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Abstract

Clinical decision-making often requires physicians to iteratively gen-
erate hypotheses, gather multimodal evidence, and refine diagnoses
under conditions of time pressure and information overload. While
medical vision–language models (VLMs) have shown promise in
visual question answering, report generation, and image-based diag-
nosis, most remain standalone tools without integration into broader
diagnostic workflows. In this work, we introduce Casidence, an agen-
tic medical VLM framework that unifies evidence retrieval, similar-
case retrieval, and conversational AI into a single decision-support
platform. At its core, Casidence incorporates a fine-tuned 3D medi-
cal VLM trained on the CT-RATE dataset to achieve state-of-the-art
performance on volumetric imaging tasks. To enable robust similar-
case retrieval, we propose a novel Query Auto Encoder (QAE) that
disentangles semantic medical content from surface linguistic varia-
tion, producing compact embeddings aligned across paraphrased re-
ports. Together, these components allow Casidence to operationalize
evidence-based reasoning: planning and executing tool-augmented
workflows, curating structured evidences, and generating auditable
diagnostic outputs. Quantitative and qualitative evaluations demon-
strate that Casidence improves planning transparency, retrieval fi-
delity, and report quality over strong baselines. By grounding model
outputs in clinical evidence and supporting iterative human–AI col-
laboration, Casidence represents a step toward trustworthy, workflow-
integrated medical agentic systems.

Keywords: Medical Agentic System; Human-ai collaboration; evidence-based
reasoning; Medical Visual Question Answering (VQA); Similar Case Retrieval;
Contrastive Learning20
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1 Introduction

Clinical diagnosis is a high-stakes process in which physicians integrate a patient’s
signs, symptoms, and contextual information to determine the most plausible under-
lying condition and an appropriate course of action. In daily practice, this process
unfolds as an iterative cycle of hypothesis generation, targeted evidence gathering,
and hypothesis refinement. Physicians formulate differential diagnoses [1], acquire
complementary evidence through history, physical examination, laboratory tests,
and instrumental studies such as medical imaging, and revise their working hypothe-
ses accordingly. Among these tools, medical imaging plays a central role across
specialties: radiography and computed tomography (CT) for structural assessment,
magnetic resonance imaging (MRI) for soft-tissue and functional characterization,
ultrasound for real-time bedside evaluation, and nuclear imaging for perfusion and
metabolic insights. These modalities provide rich, multi-scale features that clinicians
interrogate to localize disease, stage severity, and anticipate complications.

Recent advances in medical vision–language models (VLMs) have demonstrated the
potential to bridge visual and textual modalities at scale. These models support appli-
cations such as medical visual question answering, radiology report generation, and
automated diagnostic reasoning. Typically, general-purpose VLMs (e.g., LLaVA [2])
are fine-tuned on domain-specific datasets of paired radiology images and reports,
enabling visual encoders to align with large language models and capture clinical
semantics. Such systems offer clear strengths: they reduce reporting burden, improve
accessibility of medical knowledge, and unify multimodal inputs.

Yet, several important limitations remain. First, most VLMs are developed and
assessed as standalone models, lacking integration with other essential components
for the comprehensive decision-making support, such as similar case retrieval, evi-
dence retrieval, report generation, and interactive dialogue. Throughout this medical
reasoning process, clinicians often consult prior cases via personal memory, insti-
tutional archives, or curated literature to calibrate expectations, recognize atypical
presentations, and contextualize ambiguous findings. However, as data volume
grows and clinical workflows become increasingly time-pressured, human memory
and manual retrieval are insufficient to meet demand, which highlights the unmet
need for intelligent case-retrieval systems that can adapt searches to a physician’s
specific context and information needs, thereby providing timely, personalized refer-
ence cases to support clinical decision-making.

Second, existing retrieval methods struggle with robustness and clinical fidelity.
Challenges such as negation, temporality, abbreviations, and the “semantic gap”
between visual similarity and clinical equivalence continue to limit their reliability
across diverse settings. These gaps underscore that building clinically useful systems
requires not only strong perception models, but also workflow integration, retrieval
precision, and support for real-time reasoning.

In this work, we present Casidence: an agentic medical vision–language system that
moves beyond isolated model performance to provide integrated clinical decision
support. Our system combines three complementary capabilities: (1) Evidence
retrieval from guidelines, pathways, and literature tailored to a patient’s presen-

5

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



tation, ensuring best practices are available at the point of care; (2) Similar-case
retrieval (SCR) that surfaces prior patients or imaging studies with clinically aligned
presentations and outcomes, enabled by a medical semantic encoder designed to
improve fidelity beyond purely visual or embedding-based similarity match; (3)
Conversational AI assistance that functions as a retrieval-augmented copilot, en-
gaging in free-text dialogue to answer clinical questions, generate draft notes, and
propose next steps with clinician oversight. At the core of Casidence is a newly
developed state-of-the-art foundation model for radiology, which surpasses prior
models through extensive supervised fine-tuning and instruction-tuning on diverse,
clinically curated datasets. This foundation model provides robust multimodal un-
derstanding of medical imaging and serves as the backbone for Casidence, enabling
accurate interpretation of patient scans while seamlessly supporting the system’s
retrieval and conversational components.

Together, these components form an end-to-end decision-support platform designed
to help physicians manage diagnostic complexity under conditions of time pressure
and information overload. By grounding technical advances in real clinical work-
flows, our approach emphasizes not only performance gains but also practical utility
in enhancing safety, consistency, and efficiency of care.

2 Related Work

2.1 Foundation Visual Language Models

Modern vision–language models (VLMs) are trained on massive datasets of im-
age–text pairs (often hundreds of millions of web-scraped images with captions),
enabling them to learn aligned visual and textual representations for robust multi-
modal understanding. A wide variety of VLM designs have emerged – including
(1) contrastively-trained dual-encoder models like OpenAI’s CLIP [3] and Google’s
ALIGN [4], which jointly embed images and text); (2) cross-modal Transformer [5]
architectures that fuse image and text features (e.g. DeepMind’s Flamingo [6] or
Salesforce’s BLIP-2 [7]) via learned visual adapter modules, and multimodal LLM
systems such as OpenAI’s GPT-4 Vision [8], Google’s Gemini [9], or the open-source
LLaVA [10] that extend text-only large language models with image inputs. These
popular models can caption images and answer visual questions about them, as well
as recognize objects and even read text within images, demonstrating remarkable
cross-modal reasoning and understanding capabilities.

2.2 Medical Vision-Language Models

Medical vision-language models (VLMs) have been developed to interpret medical
images and produce textual outputs for tasks such as visual question answering
(VQA) [11], automated report generation [12], and image-based diagnosis [13].
These models combine a visual encoder (processing radiology images like X-rays,
CT, or MRI scans) with a large language model, enabling a unified understanding
of visual and textual data. Early medical VLMs often built upon general-purpose
vision-language foundations to leverage their pre-trained knowledge. For example,
LLaVA-Med [2] adapts the open-source LLaVA model to the biomedical domain,
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pairing a CLIP-based visual encoder with an LLM to answer medical image questions
in a conversational manner. Similarly, Google’s Med-PaLM [14] is a multimodal
model based on PaLM-E [15] that handles both images and text; it achieved state-of-
the-art performance on diverse medical benchmarks (e.g. radiology report generation
and medical QA) by jointly encoding clinical text, radiographs, and even genomic
data in one model. These early models largely focused on 2D radiology images (like
chest X-rays or dermatology photos) and used visual instruction tuning to align the
LLM with medical imaging concepts. Notably, E3D-GPT [16] introduced a 3D-
aware VLM to tackle volumetric scans: it uses a self-supervised 3D image encoder
and masked feature modeling to better represent CT volumes, which enhanced
image-text alignment and led to improved results in CT report generation and VQA.

Recent VLM models push further in unifying modalities and specializing tasks in the
radiology domain. RadFM [17] exemplifies a generalist radiology foundation model
trained on a massive MedMD dataset of 16 million images, covering both 2D X-rays
and 3D scans. RadFM’s architecture interleaves vision and language, allowing it to
accept multi-image inputs (e.g. series of slices) and generate free-text descriptions
or answers. It excels across a spectrum of tasks and outperformed prior multimodal
models (including other open VLMs and even a GPT-4V baseline) on a dedicated
radiology benchmark. Another work, CT-RATE [18], provides the first large-scale
pairing of 3D chest CT volumes (25,692 scans; 50,188 reconstructions) with corre-
sponding radiology reports and multi-abnormality labels, enabling robust training
and evaluation of volumetric VLMs. Based on CT-RATE, CT-CHAT [18] integrates
a CT-specific contrastive vision encoder (CT-CLIP) with a large language model and
is finetuned on more than 2.7 million QA pairs from CT-RATE, yielding state-of-the-
art interactive VQA and report-style responses on 3D chest CT. M3D-LaMed [19]
introduced a large-scale 3D radiology dataset (M3D-Data) and a multi-modal 3D
VLM that directly processes volumetric scans. By combining a CLIP-pretrained
3D visual encoder with a spatial pooling module, M3D-LaMed can handle whole
CT/MRI volumes and was shown to achieve state-of-the-art results on various tasks
including image–text conversion, radiology report generation, VQA, segmentation
and lesion localization tasks. However, M3D-LaMed’s design highlighted challenges
like high computational cost for large 3D inputs and suboptimal cross-modal fusion.

The latest research has further improved efficiency and accuracy for 3D vision-
language reasoning. Med3DVLM [20], for instance, builds on M3D-LaMed’s
foundation but introduces a more efficient 3D encoder (using decomposed convo-
lutions) and a refined alignment mechanism to better fuse image features with text.
This leads to substantial performance gains: Med3DVLM dramatically outperforms
M3D-LaMed on unified benchmarks, nearly quadrupling image–text retrieval accu-
racy (61.0% vs 19.1% R@1) and greatly improving report generation quality.

2.3 Medical Patient Retrieval

Keyword-based (lexical) information retrieval has long been the foundation of chart
review and cohort discovery in EHRs. Classic inverted-index methods such as
BM25 [21] remain widely deployed, with systems like EMERSE [22] providing
enterprise search layers over free-text notes across academic medical centers [23].
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Despite their utility, these approaches face persistent challenges [24, 25], including
synonym and abbreviation mismatches, limited handling of negation and temporality,
section or context insensitivity, heavy dependence on user query literacy, etc.

Vector-based retrieval, on the contrary, encodes cases (notes, images, or multimodal
bundles) into dense vectors and retrieves neighbors via Maximum Inner Product
Search, typically using approximate-NN backends such as FAISS [26], HNSW [27],
or ScaNN [28] for scalability. Within this family, bi-encoder dense retrievers map
clinical notes and queries with transformer encoders (e.g., ClinicalBERT [29]). Late-
interaction models such as ColBERT [30] preserve token-level vectors and apply
MaxSim scoring to better capture negation and section context in long notes. Beyond
text, image-based content retrieval leverages CNN or self-supervised embeddings
for query-by-image, exemplified by SISH [31] in pathology whole-slide imaging.
Cross- and multimodal dual encoders further align reports and images in shared
spaces through CLIP-style contrastive training, enabling cross-modal retrieval [32].

2.4 Medical Agentic System

Recent advances in LLM-based agents have demonstrated impressive capabilities
across diverse domains, including complex decision-making [33], opening new
avenues for automating tasks and augmenting human expertise. Large language
model–driven agents are beginning to play a meaningful role in healthcare [34],
with studies reporting benefits in various applications such as diagnostic decision
support [35], medical education [36], patient-provider communication [37], EHR-
based application [38], etc. By integrating domain-specific resources such as clinical
knowledge graphs, guidelines, and electronic health records, LLM-based agentic
systems are being developed to use predefined tools [39, 40] to navigate nuanced
clinical information, integrate heterogeneous data sources, and provide contextually
relevant outputs that complement clinician decision making. However, the current
generation of medical agentic systems remains constrained in important ways. Most
implementations rely on a limited set of external tools and resources, which restricts
their ability to handle the full spectrum of clinical tasks. Moreover, clinical validation
is still scarce and underrepresented in the literature of medical agentic system.
Addressing these limitations will be critical for translating prototype systems into
realistic components of routine healthcare practice.

3 Casidence: Case-Evidence Agentic System

Casidence operationalizes evidence–based diagnosis as an iterative, tool-augmented
workflow that cycles between case understanding, targeted evidence acquisition,
and synthesis. Given a user prompt (task), available inputs (e.g., clinical text,
2D/3D images), and any prior evidence, Casidence plans and executes a sequence
of analysis steps using a modular toolbox, organizes results into verifiable evidence
statements, and issues a diagnosis with an explicit confidence and rationale. The
system is designed for medical search and evidence curation, supports expanding
toolchains, and encourages human–AI collaboration via editable plans and user-
provided evidence. The high-level dataflow is shown in Figure 1. Casidence couples
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Figure 1: Overview of Casidence agentic architecture and dataflow. User input is parsed by the
Coordinator, triaged by the Diagnostician, and—when additional evidence is needed—routed through
Researcher→ Planner→ Executor→ Organizer. Outputs are converted into atomic evidences that
return to the Diagnostician to produce the final report. Plans are editable via User Feedback and use
an extensible Toolbox (e.g., MedVLM, Coding, SCR).

research-aware planning with multimodal tool use, producing auditable evidence
trails and enabling test-time scaling law [41]: When the system’s confidence is
insufficient, it allocates additional compute to deeper investigation (more retrieval,
more analysis steps) until criteria are met or failure modes are surfaced for human
review. The toolbox is extensible; new tools register capabilities and I/O contracts
and become immediately plannable. Human–AI collaboration is built in: users can
edit plans, inject evidence, and re-run partial pipelines.

3.1 Inputs and outputs

Inputs include structured or free-text case descriptions; 2D images (e.g., PNG/JPEG),
3D volumes (e.g., NIfTI), and optional prior evidence. Outputs include: (i) a
diagnosis or focused assessment, (ii) supporting and contradicting evidence lists,
(iii) missing-evidence requirements and next-step recommendations, and (iv) a
confidence score.

3.2 Agentic Architecture

Overview. Figure 1 depicts the agentic architecture and role interactions. Each role
has a single responsibility and a typed interface, so components can be swapped or
improved independently. The roles communicate through two canonical artifacts:
ContextData (research Q&A used as contextual grounding) and Evidences (atomic,
standalone evidence statements). Provenance is preserved from tool outputs to
evidence to diagnosis. All agents are powered by the OpenAI’s GPT-5 1 model in

1https://openai.com/gpt-5/
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order to ensure the best performance, and all patients are de-identified to protect
privacy.

Roles and responsibilities

• Coordinator parses the user prompt into task, input_data_type, and avail-
able_evidences. It normalizes modalities (text, 2D, 3D) and surfaces con-
straints to downstream components.

• Diagnostician acts like a physician’s reasoning hub, deciding when cur-
rent evidence is enough or when more investigation is needed. In report
mode, it compares current evidence with research context to determine if
a diagnosis can be issued; it always returns a specific assessment, support-
ing/contradicting evidence, missing evidence, and a scalar confidence. In
research mode, it formulates targeted research questions to close the gaps.

• Researcher brings in external knowledge (literature, guidelines, prior cases),
reducing the risk of blind spots. It learns to answer the Diagnostician’s ques-
tions using a comprehensive researcher-pipeline over medical sources. The
results are stored as Q&A pairs with formatting suitable for reuse (bulleted,
numbered, or paragraph) and accumulate over iterations.

• Planner synthesizes the task, evidence and research context into a structured
plan: an ordered list of tool invocation steps with declared dependencies,
expected inputs/outputs and qualitative or quantitative intent. Plans are user-
editable to ensure consistency with the user expectation and can be generated
without execution for review.

• Executor runs the plan stepwise, enforces dependencies, and captures raw
output (e.g., VLM answers, measurements, segmentations) with metadata.

• Organizer converts raw outputs into atomic evidence statements, suitable
for direct comparison and aggregation. It supports both qualitative assertions
(e.g., “cup-to-disc ratio enlarged”) and quantitative metrics, and attaches
provenance to each statement.

Toolbox and expandability Casidence maintains a pluggable toolbox, which includes:
a 3D Medical VLM for volumetric image question answering; a 2D general VLM
and a 2D medical VLM (e.g., LLaVA-Med) for 2D imaging; a coding agent for
quantitative analysis and ad-hoc computation; and segmentation components (e.g.,
MedSAM [42]) for producing measurements and ROIs. Tools declare modalities, I/O
schemas, and side effects, enabling the Planner to decompose them into executable
graphs. New tools can be added by registering their capabilities; no changes to
upstream roles are required.

Iteration and test-time scaling Casidence employs a diagnose–plan–execute–organize
loop with early exit. If the Diagnostician’s confidence is below a threshold or re-
quired evidence is missing, the Researcher and Planner produce additional queries
and steps; the loop repeats until the confidence is adequate or the system converges
to irreducible uncertainty, which is presented as actionable missing-evidence require-
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Figure 2: Demo of Casidence webpage UI. User interface for entering task and uploading file.

ments. This realizes test-time compute scaling in a clinically grounded way: More
compute buys more targeted evidence, rather than redundant sampling.

3.2.1 User Interfaces and Human–AI Collaboration

We provide three user interface surfaces (see Figure 2, 3, 4): (i) Initial—where
users specify the task, upload data, and supply seed evidence; (ii) Plan—which
presents the generated workflow for inspection and editing (e.g., adding, removing,
or reordering steps, selecting alternative tools, or injecting user-provided evidence);
and (iii) Execution—which enables step-by-step execution, inspection of raw outputs,
review of organized evidence, and targeted follow-up queries. All interactions are
tracked for provenance, and the system supports partial re-execution while preserving
context.

3.3 Algorithmic Specification

Data structures ContextData is a list of ⟨question, answer, render_format⟩ triples.
Evidences is a set of atomic statements with fields: source, modality, value (text or
numeric), and confidence.

Main loop Let E be the current evidence set and C the context store.

1. Triage: Diagnostician(task, E , C)→ {can_diagnose, assessment, supporting,
contradicting, missing, confidence, recommendation}.

2. If can_diagnose or confidence ≥ τ : emit report and stop.
3. Else Researcher generates questions from {task, E}; update C with answers.
4. Planner(task, E , C, toolbox)→ plan with typed steps.
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Figure 3: Demo of Casidence webpage UI. Generated plan from user entered task, including every
tool used for each step.

Figure 4: Demo of Casidence webpage UI. Execution steps and diagnosis results of executing plan.
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5. Executor executes plan; Organizer extracts new evidence ∆E ; update E ←
E ∪∆E .

6. Repeat from Step 1 (bounded by user constraints or saturation).

3.4 Built-in Models and Tools

3D Medical VLM. Answers targeted questions on volumetric data (e.g., NIfTI) and
supports automated question generation from step descriptions.
2D VLMs. A general 2D VLM and a medical 2D VLM (e.g., LLaVA-Med) for
qualitative evaluations on radiographs, fundus photos and pathology slides.
Coding Agent. Generates and runs analysis code to compute measurements and
statistics; used for quantitative evidence.
Similar Case Retrieval (SCR). Searches for similar cases in the database and
literature through user prompts and interactions.
Segmentation (MedSAM). Produces ROIs and derived metrics that feed quantitative
evidence.

3.5 Implementation Notes

All roles communicate through JSON-serializable schemas with strict parsing and
fallback strategies to handle partially valid model outputs. Plans support generation-
only and execution-only modes to enable human review and iterative refinement.
Evidence and context stores are append-only with versioned records, enabling full
provenance from final conclusions back to raw tool outputs.

3.6 Researcher Architecture

Researcher The Researcher serves as the reasoning core of Casidence (Figure 5),
following a plan–refine–orchestrate–search–report pipeline. A planner decomposes
the input question into targeted steps, which are refined as new evidence is gathered.
An orchestrator assigns tasks to specialized executors, while a ReAct+Retrieval-
Augmented Generation (RAG) module conducts searches across authoritative
sources (e.g., PubMed, MedRxiv, web crawlers). Finally, a reporter synthesizes the
results into a concise, citation-ready answer. All findings are stored as structured
observations in Casidence’s context store, forming a reliable basis for the Diagnosti-
cian’s decisions.

The Researcher is designed to transform open-ended clinical questions into trust-
worthy outputs by combining deliberate planning, explicit orchestration, retrieval-
augmented search, and focused reporting. Unlike ad-hoc querying, it systematically
expands questions into targeted sub-tasks, searches authoritative sources, consoli-
dates results, and returns both a clinically usable answer and a structured cache of
supporting material. This process ensures that downstream agents have access to
detailed, verifiable evidence for robust diagnostic reasoning.

Pipeline As illustrated in the Researcher figure, the dataflow is: Research Question
→ Planner→ Plan Modifier→Orchestrator→ ReAct+RAG→ Reporter→ Answer.
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Figure 5: Researcher architecture. A clinical research question is decomposed by the Planner, refined
by the Plan Modifier, orchestrated to execution by the Orchestrator, answered via a ReAct+RAG
search module, and synthesized by the Reporter into a concise, sourced answer. Arrows denote
control/data flow and support iterative refinement.

State is persisted across the graph (dialog messages, current plan, iteration count,
observations, and final report), enabling recovery, reproducibility, and iterative
refinement when more evidence is required.

Planning The Planner inspects the question and any available context and emits a
compact plan of at most a few steps (typically ≤ 3) that can be executed indepen-
dently or in parallel. Each step is typed as either research (external information
gathering) or processing (local synthesis, filtering, or light analysis). Steps declare
a short title, intent, expected inputs/outputs, and a need_web_search flag to control
use of external search. The Plan Modifier reviews the initial plan for coverage and
redundancy, merges or splits steps when appropriate, and—if execution reveals gaps
or contradictions—requests a minimal revision rather than expanding unboundedly.
This keeps compute targeted while preserving completeness.

Orchestration and execution The Orchestrator is a controller that routes unexecuted
steps to the appropriate executor, tracks dependencies, and exploits parallelism when
steps are independent. It also enforces budgets (maximum plan iterations, step count,
and search results per step) and standardizes error handling and retries, ensuring that
partial progress is captured as observations even when a specific tool fails.

ReAct + RAG For steps requiring external evidence, the ReAct+RAG executor
interleaves reasoning with actions: it generates hypotheses and sub-queries (“think”),
performs searches and retrieval (“act”), inspects results, and decides whether to
continue digging or to consolidate. Retrieval spans biomedical databases (e.g.,
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peer-reviewed literature and preprint servers) and high-quality web sources; when
domain-specific tools are available, they can be dynamically called through a tool
interface without architectural changes. Results are normalized into a common
schema capturing key claims, quoted snippets when helpful, basic metadata (source,
date, venue), and a stable reference list. Deduplication and contradiction checks are
applied across steps to avoid double counting and to surface disagreements explicitly.

Reporting The Reporter converts all observations into a direct, clinically useful
answer with compact context. Outputs include: (i) a short answer to the original
question; (ii) a bullet-style synthesis summarizing consensus and edge cases; (iii) a
list of key supporting findings with provenance; and (iv) a final reference block. The
formatting is adjustable (bulleted, numbered, or paragraph) to serve downstream
prompts. The same bundle is stored in the system’s context store so that subsequent
planning and diagnosis are conditioned on the exact evidence the Researcher assem-
bled.

Design principles and guarantees (1) Completeness with discipline: plans are inten-
tionally small and auditable, but the system will iterate when confidence is low or
contradictions remain. (2) Provenance: every claim is traceable to a source and
step, enabling the Diagnostician to weigh evidence. (3) Efficiency: bounded step
counts, result caps, and early-exit conditions prevent unnecessary exploration. (4)
Extensibility: new search tools or processing modules can register their capabilities
and be composed by the Planner without modifying the orchestration logic. (5) Clin-
ical utility: the final product is not just a summary—it is a structured, high-signal
research artifact that provides the Diagnostician with a defensible foundation for
case assessment.

4 Medical Visual-Language Model

Goal In Casidence, a 3D multimodal visual-language model is a necessary compo-
nent in order to incorporate medical imaging data as user input, as GPT-5 does not
natively process 3D medical images. To bridge this gap, we fine-tune a 3D Medical
Vision–Language Model (VLM) capable of handling volumetric imaging. Specifi-
cally, the model is extensively finetuned on the CT-RATE dataset [18], achieving
state-of-the-art performance on its evaluation split. Our contribution lies in designing
a task-specific training recipe and a tailored data curation pipeline built upon an
existing VLM architecture, without introducing modifications to the underlying
network components.

4.1 Base Architectures

LLaVA family Our model follows the LLaVA design in which a frozen (or partially
trainable) vision encoder is connected to an LLM through a lightweight projection
module. Images are converted to visual tokens by the encoder; the projector aligns
these tokens to the LLM’s embedding space; instruction-tuning teaches the LLM to
attend to visual context and produce grounded text outputs.
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Med3DVLM overview We adopt Med3DVLM [20] as the 3D backbone. Med3DVLM
extends the LLaVA recipe from 2D images to volumetric studies by tokenizing 3D
patches/slices and injecting volumetric positional priors, enabling the LLM to reason
over anatomy across depth. The design follows the MetaFormer [43] idea: the
block structure separates a generic token-mixer (e.g., attention) from per-token feed-
forward updates, making it straightforward to process 3D tokens while preserving
the language interface. In our setup we keep the Med3DVLM encoders, projector,
and LLM unchanged and only fine-tune parameters during supervised instruction
training.

4.2 Training Dataset

CT-RATE CT-RATE [18] is a CT radiology dataset consisting 50,188 unique radi-
ology reports and CT volumes with radiology-style prompts and rating/assessment
targets. We use the CT-Rate’s split of dataset to create training set for model tuning
and the held-out evaluation set for reporting. To fit the VLM interface, each sample
is converted into instruction–response pairs covering abnormality presence, localiza-
tion, and severity ratings. Volumes are resampled to an isotropic spacing, clipped
to a fixed Hounsfield range, and normalized. For memory-efficient batching, we
sample either (i) fixed-depth subvolumes or (ii) salient slices determined by simple
heuristics.

4.3 Training Details

Objective and schedules We perform supervised instruction tuning with a standard
next-token cross-entropy objective on concatenated visual tokens and text prompts.
Mixed-precision training is used throughout. Unless otherwise noted, optimization
uses AdamW [44] with cosine decay and linear warmup. We apply gradient clipping
and weight decay to stabilize long-context updates.

Freezing strategy To balance stability and adaptation, we adopt a staged scheme:
(1) warm-up with the vision encoder frozen while updating the projector and LLM;
(2) optionally unfreeze the upper encoder blocks for modest visual adaptation; (3)
conduct a brief final pass with a reduced learning rate to harmonize the projector and
language layers. We found this schedule sufficient to specialize to CT-Rate without
overfitting.

Batching and context Each batch contains studies padded to a fixed token budget.
Prompts follow an instruction style that asks for ratings/justifications; targets are
short, normalized strings (e.g., discrete grades or bounded numerics). We interleave
questions per study (presence, location, severity) to encourage multifacet grounding.

Regularization and augmentation Unlike volumetric augmentation preprocessing of
3D images in Med3DVLM where volumetric information is corrupted, we unify the
voxel spatial scale over the entire dataset to preserve volume information.

Implementation notes. We initialize from publicly available Med3DVLM weights,
maintain the architecture intact and train with a global batch size of 64 for 1 epoch at
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Figure 6: Overview of the Pseudo Labeling process. Each medical report is given to a Large Language
Model with engineered prompt to construct two medical reports of the same medical information but
different surface forms. We then filter failed cases after generation to ensure quality.

a maximum learning rate of 0.00005. Training runs on 4 A100 GPUs with maximum
sequence length 768 tokens.

5 Query Auto Encoder: Similar Case Retrieval

For similar case retrieval, we developed a bi-encoder architecture that indexes every
case separately into vectors in the same embedding space, and performs Maximum
Inner Product Search (MIPS) on the indexed database with the encoded query
vector. To train our vector encoder, we propose Query Auto Encoder (QAE): a
self-supervised masked denoising auto-encoder structure that effectively leverages
the powerful understanding of medical information of medical language models,
training a Query Encoder that is able to encode aligned medical semantic vector
representations of the input sequence. For better user interactions and compact,
enhanced medical semantic data, we encode only the compact sequence data and not
redundant visual information that could be compactly represented by more sequence
embeddings with more abstract medical semantic information.

5.1 Dataset & Pseudo Labels

For QAE, we again use the publicly available CT-RATE [18] dataset. Our pseudo-
labeling process is represented in Figure 6. For each radiology report, we use Large
Language Model to generate similar reports with the same information but different
forms, such as grammar, sentence order, wording, etc. These pseudo-labeled reports
allow our model to develop a robust encoder that focuses on medical semantic
information only. We then filter the generated reports, removing low-quality data
with overtly different information. We keep generated data with small tweaks in
information to allow greater robustest of medical semantic space embedding during
training, better encoding sequences of similar medical information to similar vectors.
We finally create pairs of all similar labels, each pair being a training case, resulting
in 86k pairs. We took 80% data as training data, and 20% data as the evaluation
dataset to evaluate the robustness of medical semantic encoding of our query encoder.
There are no overlaps in CT volumes between the training dataset and evaluation
dataset.
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5.2 Modeling

Our QAE architecture consists of three main components shown in Figure 7: Se-
quence Encoder/Language Model (LM), Query Encoder and Query Decoder. We
use a Clinical-BERT [45] as our sequence encoder to effectively convert medical
information into embeddings consisting of medical information. Our Query Encoder
then encodes the medical information consisting of sequence into a fixed-length
positional-independent embedding, representing medical information within the
sequence, also referred to as the query embedding. Before inputting into the Query
Decoder, we will first randomly mask different tokens of LM output sequence em-
beddings. The masked sequence embeddings and the query embedding will then
be passed into the Query-Decoder to recover the masked embedding. During train-
ing, we separately encode the pair sequences, and swap query embeddings for the
purpose of excluding surface form information in the query embedding, keeping
only positional-independent medical information. The Query Decoder is used only
during training and will be removed in inference time.

5.3 Notations

During training, a pair of sequences will be entered as a case. We denote our input
sequences as Seq1 and Seq2. We denote sequence embeddings of Seq1 encoded by
sequence encoder as X1, the query embedding encoded by the query encoder as Q1,
the randomly masked sequence embeddings as Xmask

1 , its corresponding mask as
M1 and the recovered sequence embedding by the Query Decoder as X̂1. The same
applies to Seq2, with X2, Q2, Xmask

2 , M2 and X̂2.

5.4 Contrastive learning & Auto-Encoder

To effectively ensure the encoded query embeddings contain medical information
only, our Query Auto Encoder takes in a pair of sequences of same medical informa-
tion and different surface form as a training case, and use the other sequence’s query
embedding to recover the current sequence.

We employ both contrastive learning and masked embedding reconstruction to
effectively train a medical information only embedding space for our Query Encoder.
Contrastive learning is performed between two query embeddings to ensure the
alignment in embedding space of the same medical information, and create difference
with query embeddings of different medical information within other case pairs.
Masked embedding reconstruction ensures that the encoded medical information
within query embeddings are correct and based off of the sequence such that they
can be used to recover masked medical information within the sequence. To ensure
effective contrastive learning, we require a minimum batch size of 16.

During training, we first encode our sequences with the sequence encoder, obtaining
X1 and X2, and obtain Xmask

1 and Xmask
2 by randomly masking 1/3 of the embed-

dings. We then obtain Q1 with X1 and Q2 with X2 using the query encoder. We
then use Q1 and Xmask

2 to generate X̂2 and calculate a Mean Squared Loss (MSE)
between X2 and X̂2 on the recovered masked embeddings as the following equation,
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Figure 7: Query Auto Encoder (QAE) Overview. Given a pair of sequences representing the same
medical information, frozen language model (LM) encoders produce initial embeddings that are
further processed by trainable query encoders. The resulting query embeddings are masked and then
reconstructed by query decoders, with objectives including mean squared error (MSE) reconstruction
loss and InfoNCE [46] loss for contrastive alignment. Each sequence is used to recover the masked
representation of its paired sequence, encouraging cross-sequence consistency. This design ensures
that embeddings capture semantically aligned medical content across variations in text, improving
robustness to paraphrases, abbreviations, and redundant phrasing often present in clinical narratives.

denoted as L2
MSE .

L2
MSE =

1∑L
i=1 M2(i)

L∑
i=1

M2(i)
∥∥X2[i]− X̂2[i]

∥∥2

2
. (1)

We then repeat the process with Q2 and Xmask
1 , and obtain L1

MSE .

For contrastive learning, we employ the Information Noise-Contrastive Estimation
(InfoNCE) loss between Q1 and Q2, where the diagonal is positive case, and all
others are negative cases. The equation of InfoNCE loss is demonstrated in (2)

ℓ1→2
i = − log

exp
(
sim(q1,i, q2,i)/τ

)∑L
j=1 exp

(
sim(q1,i, q2,j)/τ

) ,
LInfoNCE =

1

2L

L∑
i=1

(
ℓ1→2
i + ℓ2→1

i

)
.

(2)

This ensures alignment of query embedding over sequences of the same information,
while pushing it away from other cases in the batch, producing compact, medically
aligned representations. We finally average LInfoNCE, L1

MSE, and L2
MSE for final loss.

Lfinal =
1

3
(LInfoNCE + L1

MSE + L2
MSE) (3)
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Figure 8: Query Encoder and Q-Enc-Head architectures. Left: The Query Encoder takes frozen LM
embeddings and enriches them with two layers of self-attention conditioned on learned embeddings,
followed by a linear projection. The resulting representations are passed into the Q-Enc-Head to
form query embeddings. Right: The Q-Enc-Head refines these embeddings through stacked layers
(two in this work), each consisting of self-attention, query-to-sequence (Q2Seq) cross-attention,
sequence-to-query (Seq2Q) cross-attention, and an MLP block. This design enables mutual alignment
between sequence embeddings and query embeddings while maintaining positional information,
producing compact query vectors that capture semantic content independent of surface-form variation.

5.5 Query Encoder

Our query encoder architecture is represented in Figure 8. Before generating the
query embedding, we process the sequence embeddings with two self-attention
layers, allowing important information to be highlighted by the nature of the self-
attention, strengthening the medical information stored in the sequence embedding.
Inspired by Segment Anything Model (SAM) [47] Mask Decoder, we develop Q-
Enc-Head to generate query embeddings of dense information through the extraction
of information from the sequence embeddings with Cross-Attention. Additional
to the SAM Mask Decoder, we remove positional-encoding in Cross-Attention to
ensure no surface form information, such as sentence order, are stored in the query
embeddings.

5.6 Query Decoder

Our query decoder architecture is represented by Figure 9. Our query decoder is
adapted based on the decoder structure of classic transformer [48] and the masked
token prediction pretraining of [49]. Additional to the transformer Decoder, we
remove the positional encoding in cross-attention due to the irrelevance of positional
information in the query embedding, and use full self-attention instead of masked at-
tention, allowing equal training on information distributed across the entire sequence,
instead of unequal information in different positions from the masked-self-attention.

20

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



Figure 9: Overview of the Query Decoder. The masked sequence embedding is first ran through a
self-attention layer, then through a cross-attention without positional encoding.

We limit the scale of the Query Decoder for lower information processing ability of
the Decoder to ensure the training of the Query Encoder for higher requirements in
a accurate and information-rich query embedding.

5.7 Retrieval & Dataset Indexing

To perform Similar Case Retrieval (SCR) with our bi-encoder architecture, we
first index our dataset and then use MIPS with the query embedding of the search
sequence during inference. For dataset indexing, we first input the description of
each medical case within the database into the sequence encoder and Query Encoder,
then stack the generated query embeddings, obtaining a vector representation of
the medical description and store each case’s vector with FLAT index using FAISS
[26]. During search, the search sequence will be encoded into a query embedding by
the Query Encoder, and MIPS will be performed within the indexed dataset to find
vector representations of the largest cosine similarity in the embedding space.

5.8 Training

During training of the QAE, we used 3 A100 GPUs and a batch size of 25 per GPU,
training 36 GPU hours with a maximum learning rate of 0.00002.

6 Casidence Results

6.1 Quantitative Evaluation

We evaluate the following components of Casidence: Plan, Execution, Report.
Figure 11 demonstrates quantitative evaluation metrics of Casidence.
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Figure 10: Top Left: Overview of Dataset Indexing. Bottom Left: Overview of Similar Case Retrieval.
Right: 3D representation of indexed embedding space of 3 medical descriptions. q1 and q2 are
similar and thus have high cosine similarity in the embedding space, q3 is different from the two and
thus low cosine similarity in the embedding space.

Experimental Setup We evaluate Casidence on 34 cases selected at random from
the CT-RATE [18] validation VQA dataset, enclosing different symptoms and both
positive and negative cases. During each run, we record the generated plan, the
execution process, and the final report. We then use a rubric shown in Figure 11
to score the quality of the plan, execution and report in different dimensions. For
GPT review, we carefully engineered a evaluation prompt template, including the
rubric, the plan, the execution steps and the final report, making GPT score each
case according to the rubric. For Clinician Review, we approach the Cancer Hospital,
Chinese Academy of Medical Sciences where clinicians scored Casidence in mix of
real time runs and previously recorded run cases.

Analysis Casidence’s research-first, plan–execute–verify architecture yields strong
upstream rubric scores: GPT evaluators average ≈ 4.1 across planning (Problem
Framing 4.21, Guideline Alignment 4.32, Resource Stewardship 4.24, Transparency
4.15), closely matched by clinicians at≈ 4.0. Report-level metrics aligned with these
architectural choices—Guideline Concordance (4.30) and Communication Quality
(4.21)—are likewise high, indicating that our deliberate planning and rationale
capture are consistently clear, guideline-grounded, and clinician-friendly.

In contrast, execution lags with a mean of 3.80 (Relevance 4.00, Correctness 3.59),
trailing clinician execution performance (Relevance 5.00, Correctness 4.00) and cor-
relating with a lower Diagnostic Accuracy of 3.35. This pattern suggests that while
our research and reasoning pipeline is robust, measurement and evidence-selection
errors during tool runs propagate to final judgments. Because execution depends on a
state-of-the-art 3D medical VLM, we attribute the shortfall primarily to that model’s
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Plan (score [1-5], 1=unsafe/low quality, 5=high quality) 

Item GPT Clinician Review 

Problem framing — Clear understanding of the diagnostic 

question and goals. 

4.21 4.00 

Coverage & sufficiency — Steps likely to gather all necessary 

evidence; key positives/negatives considered. 

3.61 4.00 

Tool selection & sequencing — Right tools in an efficient order; 

sensible fallback if a tool fails. 

4.05 4.00 

Guideline alignment — Steps reflect current clinical guidance 

where relevant. 

4.32 4.00 

Resource stewardship — Avoids unnecessary steps, radiation, 

cost, or delay.  

4.24 4.00 

Transparency — Each step has a clear rationale linked to the 

diagnostic objective.  

4.15 4.00 

 

Execution (score [1-5], 1=unsafe/low quality, 5=high quality) 

Item GPT Clinician Review 

Relevance — Collected evidence directly addresses the 

diagnostic question. 

4.00 5.00 

Correctness — Measurements/findings are accurate and 

reproducible. 

3.59 4.00 

 

Report (score [1-5], 1=unsafe/low quality, 5=high quality) 

Item GPT Clinician Review 

Diagnostic accuracy / justified differential — Correct primary 

dx OR well-justified differential with probabilities. 

3.35 N/A 

Guideline concordance — Recommendations reflect standards; 

deviations justified. 

4.30 N/A 

Communication quality — Clear, concise, professional clinician-

facing tone. 

4.21 N/A 

 

Figure 11: Qualitative Evaluation Rubric on Casidence Diagnosis runs, separated into 3 main parts:
Plan, Execution, Report. Scores scale from 1.00-5.00, where 1.00 indicates unsafe and low quality,
and 5.00 indicates high quality.

output quality. Closing the ∼ 0.3–0.9 execution gap—via a stronger VLM, calibra-
tion/ensemble checks, and reliability gates before evidence extraction—should lift
end-to-end diagnostic accuracy while preserving Casidence’s architectural strengths
in research accuracy, reasoning, and usability.

6.2 Qualitative Evaluation

We present a qualitative analysis on Casidence with a run case from the CT-RATE
validation set shown in Figure 12. We examine how the plan–execute–verify pipeline
behaves in routine CT interpretation. Our aim is to characterize the consistency of
the research backbone—task decomposition, targeted tool use, and explicit evidence
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TASK DESCRIBE THE FINDINGS REGARDING THE PLEURAL EFFUSION AND ATELECTASIS IN THIS 

CHEST CT IMAGE. 

GROUND 

TRUTH 

There is a moderate amount of pleural effusion, more prominent on the right bilaterally, and 

atelectasis and volume losses in the lower lobes of both lungs, more prominent on the right. 

 

DIAGNOSIS 

RESULT 

The patient has both pleural effusion and atelectasis. Pleural effusion is present in both 

hemithoraxes as evidenced by low-attenuation areas in the pleural space with Hounsfield unit 

values in the range of 0–20. Atelectasis is indicated by lung volume loss, mediastinal shift, and 

increased parenchymal density in the right lung upper lobe anterior segment and lower lobe 

superior segment.  

 

COLLECTED 

EVIDENCE 

• 3D VLM Analysis 'answer question about 3D image: Are there signs of pleural effusion, such as 

low-attenuation areas in the pleural space with Hounsfield unit values in the range of 0–20?': Yes, 

there are pleural effusion areas in both hemithorax. 

• 3D VLM Analysis 'answer question about 3D image: Is there evidence of atelectasis, such as 

lung volume loss, mediastinal shift, or increased parenchymal density?':  

Yes, lung volume is decreased.; Yes, a small amount of fluid is observed in the mediastinum.; Yes, 

an increase in parenchymal density in the right lung upper lobe anterior segment and lower lobe 

superior segment adjacent to the effusion may be compatible with atelectasis." 

 

PLAN Step 1 

Tool: Med3DVLM 

answer question about 3D image: Are there signs of pleural effusion, such as low-attenuation 

areas in the pleural space with Hounsfield unit values in the range of 0–20?" 

 

Step 2 

Tool: Med3DVLM 

answer question about 3D image: Is there evidence of atelectasis, such as lung volume loss, 

mediastinal shift, or increased parenchymal density?", 

 

 

Figure 12: Single Casidence Run Case including Task, ground truth, diagnosis result, collected
evidence, and plan. Research result is not displayed due to its overtly long length.

capture—and to identify where evidence extraction errors propagate into narrative
reports. The lens is representative case workups that share the same error profile as
the example below.

In this run, Casidence’s research-first, plan–execute–verify architecture functioned
as designed: it decomposed the task into high-value questions (presence of pleural
effusion and atelectasis), invoked appropriate tools, and recorded explicit evidence
prior to drafting the report. This yielded transparent, guideline-concordant reasoning
and clinically sensible problem framing, mirroring our quantitative findings that
planning and reporting earn high rubric scores (4.1 for planning; strong guideline
alignment and communication). The safety profile was acceptable—Minor potential
for harm—because the system correctly detected both effusion and atelectasis,
supporting an overall clinical utility of 4 for this case.

However, the execution layer—driven by a 3D medical VQA model—proved to
be the limiting factor. Feature extraction introduced unsupported specifics (e.g.,
Hounsfield units 0–20; mediastinal shift) and mislocalization (atelectasis placed in
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the right upper-lobe anterior segment) while omitting key qualifiers present in the
ground truth (moderate volume; right-greater-than-left asymmetry; bilateral lower-
lobe predominance). These errors are representative of the quantitative gap observed
in execution (mean 3.8, with lower correctness) and explain the drift between
sound research planning and the less faithful final narrative. Strengthening the
vision backbone should reduce propagation of extraction errors, thereby improving
diagnostic accuracy without sacrificing Casidence’s core strengths in research rigor
and evidence-centric workflow.

7 Similar Case Retrieval Results

Our method significantly out performs existing methods in sequence-to-sequence
retrieval as shown in Table 1, achieving a 100% retrieval success rate on the pseudo-
labeled evaluation dataset explained in Section 5.1, largely surpassing current SOTA
models. This near-perfect performance reflects the strong alignment between QAE
embeddings and the information structure of the dataset, as the QAE is specifically
trained to disentangle semantic content from surface-form variation in this domain.

7.1 Quantitative Evaluation

Experimental Setup We evaluate two models on our pseudo-labeled CT-RATE SCR
dataset of 17.1k cases: ColBERT[30] (based on ClinicalBERT) and our model.
For the evaluation of each model, we independently index the dataset with the
corresponding indexing method of the model. We then perform top K similar case
retrieval in each case over with the model over the dataset and calculate the results.

In experiment, we have three separate versions of medical reports of the same
volume, with the same medical information and different surface form. We separate
them into three pools. For retrieval, we perform search of vector representation of
medical report of each case in the first pool on each of the two other pools, and vice
versa for the two other pools, and finally average the results. Due to the different
surface forms of different versions of medical report and same medical information,
retrieval systems based solely off of medical information while excluding similarity
in surface form will result in higher accuracy. The evaluation set and training set are
separate, and our model has not seen the reports of any volume used in the evaluation
set.

We calculate the following metrics in experiment of each model to evaluate its ability
on similar case retrieval: R@1, R@3, R@5, R@10, Mean Reciprocal Rank (MRR).
R@K refers to Recall@K: the rate at which the ground truth appears in the top K
similar cases identified by the model. MRR refers to the reciprocal of the rank of
the ground truth in the retrieved similar cases, where, for a case, if correct case is
ranked the 3rd most similar, the MRR for this case is 1/3, and 1/5 if ranked as the
5th most similar, etc.

Indexing Due to the positional-independent and query embedding of our method, we
simply index our dataset by encoding every case into query embeddings Q ∈ RC×D,
then stacking the embeddings into one vector representation V ∈ RCD, where C
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Table 1: average retrieval accuracy on the evaluation set (17.1k cases pool). R@K: rate of ground
truth retrieved in top K similarity cases from retrieval. MRR: reciprocal of correct case rank in top
similarity cases obtained by model.

R@1 R@3 R@5 R@10 MRR
Ours 1.00000 1.00000 1.00000 1.00000 1.00000

ColBERT (ClinicalBERT) 0.51235 0.76064 0.79585 0.83651 0.64438

refers to the constant length of our fixed-length query embeddings. We further index
each case with FAISS[26] using the default and accurate FLAT indexing.

For ColBERT based on ClinicalBERT, we first encode each case into sequence
embeddings. Then, we index each case’s unfixed length multi-vector representation
using FAISS IVF indexing following the ColBERT method.

We separately encode the three pools, obtaining three datasets.

Top K Retrieval For the retrieval of each case of our method, we encode each
medical report into a vector representation and performs MIPS search in the two
other datasets retrieving the top 10 most similar cases, then calculating the retrieval
metrics. For MRR, we take 0 if the correct case was not retrieved in the top 10
most similar cases. For the retrieval of ColBERT, we encode each medical report
into a multi-vector representation, and perform maximum similarity search in the
previously indexed dataset. Specifically, for the similarity calculation between
two multi-vector representation, ColBERT takes the maximum similarity of each
vector to the other vectors in the other multi-vector representation, and sum the
max-similarities to obtain a final similarity. We also retrieve the top 10 most similar
cases for ColBERT, and then calculate evaluation metrics.

Analysis Table 1 demonstrates the evaluation results of Our method and ColBERT
method with ClinicalBERT base model. We proudly discover that our method
achieves 100% accuracy over all evaluation metrics, largely surpassing the SOTA
ColBERT method. We believe this is due to the enhanced medical information
alignment and surface form information removal of our method, which is directly tied
to a high cosine similarity in embedding space of similar medical information. On
the other hand, the lower accuracy demonstrated by ColBERT’s maximum-similarity
search that weakly filter off information order further proves the robustness and
ability to extract and store only the medical information in an aligned way, whereas
misaligned storage of the same information within the query embedding will lead to
low similarity vectors as they will then not be compared with each other in cosine
similarity of the vector representations.

7.2 Qualitative Evaluation

Figure 13 presents a qualitative comparison between the correct case, most relevant
retrieval result of ColBERT based on ClinicalBERT and our method’s second rele-
vant retrieval result. We avoid using the most relevant retrieval result of our method
due to the 100% retrieval accuracy and to prove the robustness of our retrieval system,
demonstrating its ability to retrieve cases of highly similar information, further prov-
ing its ability to remove surface forms and encode aligned medical information only.
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Similar:  all three  |  reports 1 & 2  |  reports 1 & 3  

Difference:  both 1&2 and 1&3 |  1 & 2  |  1 & 3  

Correct Case Trachea, both main bronchi are open. Mediastinal main vascular structures, heart contour, 
size are normal. Thoracic aorta diameter is normal. Pericardial effusion-thickening was not 
observed. Thoracic esophagus calibration was normal and no significant tumoral wall 
thickening was detected. No enlarged lymph nodes in prevascular, pre-paratracheal, 
subcarinal or bilateral hilar-axillary pathological dimensions were detected. When examined 
in the lung parenchyma window; Peripherally located subpleural nodular ground glass 
densities are observed in both lungs. The findings were evaluated in terms of early viral 
pneumonia and Covid-19 pneumonia. Clinical and laboratory correlation and close follow-
up are recommended. Upper abdominal organs included in the sections are normal. No space-
occupying lesion was detected in the liver that entered the cross-sectional area. Bilateral 
adrenal glands were normal and no space-occupying lesion was detected. Bone structures in 
the study area are natural. Vertebral corpus heights are preserved. 

ColBERT 
(ClinicalBERT) 

The trachea and both main bronchi are patent. The mediastinal main vascular structures, 
heart contour, and size are normal. The thoracic aorta diameter is normal. No pericardial 
effusion-thickening was observed. The thoracic esophagus is of normal caliber, and no 
significant tumoral wall thickening was detected. There were no enlarged lymph nodes in the 
prevascular, pre-paratracheal, subcarinal, or bilateral hilar-axillary regions. Upon examination 
of the lung parenchyma in the lung parenchyma window, the aeration of both lung 
parenchyma is normal, and no nodular or infiltrative lesions were detected in the lung 
parenchyma. No pleural effusion-thickening was observed. The upper abdominal organs 
included in the sections are normal. No space-occupying lesion was detected in the liver that 
entered the cross-sectional area. The bilateral adrenal glands are normal, and no space-
occupying lesion was detected. The bone structures in the study area appear natural, with 
preserved vertebral corpus heights. 
 

Ours The trachea and both main bronchi are patent, with normal appearances of the mediastinal 
main vascular structures, heart contour, and size. The thoracic aorta diameter is normal, and 
there is no evidence of pericardial effusion or thickening. The thoracic esophagus is of normal 
caliber, and no significant tumoral wall thickening is identified. No enlarged lymph nodes are 
observed in the prevascular, pre-paratracheal, subcarinal, or bilateral hilar-axillary regions. In 
the lung parenchyma window, diffuse and patchy subpleural ground-glass opacities are seen 
in both lungs, suggestive of a possible Covid-19 pneumonia. The upper abdominal organs are 
normal, and there are no space-occupying lesions in the liver that intersect the cross-sectional 
area. The bilateral adrenal glands are normal, and no space-occupying lesions are detected. 
The bone structures within the study area are unremarkable, with preserved vertebral corpus 
heights. 

 

Figure 13: Example of one retrieval case. Correct Case shows the ground-truth report that should be
retrieved. ColBERT [30] (ClinicalBERT) displays the top-ranked case from ColBERT, which shares
surface-level similarities but misses key clinical findings (e.g., absence of ground-glass opacities).
Ours shows the second-ranked case from our model, which still accurately captures the critical
diagnostic details—including diffuse subpleural ground-glass opacities consistent with Covid-19
pneumonia—while preserving other clinically relevant observations.
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Table 2: Evaluation results on the CT-RATE dataset. For consistency with prior work, we report
only BLEU-1 and METEOR, as these are the metrics used in earlier studies. Our model achieves
state-of-the-art performance on METEOR, surpassing all baselines, while obtaining mid-range results
on BLEU-1. Given that BLEU-1 is a relatively coarse metric focused on surface-level n-gram overlap,
stronger METEOR score more reliably reflects improved semantic alignment and clinical relevance.

BLEU-1 METEOR
LLaVA 1.6 (Mistral 7B) 0.0542 0.1050
LLaVA 1.6 (Vicuna 13B) 0.0438 0.0960

CXR-LLaVA 0.2029 0.1396
LLaVA-Med 0.1373 0.1561

CT-CHAT (Mistral 7B) 0.4702 0.2820
CT-CHAT (Vicuna 13B) 0.4747 0.2915

CT-CHAT (Llama 3.1 8B) 0.4801 0.2936
CT-CHAT (Llama 3.1 70B) 0.4824 0.2948

Ours 0.3940 0.3713

From a clinician’s perspective, the correct result and our model’s second most rele-
vant retrieval align on the central clinical signal—bilateral subpleural ground-glass
change compatible with early viral/COVID pneumonia—despite differing descrip-
tors (“peripherally located . . . nodular” vs. “diffuse and patchy”). This indicates the
system is robust to surface-form variation and captures pathology-level semantics
rather than boilerplate similarities. In contrast, ColBERT (ClinicalBERT)’s top result
shares abundant routine negatives and normal structures with correct result, but criti-
cally contradicts the pulmonary finding by asserting normal aeration with no nodular
or infiltrative lesions, i.e., it matches on generic radiology scaffolding rather than the
disease-defining content. Even using our second best hit, the retrieval remains clini-
cally concordant with the target, underscoring generalization beyond lexical overlap
and demonstrating that our architecture surpasses the ColBERT+ClinicalBERT base-
line in prioritizing truly relevant, pathology-aligned evidence.

8 3D Medical Vision-Language Model Results

Our finetuned model demonstrates SOTA results in the CT-RATE Visual Question
Answering (VQA) long answer benchmark as demonstrated in Table 2. It out
performs all baselines in the METEOR metrics, and performs in the middle tier
for the BLEU-1 metrics. However, the BLEU-1 metrics evaluates only wording
similarity, whereas the METEOR evaluates the similarity of the generated text to
the ground truth as a whole, indicating better inference performance, as the BLEU-1
metric can be easily affected by differences in grammar. We evaluate only on BLEU-
1 and METEOR instead of BertScore due to the lack of BertScore evaluations in the
baseline.

9 Discussion

9.1 Addressing Limitations of existing implementations

Prior medical agentic systems have typically taken one of two forms: (i) compre-
hensive research platforms designed to support clinical decision-making, or (ii)
orchestrator-based frameworks that integrate a wide array of tools. However, to the
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best of our knowledge, no existing system has adopted a research-first and evidence-
gathering–centric architecture explicitly tailored for diagnostic reasoning and clinical
application. For instance, MedAgentPro [40] follows a research–plan–diagnose
paradigm, but its implementation relies on a weak research module, employs a
non-iterative process, and lacks mechanisms for effective human–AI collaboration.

Similarly, current 3D Medical Vision–Language Models are often fine-tuned on
isolated image–question–answer pairs, which restricts them to single-turn interac-
tions. This setup undermines their ability to sustain multi-turn dialogue, diminishes
their language capacity, and limits their usefulness for complex diagnostic reasoning.
Casidence addresses this gap by embedding 3D Medical VLMs into a broader agen-
tic framework: the models function as feature-collection tools, queried through a
sequence of simple and targeted questions to progressively build an evidence base
for downstream reasoning. While this design strengthens reasoning capabilities,
the diagnostic accuracy of Casidence remains closely tied to the underlying VQA
performance of its foundation models, as further discussed in Section 9.2.

A similar limitation arises in the domain of similar-case retrieval. Prior approaches
typically rely on multi-vector representations with maximum similarity search or
on single-vector embeddings. These methods do not disentangle semantic meaning
from surface-form features, leaving them vulnerable to spurious matches caused
by superficial similarities such as sentence order, grammar, or phrasing, rather than
underlying clinical content. To overcome this, we propose the Query Auto Encoder
(QAE), which extracts semantic information from sequence embeddings and maps
it into query embeddings invariant to surface-form variation. This design enables
more accurate retrieval driven by true medical content rather than linguistic artifacts.

9.2 Challenges & Future Work

The accuracy of Casidence final diagnosis suffers from the lower accuracy of current
3D medical visual-language models (VLMs). Currently, we employed our finetuned
Med3DVLM, a model achieving SOTA results in the field. However, execution
correction in our evaluation of Med3DVLM in Figure11 still demonstrates low
correctness, leading to incorrect evidence collected and low final report accuracy.
With the development of future 3D medical VLMs, the accuracy and report quality
of Casidence will largely increase.

In QAE, we address the challenge of surface-form bias in similar-case retrieval. A
potential limitation, however, is that QAE may require domain-specific training to
adapt the query embedding space for specialized searches, such as medical report
retrieval. Because information is compressed into fixed-length embeddings, QAE
implicitly assumes that all relevant content—whether explicitly stated or not—can
be represented within that vector. This constrains the scalability of information
captured. While expanding the embedding dimension could mitigate the issue,
doing so significantly increases computational cost due to the quadratic complexity
of transformer models. Future work should explore representations that preserve
alignment while scaling to broader and more general retrieval tasks.
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10 Conclusion

In this paper, we present Casidence (Case-Evidence), an evidence gathering based
agentic system developed for diagnosis with comprehensive researching system,
various SOTA tools for evidence gathering, and strong human-AI collaboration and
iterative approach to greatly assist the process of performing diagnosis and gener-
ating medical reports; Query Auto Encoder (QAE), a novel similar case retrieval
architecture able to encode sequences into a single vector representation with aligned
information and without surface forms, allowing accurate similar case retrieval over
only medical information; and a finetuned 3D Medical Vision-Language Model in
Medical Visual Question Answering (VQA) based on the Med3DVLM architecture.
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be sudden rank collapse of query encoder near step 1800 to 2000 that happens within 2-3 steps, leading to huge
increase in training loss, which caused no useful information to be stored. This issue was solved by increasing
warm-up ratio and decreasing maximum learning rate of model. The development of Casidence did not face
major troubles as agentic systems are rather simply not likely to face hard to discover issues and bugs.
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