC+VLSP+2000H 121 660 6.55 11.41 10.22

Table 7: WER(%) Comparison on Three Benchmarks

Building on the findings in Section 5.1.1, which demonstrated that flow matching-based TTS

synthesis effectively improve Spanish ASR performance even at a 4:1 synthetic-to-real ratio, we

applied the same data generation and training methodology to Vietnamese.

Our approach is evaluated on three widely adopted benchmarks: Common Voice, FLEURS,

and GigaSpeech2. Table 7 presents the WER results of our models alongside several existing

state-of-the-art systems. During the decoding process, attention rescoring was applied to com-

pute the WER values reported in Table 7. All our models are based on the same Conformer

architecture and hyperparameter configuration as detailed in Section 3.2, and differ only in the

composition of training data.

We begin with the 500-hour Bud500 Vietnamese dataset. Adding 2000 hours of synthetic au-

dio (Bud500+2000H) yields significant WER reductions but exhibits diminishing returns beyond

this point. To further improve performance, we incorporate two additional public Vietnamese

datasets, LSVSC and VLSP, resulting in a combined 660-hour real dataset. Training with this

expanded dataset plus 2000 hours of synthetic audio (Bud500+LSVSC+VLSP+2000H) achieves

11M labeled and 4M pseudo-labeled
249K labeled and 55K unlabeled
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state-of-the-art WER performance on Common Voice (6.55%), competitive results on Gi-

gaSpeech2 (10.22%) and FLEURS (11.41%). For comparison, we also report results for the same

660-hour combined real dataset without synthetic augmentation (Bud500+LSVSC+VLSP).

We note that the FLEURS dataset [11] primarily consists of Wikipedia-based audio-text pairs,

while our real and synthetic datasets are mostly colloquial in nature. This domain mismatch

likely contributes to the relative performance gap observed on FLEURS.

As shown in Table 7, the ASR model trained on the real Bud500 dataset achieves a relatively

high yet acceptable WER when using attention rescoring for decoding. However, experimental

results indicate that the same model exhibits a near-complete performance breakdown on the

FLEURS and GigaSpeech2 datasets when decoded with attention only (Table 8). In contrast, the

model trained on the augmented dataset Bud500+2000H (which includes synthetic data) demon-

strates more stable WER performance across different decoding strategies, including Attention

Only.

Dataset Common Voice FLEURS GigaSpeech2

Bud500+0H 21.23 58.55 47.74
Bud500+2000H 12.13 19.37 14.28

Table 8: WER(%) of ASR Models using Attention Only Decoding

6 Conclusion

In this work, we presented a flow matching-based Text-to-Speech (TTS) data augmen-

tation framework for improving low-resource Automatic Speech Recognition (ASR). By lever-

aging the cross-lingual transferability and high-fidelity synthesis capabilities of flow-matching

generative models (e.g., F5-TTS), our approach enables the creation of diverse, multi-speaker,

accent-rich synthetic corpora from limited reference audio. This reduces dependence on expensive

human annotations while substantially boosting ASR performance in low-resource settings.

Extensive experiments on Spanish and Vietnamese demonstrate three key findings:

1. High-quality synthetic audio drives consistent WER gains up to synthetic-to-real

ratios of 4:1–6:1, outperforming prior TTS-based augmentation studies that plateau near

1.35:1.

2. Our proposed WER prediction model captures the quantitative relationship between

training data composition and recognition accuracy, achieving R2 ≥ 0.98 across typolog-

ically distinct languages. This provides a principled tool for optimizing augmentation

strategies in multilingual ASR.

3. Through ablation studies, we show that while speaker diversity has limited impact, textual

coverage and domain matching are critical for downstream performance, enabling
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tailored augmentation for domain-specific applications.

Applied to Vietnamese ASR, our framework achieves state-of-the-art WER perfor-

mance on Common Voice (6.55%), while delivering competitive performance on FLEURS (11.41%)

and GigaSpeech2 (10.22%) with industrial systems like Whisper Large-v3, despite using only a

fraction of the training data and computational resources.

Looking forward, this methodology opens avenues for developing scalable and inclusive ASR

systems. Future work will explore:

• Extending cross-lingual adaptation to enable truly zero-shot TTS for languages without

any labeled audio,

• Integrating synthetic speech quality estimation for automated data filtering, and

• Combining TTS augmentation with large-scale self-supervised pretraining to maximize

gains in extremely low-resource scenarios.

By unifying parameter-efficient flow-matching TTS with structured data augmentation, our

framework demonstrates a cost-effective, reproducible, and language-agnostic pathway

for advancing ASR in underrepresented languages worldwide.
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