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Abstract

Many low-resource languages still lack high-quality Automatic Speech. Recognition (ASR)
systems, limiting access to information, education, and AL-powered applications. While
text-to-speech (TTS) data augmentation has emerged as a promising solution, existing ap-
proaches face two critical limitations: (i) low-diversity, singlé-speaker synthesis restricts
accent and prosody coverage, leading to Word Error Rate (WER)"plateaus; and (i) the
absence of principled guidance on dataset preparation; synthetic-to-real data mixing, and
training pipeline design makes current solutions inefficient and.nen-generalizable.

To address these challenges, we propose a unified framework/leveraging Flow Matching-
based TTS for scalable low-resource ASR“augmentation. Ouriapproach significantly re-
duces dependence on costly human-recorded annotations by synthesizing high-quality, accent-
diverse speech using minimal reference’data. Furthermere; it demonstrates strong cross-
lingual transfer, enabling efficient adaptation frem high-resource languages to unseen low-
resource languages with only limited in-domain audio. We also introduce a mathematical
model that predicts WER as/a function of real and synthetic data volumes. Validated on
two typologically distinet languages—Spanish and Vietnamese—this model shows strong
predictive power and.broad generalizability:

Applying our framework to Vietnamese, we achieve state-of-the-art performance on
Common Voice (6:565% WER), competitive results on GigaSpeech2 (10.22% WER), and
FLEURS (11.41% WER), matching or surpassing industrial-scale systems such as Whisper
Large-v3. These findings demonstrate that our framework enables effective, scalable ASR
training-for underserved languages and provides a principled strategy for optimizing data
augmentation at scale.

Keywords: Automatic speech recognition; text-to-speech; low-resource language;
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1 Introduction

Technological progress has deepened the global “digital divide” between developed and under-
developed regions, particularly in access to speech technologies that power modern Al systems
and applications. While high-resource languages such as English enjoy near-perfect automatic
speech recognition (ASR) performance, low-resource languages remain severely underserved, lim-
iting equitable access to education, information, and Al-driven tools. For English, ASR systems
have achieved word error rates (WER) as low as 1% [1]. However, despite the existence of over
7,000 living languages worldwide [2], WER for many low-resource languages remains as high as
30-50% [3], further exacerbating accessibility gaps.

A major cause of this disparity is the scarcity of high-quality, annetated ‘audio datasets, as
collecting and labeling speech data is expensive and time-consuming...One promising direction
explored by prior work [4]-[7] is text-to-speech (TTS) augmentation, wheresynthetic audio
is generated from text using a TTS system and combined with real speech.to'train ASR models.
While they achieved modest gains, current approaches face three'key challenges: (C1) Insuffi-
cient diversity in synthetic augmentation: Most existing approaches rely on single-speaker
or low-variation synthesis, limiting accent, prosody, and speaking-style coverage and resulting in
synthetic datasets that fail to generalize. (C2) Limited scalability of prior methods: Even
with modern generative TTS, prior studies report WER gains-plateauing at synthetic-to-real
ratios of only ~1.35:1 [8]. Beyond this thresholdj additional synthetic data yields diminishing
returns, indicating the need for more linguistically and accoustically diverse synthesis methods.
(C3) Lack of principled strategies for augmented training: Existing research offers little
guidance on how much synthetic data to generate or'how best to combine it with real speech.
In the absence of predictive models; practitioners must rely on ad-hoc experimentation, which is
inefficient, dataset-specific, andudifficult te generalize across languages.

In this paper, we propose.a unified-framework to address these challenges:

1. Flow Matching=based TTS for ASR augmentation. To tackle C1, we integrate
flow matching-based TTS models—a recent generative modeling technique that improves
both synthesis'quality and accent diversity—into ASR training pipelines for low-resource
languages. Our approach enables one-shot voice cloning: with only ~10 seconds of reference
audio, we can generate natural speech in any target voice with diverse accents and prosodic
styles. Furthermore, these models exhibit strong cross-lingual transferability: a system
pretrained on millions of hours of high-resource language data can be efficiently adapted

to a new language using only dozens [9] to a few hundred hours of in-language recordings.

2. Substantial improvements in WER scalability. Addressing C2, we demonstrate
continuous WER reductions even at high synthetic-to-real ratios (4:1 or higher). For Viet-
namese ASR, we achieve relative WER reductions of 37.6%, 27.0%, and 34.9% on the
Common Voice [10], FLEURS [11], and GigaSpeech2 [12] benchmarks, respectively. Under

certain configurations, diversity introduced by synthetic data yielded even more dramatic



improvements, such as a relative 78.1% WER reduction when using attention decoding

without rescoring.

3. A predictive mathematical model for data augmentation. To solve C3, we propose
a simple parametric model that predicts WER as a function of real and synthetictdata
volumes. Validated on Spanish and Vietnamese—two typologically distinct languages—
our model achieves R? scores of 99.2% and 98.1%, enabling principled, scalable strategies

for optimizing synthetic-to-real data ratios during ASR training.

4. Systematic ablation studies of synthesis-critical factors. Threugh- controlled ex-
periments, we quantify the impact of speaker diversity and text distribution on/ASR; per-
formance. Results show that flow matching-based TTS remains robust even"when' seed
speaker diversity is reduced from 2,293 to 400 identities, but recognition accuracy is highly

sensitive to the domain relevance of text used for synthesis.

5. State-of-the-art results on Vietnamese benchmarks: Applying/our framework to
Vietnamese yields a new state-of-the-art WER on~Common “Voice (6.55%), competitive
performance on GigaSpeech2 (10.22%), and near-SOTA results.on FLEURS (11.41%),
surpassing or matching several industrial-scale systems suchras Whisper Large-v3.

Contributions. This work advances low-resource ASR in three key ways: (1) We are the first
to integrate flow matching-based TTS for scalable, accent-diverse data augmentation, enabling
strong cross-lingual adaptation with minimal target-language data. (2) We introduce a simple
yet effective predictive model for optimizing synthetic-to-real ratios, validated on typologically
distinct languages. (3) We provide the most comprehensive evaluation to date of ASR perfor-
mance under high synthetic-to-real ratios (up to 6:1), achieving new state-of-the-art results on
Vietnamese benchmarks.

The remainder of this paper is structured as follows: Section 2 reviews prior work on mul-
tilingual ASR and datasaugmentations Section 3 details our methodology, including model ar-
chitectures and training pipelines. Section 4 introduces both real and synthetic datasets we use.
Section 5 presents'experimental results and analysis, and Section 6 concludes with key findings

and future directions.

2 Related Work

Research on low-resource ASR has progressed along two complementary axes: (i) reducing re-
liance on annotated speech audio via unsupervised or cross-lingual learning, and (ii) expanding
effective training data through augmentation—motably with synthetic speech.

Large-scale cross-lingual learning. Recent advances, particularly from industry, leverage
largesscale unsupervised and cross-lingual learning to reduce target-language labeling require-

ments. ‘Representative systems include Whisper [3], which scales weakly supervised training to



5M hours (1M labeled and 4M pseudo-labeled) and achieves strong zero-shot transfer across
benchmarks; Google’s USM [13], pretrained on ~12M hours spanning 300+ languages with effi-
cient fine-tuning using comparatively modest labeled data; Universal-1 [14], trained on ~12.5M
hours across multiple languages; and NVIDIA’s Canary, trained on the ~1M hours, 25-language
Granary dataset[15]. These systems reflect a broader trend toward massive multilingual pretrain-
ing. However, despite strong performance, their large model sizes and computational demands
limit deployment in resource-constrained, on-device, or low-latency scenarios. Furthermore, per-
formance on low-resource languages remains substantially weaker, highlighting the need for com-
plementary approaches.

Unsupervised and self-supervised learning. Midsize speech corpera such as YODAS
[16] and GigaSpeech?2 [12] facilitate scalable self-supervised and semi-supervised=pipelines by
offering extensive unlabeled and partially labeled audio. For instance;"YODAS provides over 500k
hours of multilingual speech across more than 100 languages, with'both labeled and unlabeled
subsets, while GigaSpeech2 contains 30K hours of automatically transcribed speech’in languages
such as Thai, Indonesian, and Vietnamese, collected from YouTube. The inherent heterogeneity
of these datasets introduces persistent background noise and non-standard speech, even after
filtering. Moreover, automated transcription errors introduce label noise, reducing the reliability
of supervised signals. For Vietnamese, [17] demenstrates that-pretraining on 73K hours of
unlabeled data followed by fine-tuning on only 50 hours of'labeled speech achieves state-of-
the-art performance, underscoring the efficacy of unsupervised learning with large raw corpora.
Nevertheless, such approaches remain ineffective for low-resource languages for which large raw
datasets are unavailable.

Earlier TTS for data augmentation. Advances in TTS technology have enabled re-
searchers to use synthetic audio for generatingtautomatically labeled data. Previous studies
have consistently reported reductions/in WER, by incorporating TTS-generated training sam-
ples. However, obtaining high-quality TTS 'medels for low-resource languages remains a chal-
lenge. Early efforts demonstrated ASR improvements only on very small datasets with high
baseline WER [4]-[7]#For instauce, experiments on West Germanic minority languages [5] used
only 168 minutes of synthetic and.24 minutes of real speech—a scale too limited to support broad
conclusions. Similarly, [18]sused only 99 hours each of real and synthetic data. A larger-scale
study[6] observed a minor WER reduction from 8.66% to 7.29% using 480 hours of real data
augmented with 1150 hours of synthetic speech.

Generative TTS for data augmentation. Recent advances in generative speech synthesis
have significantly mitigated data scarcity in ASR training. Early efforts primarily utilized autore-
gressive (AR) modelsbased on transformers, such as WaveNet [19], Tacotron [20], Tacotron 2 [21],
and FastSpeech [22]. While these achieve high quality, they are limited by slow inference. This
has prompted a shift toward non-autoregressive (NAR) methods, particularly diffusion-based
and’ flow-matching TTS models—including Glow-TTS [23], Grad-TTS [24], Seed-TTS [25], and

E5-TTS [26]. Such approaches offer notable improvements in naturalness, controllability, and



efficiency, enabling the generation of high-fidelity speech with wide variations in timbre, accent,
and prosody across diverse speakers. As a result, synthetic corpora generated by modern TTS
systems can now approach the perceptual quality of human-recorded datasets [27]. Empirical
studies [8] further demonstrate that ASR models trained mainly on synthetic speech can perform
nearly on par with those trained solely on real data, especially when augmented with+a. small
amount of human recordings. However, performance gains exhibit diminishing returns as the
volume of synthetic data increases (with a synthetic-to-real ratio up to 1.35:1), highlighting the
importance of maximizing both linguistic and acoustic diversity in dataset construction.

Our work builds on these trends in three ways. First, we employ a flow.matching-based
TTS model, which improves sample quality and training stability while enabling accent-diverse,
cross-lingual synthesis from limited in-language data [28]. Second,we introduce‘a~quantitative
model relating WER to the volumes of real and synthetic audioy providing & principled way
to optimize data mixing and complementing prior empirical scaling. studies.. Finally, we con-
duct a comprehensive evaluation of ASR performance under large synthetic-to-realratios—up to
6:1—on mid-sized datasets such as the 500-hour Common Voice Spanish. corpus, demonstrating

effectiveness at scales not explored in prior work.

3 Flow-Matching TTS Augmented ASR

3.1 Overall Methodology

Goal. Our objective is to train high-accuracy ASR:for‘a target low-resource language while
minimizing human annotation. Weachieve this by:

(i) Curating a modest real-speech corpus;

(ii) Fine-tuning a flow-matching, TTS to the target'language with limited in-language audio;
(iii) Synthesizing large, diverse multi-speaker'speech from a broad-coverage text pool; and

(iv) Mixing real and synthetieispeech under a principled schedule to maximize downstream WER

gains while avoiding domain leakage and overfitting to TTS artifacts.

Notation. Let Diear= {(2i,y:)} denote real audio-text pairs for training; 7 a large text pool
for the target language; S ={s; }¥a “seed” speaker set where each s, is an 8-12s reference clip
with text; and Mrprgla flow=matching TTS adapted to the target language from a multilin-
gual base. We generate a synthetic set Dsyn = {(Z,9;)} by conditioning Mrrs on (7, sk(j))
with controlled yariations (prosody, pace, SNR). The ASR encoder—decoder M sgg is trained on

Drnix = Drear Dgyn With a curriculum on the synthetic:real ratio.

Stage. A — Curate real data and hold-out sets. We assemble D,q, from publicly avail-
able/corpora in the target language, applying text normalization, deduplication, and strict
train/dev/test partitioning. To prevent leakage, we blocklist test transcripts and their near-

duplicates—identified via n-gram Jaccard or fuzzy matching—from any text used for TTS synthe-
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Figure 1: Flow-Matching TTS Augmented ASR Pipeline. Overview of the six-stage
methodology: (A) curate real data and prepare-hold-out sets, B) adapt a flow-matching TTS
model for the target language, (C) synthesize diverse speech from a curated text pool, (D) mix
real and synthetic data under a scheduled ratio, and/(E) train the Conformer-based ASR model
with hybrid CTC/Attention losses:

sis. Acoustic features, vocabulary construetion, and the ASR architecture detailed are described

in Section 3.2.

Stage B — Adapt a flow-matching T'TS to the target language. We begin with a high-
capacity, multilingual. flow-matching TTS model (e.g., the F5-TTS family [26]) and perform
parameter-efficient fine-tuning toradapt it to the target language using only a few hundred hours
of in-language audio. For.experiments, we use two pre-finetuned models for Spanish [29] and
Vietnamese [30]. We then construct a seed speaker bank S comprising thousands of 8-12 seconds
reference. clips spanning diverse accents, regional variations, and recording conditions, sourced
from public corpora and carefully curated web materials. The adapted Mg supports: (i) multi-
speaker synthesis via speaker embeddings derived from S, (ii) controllable prosody and speaking
rate, and (iii). robust handling of out-of-vocabulary tokens through grapheme-to-phoneme backoff

and character-level conditioning.

Stage C'— Text pool and diverse synthesis. We compile T from heterogeneous sources—

including conversational text, subtitles, news articles, novels, and technical documents — aggre-



gating from datasets like WikiNews, WikiSource and Open Subtitles. To ensure both quality
and broad linguistic coverage, we apply filtering and stratification based on utterance length
(~2-205s), punctuation and numeral normalization, domain diversity, and difficulty level. For
each sampled 7; € T, we select a speaker s;(;) €S through balanced sampling across attributes
such as gender, age, and geographic region, and synthesize (Z;, §;) with randomized prosodic con-
trols to better capture natural speaker variability. Artificial room impulse responses or additive

noise are not introduced, as Stage A recordings already encompass diverse acousticenvironments.

Stage D — Mixing policy and training schedule. We train the Conformer-based CTC/Attention
ASR model on mixed datasets with a scheduled proportion of synthetic ‘data.” Let |Dyea] and
|Dgyn| represent the amount (in hours) of real and synthetic audio, respectively, and-let p denote

the synthetic-to-real ratio:
_ |Dsyu

- |Drea1‘ .

p

Given a midsize real dataset comprising |D;ea1| hours of audio, starting from/p = 0, we progres-
sively increase p until WER improvements plateau at |Dsynl = pmax - |Dieat]. We then randomly

sample five subsets from D,.,), each containing a portien-ef the audio:

1 2 3 4
Drca = 07 7,Drca7 7Dr ) *Drcaa _Drca .
1 { 5 1 5 eal 5 1 5 1}
For each Dieai(iy € D, [Dsyn(ijy| = £j - |Preai(iy] (Pi = 051425 pmax) hours of synthetic audio are

generated accordingly, and ASR models arestrained.on mixed sets Dpix = Dreal U Deyn.-

Stage E — Losses, decoding, and rebalancing. Training follows the hybrid CTC/attention
objective (Section 3.2). During development; weevaluate four decoders (attention-only, attention-
rescoring, CTC greedy, CTC. prefix beam). IfWER gains saturate, we (i) increase text/domain
diversity in T, (ii) rebalance speaker strata with underrepresented accents, or (iii) modestly lower

Pmax t0 mitigate TTS-overfitting. This data-first loop complements model-side tuning.

We ensure a few pratical safeguards as below. (i) Leakage control: Exclude any devel-
opment/test textiand enforce mear-duplicate filtering. (ii) Domain balance: Maintain at least
20-30%_.in-domain text while'retaining diverse out-of-domain data for generalization. (iii) Re-
producibility: “Resample speaker—text assignments across synthetic datasets and retrain models

for variance estimation.

3.2 End-to-End ASR using Conformer and Hybrid CTC/Attention

We first extracted 80-channel filter banks features from audio recordings, computed using a
25ms window and a 10ms stride. We applied global Cepstral Mean and Variance Normalization

(CMVN) to normalize the features, enhancing the performance of the ASR system under varying



recording conditions. CMVN mitigates channel/microphone effects and compensates for speaker
volume variations, while normalized distribution also contributes to more stable gradients during
model optimization.

Utilizing Byte Pair Encoding (BPE) [31], we decompose words in audio transcripts into, re-
combinable subword units. This approach enables direct subword output in our end-to-end ASR
system, bypassing the alignment complexities inherent in phoneme-to-word conversion. Although
a shared multilingual BPE vocabulary is feasible, we deliberately construct language-specific vo-
cabularies for distinct ASR tasks (e.g., Spanish and Vietnamese) to isolate experimental variables.
Each BPE vocabulary contains 4,000-5,000 subword tokens.

Extracted audio features and tokenized transcripts are sent to an end-to-end ASResystem
comprising an encoder and a decoder module. The encoder utilizes a standard Conformer [32]

architecture, while the decoder employs a hybrid CTC-attention lossfunetion [33] during training.

.
Features

(Fbank + CMVN) A
~— ASR Model

(Conformer+CTC)

||||n||||—>

S
Tokenization
(BPE)

Loss
Transcribed Text ——»|

Figure 2: Training Flow of a:Conformer-based ASR Model

Following the original Conformer, the encoder consists of 12 Conformer blocks, each con-
taining an 8-head self-attention module, a convolution.module, and a feed-forward module with

Swish activation.
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Figure 3: Conformer Architecture

The hybrid CTC-attention loss is employed in decoder stage during training, leveraging the

CTCmodule’s faster convergence while benefiting from the attention module’s enhanced robust-



ness. The combined loss function is defined as below, where A is set as 0.3.

Lcombined = )\LCTC + (]- - )\)Lattention

When applying the trained model to speech recognition, multiple key strategies are available
for hybrid CTC-attention decoding: attention-only decoding, attention rescoring, CTC greedy
decoding, and CTC prefix beam search. We conducted comparative analysis of these approaches;

with experimental details provided in Section 5.

3.3 Flow Matching-based Text-to-Speech Engine

We employ the F5-TTS synthesis engine [26] to generate transcribed synthetic audio. F5-TTS is
a non-autoregressive text-to-speech system utilizing flow matchingwith a Diffusion Transformer
architecture. The base F5-TTS model was trained on 95,000 hours of carefully filtered English
and Chinese speech data derived from the multilingual Emilia dataset.

Although the base F5-TTS model exclusively supports:Chinese and  English speech gener-
ation, such flow matching-based models learn underlying, universal representations of human
speech rather than superficial language-specific rules. When sufficiently’ pretrained on one or
two languages (e.g., English and Chinese in the base F5-TTS model), it acquires core capabili-
ties for constructing natural speech. By fine-tuning:the base F5-TTS model with a few hundreds
hours of target-language audio data (e.g4 Spanish or Vietnamese), high-quality text-to-speech
models for new languages can be rapidly developed.

Fine-tuning essentially guides the.model to adapt its acquired universal speech generation
capabilities to the specific patterns of new languages:. This approach is grounded in two key

principles:

e Linguistic universals and shared acoustic properties: All human languages utilize identical
articulatory organs (voeal cords, tongue, lips, palate, etc.) to produce speech. Conse-
quently, phonemes = the fundamental acoustic units — and their acoustic properties exhibit
substantial cross-linguistic commonality. Many phonemes are identical or highly similar
across languages. The pretrained model has effectively learned to generate these shared

phonemes.

e Advantages of the flow matching architecture: The model inherently learns the conditional
probability distribution p(x|c) where x denotes the speech waveform and ¢ comprises con-
ditioning inputs_(text, speaker information, etc.). Pretrained on English and Chinese
corpora, the model develops precise generative control through conditional parameters
(phoneme sequences, speaker embeddings). When fine-tuning for new languages, the core
objective becomes accurate projection of novel phoneme sequences (including language-
specific phonemes) and prosodic patterns onto the model’s established universal acoustic

feature space.

10
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Figure 4: F5-TTS Model: Using ODE Solver.and Vocoder During Inference

In cross-lingual TTS adaptation seenarios; flow matching-based systems demonstrate signif-
icant superiority over previous Diffusion Model approaches. While Diffusion Models excel at
synthesizing high-prosody audio within their training language domain, flow matching enables
efficient cross-lingual transfer through parameter reuse: most bottom-layer parameters encoding
universal speech features remain frozen during fine-tuning. Recent research [9] shows effective
adaptation of the (F5-TTS base model to new languages by updating only 1.72% of total pa-
rameters. This substantially reduces adaptation costs, enabling stable training of new language
TTS models with merely dozens to hundreds of hours of target-language data. Crucially, our
systematic application of flow-matching’s cross-lingual transferability yields substantially greater
relative WER improvements in experiments (Section 5) than prior ASR augmentation studies

using earlier Diffusion-based TTS engines [8].

3.4 Open Source Tools and Models

To train the model described in Section 3.1 and implement the methodology outlined in Section

3.2 t6 develop Spanish and Vietnamese TTS engines, we used the following open source tools.

11



3.4.1 WeNet

WeNet [33] is an open-source speech recognition toolkit designed with production readiness as
its core principle. The framework implements a standard Transformer/Conformer architecture,
incorporating multi-head attention mechanisms, positional encoding, feed-forward networks, (for
Transformer), and convolutional modules (in Conformer model). By leveraging this toolkity we
eliminated the need for implementing Conformer models from scratch, thereby enabling focused
investigation into how blending authentic and synthetic speech data impacts recognition accuracy:
(i.e. word error rate).

We configure the training pipeline to employ PyTorch-implemented AdamW optimization
with dynamic learning rate scheduling (linear warmup followed by cosine:decay). This configu-

ration accelerates convergence while reducing GPU memory overhead.

3.4.2 F5-TTS and its Multilingual Derivatives.

The F5-TTS training code is publicly available on GitHub [34], with pretrained base models
accessible via HuggingFace [35]. Leveraging its exceptionalicross-lingual adaptation capabilities
(Section 3.3), numerous high-quality multilingual TTS, engines. have ‘been fine-tuned from this
base. For our study, we utilize two such derivatives: a.Spanish TTS.model (F5-Spanish [29], 218
hours audio) and a Vietnamese model (EraX-Smile-UnixSex-F5 [30], about 1000 hours audio),
both adapted from the F5-TTS foundation.

To evaluate synthetic audio quality, ‘wesconducted. a randomized sample assessment of 200
synthesized utterances per language. These were benchmarked against reference audio generated
by public TTS services (e.g., Google Translate) using identical transcripts. Perceptual evaluation

revealed better quality in Spanish model outputs compared to Vietnamese counterparts.

4 Training Datasets

4.1 Real Audio. Datasets

Dataset Language Train (Hours) Validation (Hours)
Common Voice Spanish ~500 4
Bud500 Vietnamese ~500 ~50
LSVSC Vietnamese ~80 "10
VLSP 2020 Vietnamese ~80 “10

Table 1: Annotated Human Speech Datasets for ASR
For Spanish"ASR experiments, we use the publicly available Common Voice dataset, which

contains/approximately 500 hours of training data, along with 4 hours each for development and

test splits. For Vietnamese, we leverage the Bud500 dataset [36], which offers a comparable

12



training size (7500 hours). Bud500 covers diverse topics—including podcasts, travel, literature,
and food—while capturing a wide range of accents from Vietnam’s Northern, Southern, and
Central regions.

To benchmark Vietnamese ASR performance against state-of-the-art (SOTA) systems; we
additionally evaluate on two widely recognized public datasets, LSVSC [37] and VLSP(2020 [38].
Both are noted for their high transcription accuracy and are frequently used in the Vietnamese
ASR research community. The characteristics of all real-speech datasets are summarized in
Table 1.

4.2 Synthetic Datasets

The synthesis process was Stage C' in Section 3.1. Two inputs are required:

1. A “seed set” of audio samples from real human speakers, from real speakers, each contribut-
ing 8-12 seconds of recorded speech paired with the corresponding text. For:Spanish, the

seed set includes 2,180 speakers; for Vietnamese, 4,808 speakersiwere used.

2. A large pool of target-language text, segmented into short sentences suitable for synthesis.

Dataset Type Language “Seed”, Speakers Synthetic Audio (Hours)
TTS Spanish 2180 ~2500
TTS Vietnamese 4808 ~2500

Table 2: Synthesizéd Speech Datasets for ASR

Spanish. For Spanish, we utilize the VoxForge Spanish Corpus [39], which contains read
speech from 2,180 speakers (1,713 male, 467 fernale): One reference clip per speaker is selected to
form the seed set. A diverse Spanish text.corpus is compiled from online sources, including movie
subtitles, official documents, novels, and*TED . transcripts. After cleaning and normalization, the
corpus is segmented intoishort sentences averaging approximately 100 characters, resulting in
~4M entries. Eachrentry-is synthesized into speech using the F5-Spanish model.

Vietnamese. Due to the lack of large, publicly available datasets with sufficient speaker
diversity, we collect 4,808 seed recordings (about 10 seconds each) from 186 YouTube channels.
The Vietnamese text corpus is‘constructed similarly to the Spanish pipeline, combining diverse
open-domain sources, mormalized and segmented before synthesis.

For experiments in Section 5, we utilize subsets or the entirety of the synthesized speech from

the datasets summarized in Table 2.

5 Experiment Results

We evaluate all models using Word Error Rate (WER) as the primary metric. All our ASR

models are Conformer-based (Section 3.2) and uses one of four decoding strategies: attention-

13



only decoding, attention rescoring, CTC greedy decoding, and CTC prefix beam search.

5.1 A Mathematical Model for WER with Real and Synthetic Data

We investigate the relationship between WER and the ratio of real to synthetic training-data

using Spanish Common Voice V21 as the benchmark.

5.1.1 Effectiveness of Synthetic Data

Figure 5 shows how increasing synthetic data affects ASR performance. Starting with~500
hours of Common Voice Spanish (Section 4.1), we gradually augment the training set with 0.5,
1x, 2x, 4%, and 6x synthetic audio (Section 4.2). Moderate augmentation consistently reduces
WER but yields diminishing returns. Beyond a certain point, excessive synthetic data slightly

degrades performance, likely due to overfitting on less diverse TTS-generated speech.
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Figure 5:(WER Trends When Adding Synthetic Audio to the Training Set

We further evaluatermodels trained exclusively on synthetic datasets of varying sizes (Fig-
ure 6)..WERs are much higher compared to mixed training but still decrease as the amount of
synthetic data grows.

Table 3 highlights that even when 95% of training data is synthetic and only 5% real (775
hours); performanceimproves substantially—achieving over 10 percentage points of WER, reduc-

tion. This demonstrates the importance of small real-speech anchors.
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Figure 6: WER Trends When Training Exclusively on-Synthetic Audio

Decoding Method 100% Synthetic 5% Real + 95% Synthetic
Attention 23.92 10.76
Attention Rescoring 22.03 9.16
CTC Greedy Search 2414 10.51
CTC Prefix Beam Search 24.27 10.45

Table 3: Impact of Adding 5% Real.Speech to Synthetic Training Sets

5.1.2 The Mathematical Model

Building on these findings, we hypothesize that WER systematically depends on the amounts of

real and synthetic dataiused for training. We propose the following parametric function:

A B C
WER(X,Y) = CBX . gFY + oBX + oFY + D,

where X and. Y denote theshours of real and synthetic data. Model parameters A to F are

optimizedivia least squares, and fit quality is measured using R2.

Spanish Vietnamese
Real Speech Audio 0-500 hours 0-500 hours
Synthetic Speech Audio 0-1000 hours 0-1800 hours
WER test points 35 45
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The model achieves excellent predictive accuracy, with R? = 99.2% for Spanish and R? =
98.1% for Vietnamese (Table 4), suggesting robustness across typologically distinct languages.

Decoding Method Spanish Vietnamese
Attention 0.992 0.975
Attention Rescoring 0.991 0.981
CTC Greedy Search 0.991 0.975
CTC Prefix Beam Search 0.991 0.969

Table 4: R?: the Goodness-of-Fit of WER(X,Y)

Figure 7 and Figure 8 show the matching between the surfaces,of the mathematical model

(blue and green) and the test points (dots in red and orange).

Z

Figure 7: Goodness-of-Fit: Spanish Figure 8: Goodness-of-Fit: Vietnamese

5.2 Ablation Study: Impact of Synthesis Critical Factors

We analyze two synthesis-related factors that affect ASR performance: (i) the number of distinct

seed speakers used for TTS, and (ii) the distribution of text used for generating synthetic audio.

5.2.1 » Effect of Speaker Diversity

We train models on 500 hours of real speech and 1000 hours of synthetic audio, varying seed
speakers from 400 to 2293 (Table 5).

Results demonstrate that even after substantially reducing the number of distinct speaker
vocal identities used for synthesis from 2,293 to just 400, the impact on Automatic Speech

Recognition (ASR) performance remains remarkably minimal. Although a certain amount of
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Speaker#  Attention Rescoring Attention CTC Greedy Search CTC Prefix Beam Search

2293 6.64 8.04 7.74 7.69
1600 6.50 8.04 7.58 7.57
1200 6.52 7.75 7.59 7.55
800 6.56 7.82 7.65 7.60
400 6.58 8.18 7.62 7.60

Table 5: ASR Performance (WER) Comparison with Varying Numbers of “Seed Speakers”

speaker variety is essential, this finding also suggests that in practical applications of ASR for
low-resource languages, it is feasible to collect seed audio from an acceptably small number of
speakers—each contributing as little as around 10 seconds of recording<—and subsequently use
a TTS model to generate large quantities of synthetic speech for ASR training. “Moreover,
seed recordings can be conveniently sourced from publicly available materials such as films, TV

programs, and online video platforms, reducing data acquisition costs.

5.2.2 Effects of Text Distribution

We examine four text sources—TED Talks, subtitles, books/news; and Common Voice tran-
scripts—and synthesize 500 hours from each. When:combined-with 500 hours of real speech,

in-domain text consistently yields the best results:(Table 6).

Dataset Attention Rescoring Attention CTC Greedy Search CTC Prefix Beam Search

CV+ted 7.68 9.19 8.89 8.84
CV+subtitle 7.67 9.17 9.04 9.01
CV+book 7.74 8.81 8.91 8.88
CV+cv 7.12 8.63 8.29 8.23

Table 6: ASR Performance (WER) with Different Text Distributions for Synthetic Data

The results confirm:that the choice of text distribution significantly affects model accuracy.
Synthetic audio/derived from in=domain transcripts (CV+CV) yields the lowest WER, improving
recognition accuracy by up'to.0.6 absolute points compared to out-of-domain text. We attribute
this to improved coverage of domain-specific vocabulary and phonetic patterns, enhancing the

model’s generalization and robustness to target test sets.

5.2.3¢ Key Insights

This ablationstudy highlights two practical findings:

e Speaker diversity is less critical: For flow-matching TTS; a small number of seed

speakers suffices for generating large, effective synthetic datasets.
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e Text distribution dominates: Using in-domain transcripts for synthesis substantially

boosts ASR performance.

Together, these results suggest that low-resource ASR systems can be built efficiently. by
focusing on domain-relevant text while keeping seed speaker requirements minimal, improving

accessibility for underrepresented languages.

5.3 Application on a Low-Resource Language (Vietnamese)

Parameter Human Speech Common Giga
Model (M) (Hours) Voice FLEURS Speech2
Whisper large-v3 (OpenAl) 1542 1M4-4M? 13:74 8.59 17.94
Whisper base (OpenAl) 72 - 4407 40.41 39.88
MMS L1107 (Meta AI) 964 49K+55K?2 43.88 55.35 46.62
GigaSpeech2 small 68 6039 18.81 13.50 14.72
GigaSpeech?2 large 152 6039 14.43 11.59 12.83
Google USM - = 12.46 11.75 13.38
Azure Speech CLI 1.37.9 - - 10.21 11.88 11.78
Ours
Budb00+0H 121 500 16.37 18.72 16.04
Bud500+4-2000H 121 500 10.20 13.65 10.44
Bud500+LSVSC+VLSP 121 660 9.22 13.57 11.57
Bud500+LSVSC+VLSP+2000H 121 660 6.55 11.41 10.22

Table 7: WER(%). Comparison on"Three Benchmarks

Building on the findings in Section.5.1.1/which demonstrated that low matching-based TTS
synthesis effectively improve Spanish. ASR: performance even at a 4:1 synthetic-to-real ratio, we
applied the same data generation and.training'methodology to Vietnamese.

Our approach is evaluated on three.widely adopted benchmarks: Common Voice, FLEURS,
and GigaSpeech2. Table 7 presents the 'WER results of our models alongside several existing
state-of-the-art systems. During the décoding process, attention rescoring was applied to com-
pute the WER wvalues reported in. Table 7. All our models are based on the same Conformer
architecture and hyperparameter configuration as detailed in Section 3.2, and differ only in the
composition of training data.

We begin with the 500-hour Bud500 Vietnamese dataset. Adding 2000 hours of synthetic au-
dio (Bud500+-2000H) yields significant WER reductions but exhibits diminishing returns beyond
this peint. To further improve performance, we incorporate two additional public Vietnamese
datasets,/LSVSC and VLSP, resulting in a combined 660-hour real dataset. Training with this
expanded dataset plus 2000 hours of synthetic audio (Bud500+LSVSC+VLSP+2000H) achieves

1]M labeled and 4M pseudo-labeled
249K labeled and 55K unlabeled
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state-of-the-art WER performance on Common Voice (6.55%), competitive results on Gi-
gaSpeech?2 (10.22%) and FLEURS (11.41%). For comparison, we also report results for the same
660-hour combined real dataset without synthetic augmentation (Bud500+LSVSC+VLSP).

We note that the FLEURS dataset [11] primarily consists of Wikipedia-based audio-text pairs,
while our real and synthetic datasets are mostly colloquial in nature. This domain {mismatch
likely contributes to the relative performance gap observed on FLEURS.

As shown in Table 7, the ASR model trained on the real Bud500 dataset achievesa relatively
high yet acceptable WER when using attention rescoring for decoding. However, experimental
results indicate that the same model exhibits a near-complete performance. breakdown on the
FLEURS and GigaSpeech?2 datasets when decoded with attention only (Table 8). In contrast,the
model trained on the augmented dataset Bud500+2000H (which includes synthetic-data) demon-
strates more stable WER performance across different decoding strategies, including Attention
Only.

Dataset Common Voice FLEURS GigaSpeech2
Bud500+0H 21.23 58.55 47.74
Bud500+-2000H 12.13 19.37 14.28

Table 8: WER(%) of ASR Models(using Attention Only Decoding

6 Conclusion

In this work, we presented a flow .matching-based Text-to-Speech (TTS) data augmen-
tation framework for improving low=resource/Automatic Speech Recognition (ASR). By lever-
aging the cross-lingual transferability and high-fidelity synthesis capabilities of flow-matching
generative models (e.g., F5-TTS), ourapproach enables the creation of diverse, multi-speaker,
accent-rich synthetic corpora from limited reference audio. This reduces dependence on expensive
human annotations while substantially boosting ASR performance in low-resource settings.

Extensive experiments on Spanish and Vietnamese demonstrate three key findings:

1. High-quality synthetic audio drives consistent WER gains up to synthetic-to-real
ratios of 4:1-6:1, outperforming prior TTS-based augmentation studies that plateau near
1.35:1.

2. Our proposed WER. prediction model captures the quantitative relationship between
training data composition and recognition accuracy, achieving R? > 0.98 across typolog-
ically distinct languages. This provides a principled tool for optimizing augmentation

Strategies in multilingual ASR.

3. Through ablation studies, we show that while speaker diversity has limited impact, textual

coverage and domain matching are critical for downstream performance, enabling
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tailored augmentation for domain-specific applications.

Applied to Vietnamese ASR, our framework achieves state-of-the-art WER perfor-
mance on Common Voice (6.55%), while delivering competitive performance on FLEURS (11.41%)
and GigaSpeech2 (10.22%) with industrial systems like Whisper Large-v3, despite using ‘only a
fraction of the training data and computational resources.

Looking forward, this methodology opens avenues for developing scalable and inclusive ASR

systems. Future work will explore:

e Extending cross-lingual adaptation to enable truly zero-shot TTS for.languages.without

any labeled audio,
o Integrating synthetic speech quality estimation for automated data filtering, and

e Combining TTS augmentation with large-scale self-supervised  pretraining to maximize

gains in extremely low-resource scenarios.

By unifying parameter-efficient flow-matching TTS with structured data augmentation, our
framework demonstrates a cost-effective, reproducible, and language-agnostic pathway

for advancing ASR in underrepresented languages worldwide,
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