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Abstract

The emergence of Large Language Models (LLMs) as autonomous agents in strate-
gic interactions necessitates a comprehensive understanding of their decision-making be-
havior through established game-theoretic frameworks. This study systematically in-
vestigates how the “shadow of the future”—a fundamental concept in repeated game
theory—influences cooperative strategy evolution in LLM-based multi-agent systems.
Through a rigorous experimental framework encompassing four distinct experiments
across canonical game scenarios (Prisoner’s Dilemma and Battle of the Sexes), we ex-
amine the effects of continuation probability disclosure, temporal structure variations,
environmental dynamics, and strategic reasoning enhancement on cooperative outcomes.
Our analysis of three state-of-the-art LLMs (ChatGPT, DeepSeek, and Kimi) reveals
distinct behavioral “personalities”: ChatGPT exhibits strategic adaptability with selec-
tive cooperation, Kimi demonstrates unconditional cooperativeness, and DeepSeek shows
sophisticated conditional reciprocity. Counterintuitively, we find that explicit Strategic
Chain-of-Thought reasoning fails to improve performance relative to baseline intuitive
responses (59.7% vs 92.3% success rates), suggesting that reasoning complexity does not
necessarily translate to strategic superiority. Furthermore, while cooperation remains ro-
bust under predictable environmental changes (99.2% cooperation rate), it becomes fragile
under stochastic uncertainty. Information transparency effects prove context-dependent,
enhancing coordination in asymmetric games while potentially enabling exploitation in
social dilemmas. These findings establish foundational insights for deploying LLM agents
in collaborative systems and highlight the critical importance of agent personality compat-
ibility, environmental predictability, and reasoning mode selection in multi-agent strategic
interactions.

Keywords: Large Language Models, Game Theory, Multi-Agent Systems, Cooperation,
Shadow of the Future, Strategic Reasoning
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1 Introduction

1.1 The Rise of LLMs as Strategic Agents in Multi-Agent Sys-
tems

The rapid evolution of large language models (LLMs) has fundamentally transformed
artificial intelligence, demonstrating remarkable capabilities in complex reasoning [1], tool
manipulation [2], and human-like interaction [3, 4]. This technological advancement has
positioned LLMs as increasingly prevalent autonomous agents in strategic environments,
from automated negotiation systems and algorithmic trading platforms to collaborative
decision-support tools and multi-agent coordination systems [5, 6]. As these systems
assume roles traditionally occupied by human decision-makers, the need for rigorous the-
oretical frameworks to understand their strategic behavior becomes paramount.

Game theory provides the mathematical foundation for analyzing strategic interactions
among rational agents [7]. For decades, it has served as the cornerstone for understand-
ing decision-making across economics, political science, and computer science [8, 9, 10],
offering robust predictive models for agent behavior in scenarios ranging from coordina-
tion problems to complex negotiations [11, 12]. However, the emergence of LLM agents
introduces novel computational characteristics that challenge traditional game-theoretic
assumptions and necessitate new analytical approaches.

1.2 Current Limitations: The Need for Systematic Architecture

Existing research on LLM strategic behavior reveals significant methodological and
theoretical gaps. While preliminary studies have documented instances of cooperation,
reciprocity, and strategic deception in LLM interactions [13, 14], these findings remain
fragmented and lack systematic grounding in established theoretical frameworks [15].
Current approaches largely consist of isolated experiments or anecdotal observations, pre-
venting the development of comprehensive understanding.

More critically, empirical evidence demonstrates that LLMs exhibit inconsistent strate-
gic performance, frequently deviating from equilibrium predictions without clear explana-
tory patterns [6, 16]. They display limited capacity for recursive reasoning about opponent
beliefs—a fundamental requirement for sophisticated strategic thinking [17]—and demon-
strate excessive sensitivity to contextual variations that is absent in human strategic
behavior [18, 19].

The absence of a unified architectural framework for systematic evaluation has hin-
dered progress in understanding when and why LLMs succeed or fail in strategic contexts.
Existing multi-agent orchestration systems such as AutoGPT, CAMEL, and Voyager fo-
cus primarily on task execution and autonomous tool usage [14], rather than systematic
strategic reasoning and game-theoretic evaluation. This gap necessitates a specialized
architectural approach designed specifically for strategic interaction analysis.
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1 INTRODUCTION

1.3 Contributions: A Unified Multi-Agent Architecture for
Game-Theoretic Evaluation

This paper introduces a novel multi-agent architecture specifically designed to bridge
the gap between classical game theory and LLM strategic evaluation. Our approach rep-
resents the first unified framework dedicated to systematic assessment of LLM behavior
in strategic environments, making several key architectural and methodological contribu-
tions:

Unified Multi-Agent Architecture: We propose a comprehensive system archi-
tecture that integrates hierarchical reasoning modules (Baseline, Chain-of-Thought, and
Strategic Chain-of-Thought), memory-enhanced interaction mechanisms, and stochastic
termination protocols. This architecture extends Empirical Game-Theoretic Analysis
(EGTA) [20] to the LLM domain, providing a systematic platform for strategic behavior
assessment rather than ad-hoc experimental approaches.

Hierarchical Cognitive Modules: Rather than treating reasoning approaches
as mere prompt variations, our architecture conceptualizes Baseline, Chain-of-Thought
(CoT), and Strategic Chain-of-Thought (SCoT) as distinct cognitive layers within a mod-
ular reasoning framework. This architectural design enables systematic evaluation of
different reasoning depths and their impact on strategic performance, moving beyond
simple prompt engineering to structured cognitive modeling.

EGTA-LLM Integration Framework: We introduce architectural innovations
specifically designed to adapt Empirical Game-Theoretic Analysis for LLM environments,
including: (1) probabilistic continuation mechanisms that implement the “Shadow of the
Future” [21] in LLM contexts, (2) structured memory update protocols that maintain
strategic context across interactions, and (3) cross-seed aggregation methods that account
for LLM stochasticity in game-theoretic evaluation.

Paradigmatic Bridge: Our architecture serves as the first systematic connection
between game-theoretic multi-agent systems and large language model evaluation, es-
tablishing a reusable platform that extends beyond specific games (Prisoner’s Dilemma,
Battle of the Sexes) to general strategic scenarios. This represents a paradigmatic shift
from isolated LLM experiments to systematic strategic reasoning evaluation.

The proposed framework enables rigorous comparison of LLM strategic capabilities
against established human behavioral patterns while providing mechanistic insights into
the computational foundations of strategic decision-making in artificial agents. Through
comprehensive evaluation across multiple model families and strategic environments, our
architecture establishes new benchmarks for understanding and deploying LLM agents
in strategic contexts, contributing to the development of more reliable and predictable
artificial intelligence systems [22, 23].

This work represents a foundational contribution to the emerging field of strategic
AI, providing both the theoretical framework and practical architecture necessary for
systematic evaluation of LLM agents in game-theoretic contexts. By establishing this
unified platform, we enable future research to build upon a solid architectural foundation
rather than starting from isolated experimental approaches.
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2 Related Work

2.1 Theoretical Foundations: Game Theory and Strategic Co-
operation

The theoretical foundation of cooperation in multi-agent systems has been extensively
studied through repeated game theory [11, 21]. Axelrod’s seminal work [21] demonstrated
that cooperation can emerge and persist through the “Shadow of the Future” mechanism,
where future interaction prospects incentivize present cooperative behavior [24]. This
concept is formally captured by the discount factor (δ) or continuation probability (p-
value), representing the likelihood of future interactions [25].

The folk theorem establishes that cooperation becomes a Nash equilibrium when the
discount factor exceeds a critical threshold, making long-term cooperation benefits out-
weigh short-term defection gains [26]. Higher continuation probabilities generally promote
more stable cooperative outcomes [27, 28]. However, these theoretical predictions assume
perfectly rational agents with complete information and unlimited computational capac-
ity—assumptions that may not hold for modern AI systems [29, 30].

While these theoretical frameworks provide robust foundations for understanding
strategic behavior, their application to LLM agents requires systematic architectural adap-
tations that can bridge classical game theory with the unique computational characteris-
tics of large language models.

2.2 Multi-Agent Orchestration Systems: Task-Focused vs. Strategic-
Focused Architectures

The landscape of multi-agent LLM systems has been dominated by frameworks de-
signed for task execution and autonomous coordination. AutoGPT [31] pioneered au-
tonomous task decomposition and execution, enabling LLM agents to interact with ex-
ternal tools and pursue complex objectives through iterative planning. CAMEL [32]
introduced role-playing conversational frameworks that enable collaborative task comple-
tion through structured dialogue between specialized agents. Voyager [33] demonstrated
sophisticated autonomous exploration and skill acquisition in complex virtual environ-
ments.

These systems excel at autonomous tool usage, task orchestration, and collaborative
problem-solving, focusing primarily on achieving external objectives through agent coor-
dination. Their architectures prioritize functionality, adaptability, and task completion
efficiency. However, they are not specifically designed for systematic strategic reasoning
evaluation or game-theoretic analysis [14].

Architectural Distinction: Unlike existing multi-agent orchestration systems that
focus on task execution and autonomous coordination, our framework is purpose-built for
strategic interaction analysis and game-theoretic evaluation. While AutoGPT, CAMEL,
and Voyager optimize for task completion and environmental adaptation, our architecture
is specifically designed to isolate, measure, and analyze strategic decision-making processes

3
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2 RELATED WORK

under controlled theoretical conditions. This fundamental difference in design philosophy
necessitates entirely different architectural approaches, evaluation metrics, and theoretical
foundations.

2.3 LLM Strategic Behavior: From Anecdotal to Systematic
Analysis

Recent research has begun exploring LLM cooperative behavior in multi-agent set-
tings [13, 14]. Wu et al. (2024) [34] demonstrated that LLM agents can develop co-
operative strategies in competitive environments without external incentives, revealing
inherent capacity for strategic reasoning [1, 2]. However, this research primarily focuses
on demonstrating whether spontaneous cooperation occurs, rather than systematically
investigating underlying governing factors.

The work by Mozikov et al. (2024) [16] on emotional decision-making reveals that
LLMs exhibit decision-making patterns deviating from purely rational calculations when
subjected to emotional framing, suggesting behavioral characteristics analogous to human
cognitive biases [35]. Most existing work focuses on externally induced biases through
prompt engineering [36] or environmental manipulation.

Methodological Gap: Current approaches lack systematic architectural frameworks
for rigorous strategic evaluation. Existing studies primarily employ ad-hoc experimental
designs without unified theoretical grounding, preventing comprehensive understanding of
when and why LLMs succeed or fail in strategic contexts. This methodological limitation
has hindered progress toward reliable LLM deployment in strategic environments.

2.4 Empirical Game-Theoretic Analysis: From Traditional Agents
to LLMs

Empirical Game-Theoretic Analysis (EGTA) represents the mature integration of
game-theoretic principles with computational multi-agent systems. Lanctot et al. (2017)
[23] established comprehensive frameworks for analyzing strategic interactions in complex
environments, utilizing computational simulations to discover emergent strategies and
meta-strategies [37]. Their methodology provides systematic approaches for understand-
ing multi-agent behavior patterns that would be intractable through theoretical analysis
alone [12].

The EGTA framework has proven valuable for analyzing systems where traditional
analytical solutions are intractable due to complexity or non-standard agent capability
assumptions [38]. However, this methodology has been primarily applied to reinforcement
learning agents with well-defined utility functions and learning algorithms [39], rather than
the stochastic, prompt-sensitive, and contextually dependent nature of LLM agents.

Architectural Innovation: This work represents the first systematic adaptation of
EGTA methodology to LLM agents [40, 22], requiring novel architectural considerations
for factors such as: (1) stochastic output generation and temperature sensitivity, (2)
prompt engineering and reasoning paradigm integration [36, 41], (3) memory management
and context maintenance across interactions, and (4) inherent model characteristics and
emergent “personality” traits [1].
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2 RELATED WORK

2.5 Reasoning Paradigms in Strategic Contexts: Beyond Prompt
Engineering

The development of reasoning paradigms in LLMs has progressed from simple prompt-
ing to sophisticated multi-step approaches. Chain-of-Thought (CoT) reasoning [36] en-
ables step-by-step problem decomposition, while Strategic Chain-of-Thought approaches
[41] incorporate opponent modeling and recursive reasoning. However, existing work
treats these approaches primarily as prompt engineering techniques rather than architec-
tural components of strategic reasoning systems.

Current research focuses on demonstrating the effectiveness of various reasoning ap-
proaches in isolated contexts, without systematic integration into unified frameworks for
strategic evaluation. The lack of architectural perspective prevents understanding of how
different reasoning paradigms interact with strategic contexts and how they can be sys-
tematically leveraged for comprehensive behavioral analysis.

Architectural Contribution: Our framework reconceptualizes reasoning paradigms
as hierarchical cognitive modules within a unified strategic analysis architecture. Rather
than treating Baseline, CoT, and SCoT as mere prompt variations, we integrate them as
distinct cognitive layers within a modular reasoning framework that enables systematic
evaluation of reasoning depth effects on strategic performance. This architectural ap-
proach provides the foundation for mechanistic understanding of how different cognitive
processes influence strategic decision-making in LLM agents.

2.6 Positioning: First Unified Architecture for LLM Game-
Theoretic Evaluation

While existing research has made valuable contributions to understanding LLM be-
havior in strategic contexts, the field lacks a unified architectural framework that sys-
tematically bridges classical game theory with modern language model capabilities. Cur-
rent approaches remain fragmented across task-focused orchestration systems, anecdotal
strategic behavior studies, and isolated reasoning paradigm investigations.

Our work addresses this fundamental gap by introducing the first comprehensive ar-
chitecture specifically designed for systematic game-theoretic evaluation of LLM agents.
This architecture integrates established theoretical foundations with novel adaptations
necessary for LLM characteristics, providing a reusable platform for rigorous strategic
behavior analysis that extends beyond specific games to general strategic scenarios.

This architectural contribution represents a paradigmatic shift from isolated experi-
mental approaches to systematic strategic reasoning evaluation, establishing the founda-
tion for reliable understanding and deployment of LLM agents in strategic contexts.

5
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3 Methodology

3.1 Unified Multi-Agent Architecture for Strategic Game-Theoretic
Evaluation

We propose a novel architectural framework specifically designed for evaluating Large
Language Model (LLM) strategic reasoning within game-theoretic contexts. This unified
architecture extends Empirical Game-Theoretic Analysis (EGTA) to the LLM domain
through the integration of hierarchical reasoning modules, memory-enabled interaction
mechanisms, and probabilistic termination protocols. Unlike existing multi-agent orches-
tration systems focused on task execution and autonomy (e.g., AutoGPT, CAMEL, Voy-
ager), our architecture is purpose-built for systematic evaluation of strategic reasoning
capabilities across different cognitive processing depths.

The architectural framework comprises four core components: (1) Modular Cognitive
Processing Layers that enable systematic evaluation of reasoning capabilities, (2) Strategic
Game Environment Management that handles payoff computation and state transitions,
(3) Adaptive Memory Systems that maintain interaction histories and enable strategic
learning, and (4) Probabilistic Termination Mechanisms that implement both finite and
infinite-horizon conditions essential for game-theoretic analysis.

Table 3.1 contrasts our framework with existing multi-agent systems, highlighting the
architectural innovations required for game-theoretic evaluation.

Table 3.1: Architectural Comparison with Existing Multi-Agent Systems

System
Primary
Focus

Reasoning
Modules

Game-Theoretic
Support

AutoGPT Task execution Single-layer Limited
CAMEL Role-playing dialogue Context-dependent No
Voyager Environment exploration Goal-oriented No

Our Framework Strategic evaluation Hierarchical (3-tier) Full support

3.2 Game Environment Architecture

The strategic evaluation platform supports two canonical game-theoretic environments
that serve as representative testbeds for understanding how architectural components in-
fluence strategic behavior. The environment management system implements standard-
ized payoff computation, state transition protocols, and outcome recording mechanisms
that ensure consistency across all experimental conditions.

The Prisoner’s Dilemma (PD) environment implements the classic social dilemma
structure where agents face the fundamental tension between individual rationality and
collective optimality. The symmetric payoff matrix, presented in Table 3.2, creates the
canonical cooperation-defection dynamics essential for evaluating strategic reasoning un-
der conflicting incentives.

6
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3 METHODOLOGY

Table 3.2: Prisoner’s Dilemma Payoff Matrix

Agent 1

Agent 2
Option J Option F

Option J (8, 8) (0, 10)
Option F (10, 0) (5, 5)

The Battle of the Sexes (BoS) environment addresses coordination challenges with
preference conflicts over equilibrium selection. The asymmetric coordination structure,
shown in Table 3.3, requires agents to simultaneously solve coordination problems and
equilibrium selection challenges, providing insight into architectural performance under
strategic interdependence.

Table 3.3: Battle of the Sexes Payoff Matrix

Agent 1

Agent 2
Option J Option F

Option J (10, 7) (0, 0)
Option F (0, 0) (7, 10)

Both environments integrate seamlessly with the temporal structure components of
our architecture, enabling systematic evaluation of how continuation probabilities and
finite horizons influence strategic behavior across different reasoning modules.

3.3 Hierarchical Cognitive Processing Architecture

The core architectural innovation lies in the modular cognitive processing system that
systematically varies reasoning depth while maintaining consistent interface protocols.
These cognitive modules represent distinct architectural layers rather than simple prompt
variations, enabling systematic evaluation of how reasoning sophistication affects strategic
performance.

Table 3.4 presents the hierarchical specification of cognitive processing layers inte-
grated within the architectural framework.

Table 3.4: Hierarchical Cognitive Processing Modules

Module Processing Layer Architectural Function
Baseline Direct decision mapping Natural reasoning baseline
CoT Structured trace generation Explicit reasoning scaffolding
SCoT Game-theoretic analysis Strategic reasoning integration

TheBaseline Module serves as the foundational cognitive processing layer, capturing
agents’ natural strategic inclinations without additional analytical scaffolding. This mod-
ule establishes the architectural baseline by processing game state information through the
model’s inherent reasoning capabilities, providing insight into default strategic behavior
patterns embedded within pre-trained LLM architectures.

The Chain-of-Thought (CoT) Module implements structured reasoning protocols
that require explicit trace generation before decision execution. This architectural layer
systematically enhances cognitive processing through step-by-step analytical frameworks,
following established protocols for improving LLM performance through structured rea-
soning pathways. The module integrates seamlessly with the broader architecture while
maintaining consistency across different temporal conditions and agent configurations.

7
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3 METHODOLOGY

The Strategic Chain-of-Thought (SCoT) Module represents the most sophisti-
cated cognitive processing layer, incorporating explicit game-theoretic analytical frame-
works into the reasoning architecture. This module integrates Nash equilibrium identi-
fication, best response analysis, opponent modeling protocols, and strategic forecasting
mechanisms directly into the cognitive processing pipeline. The SCoT architecture enables
systematic evaluation of how game-theoretic reasoning sophistication affects strategic per-
formance across different temporal structures.

The modular design enables flexible architectural configurations where reasoning mod-
ules can be systematically replaced or combined to evaluate different cognitive processing
approaches. This architectural flexibility is essential for systematic EGTA evaluation,
allowing researchers to isolate the effects of reasoning sophistication while controlling for
other experimental variables.

3.4 LLM Agent Integration and Configuration

Our architectural framework supports integration of diverse LLM agents representing
different training paradigms and architectural approaches. The agent integration sys-
tem maintains consistent interface protocols while preserving the unique characteristics
of different model architectures, enabling comparative evaluation across varied LLM ca-
pabilities.

The framework integrates three representative LLM architectures: ChatGPT (GPT-4)
representing OpenAI’s RLHF methodology, DeepSeek-V3 representing reasoning-focused
training approaches, and Kimi-Large representing long-context and multilingual optimiza-
tion paradigms. This diverse agent portfolio enables systematic evaluation of how different
training approaches interact with our cognitive processing architecture.

Table 3.5 presents the standardized configuration parameters that ensure methodolog-
ical rigor across all agent types and experimental conditions.

Table 3.5: Unified Agent Configuration Parameters

Parameter Value
Temperature 0.7

Top-p 0.9
Max tokens 500

Random seed management Systematic variation
API timeout 30 seconds

Retry attempts 3

Model versions
GPT-4-turbo-2024-04-09,

DeepSeek-V3-API, Kimi-Large-API

Agent assignment protocols implement systematic role counterbalancing across ex-
perimental conditions to control for potential systematic biases. Each agent receives
consistent role identities (Agent 1 or Agent 2) throughout experimental sessions, with
assignments rotated systematically across conditions to ensure that observed strategic
differences reflect genuine architectural effects rather than role-specific artifacts.

3.5 Temporal Structure Implementation and EGTA Adaptation

A critical architectural innovation involves the systematic implementation of tempo-
ral structures essential for game-theoretic analysis. Our framework incorporates both

8
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3 METHODOLOGY

finite and infinite-horizon mechanisms that enable rigorous evaluation of how temporal
parameters interact with cognitive processing modules.

The continuation probability mechanism (p-value) implements the “shadow of the fu-
ture” concept through probabilistic termination protocols. This architectural component
communicates temporal parameters through structured interfaces that explicitly convey
both numerical probabilities and their strategic implications for long-term optimization.
The implementation employs cryptographically secure random number generation with
systematic seed management to ensure genuine uncertainty while maintaining experimen-
tal reproducibility.

The finite horizon implementation (T -value) creates common knowledge of predeter-
mined interaction lengths, enabling evaluation of backward induction reasoning within the
architectural framework. This component provides perfect information about interaction
timelines while maintaining consistency with game-theoretic assumptions about rational
strategic behavior.

Table 3.6 details the temporal structure implementation within the architectural
framework.

Table 3.6: Temporal Structure Implementation Specifications

Component Implementation Architectural Integration
p-value Probabilistic continuation

(0.1, 0.5, 0.9)
Structured prompt interfaces
with strategic implications

T -value Deterministic termination
(5, 10, 20 rounds)

Common knowledge protocols
with perfect information

Termination Protocol Secure random generation
(Seed range: 0-10)

Systematic seed management for
reproducibility

3.6 Architectural System Integration

Figure 3.1 illustrates the comprehensive architectural integration that orchestrates all
system components within the unified framework. The architecture demonstrates the
systematic flow from input processing through cognitive modules to decision execution
and memory integration, highlighting the modular design that enables systematic EGTA
evaluation.
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3 METHODOLOGY

- If you choose Option J and the other player chooses Option J, 
then you both win 8 points.
- If you choose Option J and the other player chooses Option F, 
then you win 0 points and the other player wins 10 points.
- If you choose Option F and the other player chooses Option J, 
then you win 10 points and the other player wins 0 points.- If both 
choose Option F, then you both win 5 points.

Input Input

Prompt Agent SCoT Agent
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ut
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CoT Agent

Input

Outp
ut

thought Adaptive Strategy thought

The rules of the game are as follows:
-If both choose Option J, you win 10 points and the other player wins 7 points.
-If both choose Option F, you win 7 points and the other player wins 10 points.
-If the options differ (J/F or F/J), you both win 0 points.

The rules of the game are as follows:
-If both choose Option J, you win 7 points and the other player wins 10 points.
-If both choose Option F, you win 10 points and the other player wins 7 points.
-If the options differ (J/F or F/J), you both win 0 points.
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Figure 3.1: Multi-agent interaction framework showing game environments, reasoning modes, agent configurations, and
experimental flow. The diagram illustrates how different LLM agents (ChatGPT, DeepSeek, Kimi) interact through various
reasoning modes (Baseline, CoT, SCoT) in both Prisoner’s Dilemma and Battle of the Sexes environments under different
temporal structures.

The architectural framework integrates LangChain for agent orchestration and Au-
toGen for sophisticated dialogue management, providing the technological foundation
required for complex multi-turn strategic reasoning. This integration supports persistent
memory systems, stateful interactions, and dynamic adaptation capabilities essential for
repeated game scenarios while maintaining rigorous experimental control.

The agent initialization protocols establish foundational conditions through compre-
hensive role assignment systems that include unique identifiers, game rule specifications,
and temporal parameter communication. The architectural design ensures that agents
receive identical factual information while cognitive processing differences are controlled
exclusively through the modular reasoning system.

The interaction protocol implements structured sequences that maintain consistency
across experimental conditions. Both agents simultaneously receive comprehensive game
state information including complete interaction histories, outcome records, and remaining
parameters through standardized interfaces. This shared information environment enables
strategic learning while preserving game-theoretic common knowledge assumptions.

Memory management protocols ensure comprehensive historical information accessi-
bility while preventing information leakage that could compromise experimental validity.
The architecture implements automatic payoff computation, state updating, and com-
prehensive data recording systems that capture multiple dimensions of strategic behavior
and interaction dynamics.

3.7 Experimental Variables and Systematic Evaluation Frame-
work

The architectural framework enables systematic manipulation of key variables essential
for comprehensive EGTA evaluation. Table 3.7 presents the complete variable specifica-
tion and operationalization methods integrated within the architectural system.
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3 METHODOLOGY

Table 3.7: Architectural Variable Specification and Operationalization

Variable Category Specification Architectural Implementation
Temporal Structure p-value (0.1, 0.5, 0.9) Probabilistic termination protocols

T -value (5, 10, 20) Deterministic horizon management
Cognitive Architecture Baseline/CoT/SCoT Hierarchical processing modules
Agent Configuration GPT-4/DeepSeek/Kimi Standardized integration interfaces
Strategic Metrics Cooperation rates Systematic behavioral measurement

Payoff efficiency Automated calculation systems
Equilibrium convergence Dynamic analysis protocols

The architectural design supports comprehensive data collection protocols that cap-
ture primary behavioral measures including individual action sequences, joint outcome
patterns, and cumulative payoff trajectories. For structured reasoning modules (CoT
and SCoT), complete reasoning traces are recorded to enable analysis of decision-making
processes and strategic reasoning quality assessment.

Statistical analysis protocols are integrated within the architectural framework, in-
corporating both parametric and non-parametric approaches to accommodate diverse
distributional characteristics of strategic choice data. The system implements parallel
processing architectures that maintain strict independence between experimental runs
while achieving computational efficiency essential for large-scale EGTA evaluation.

This unified architectural framework represents the first systematic platform specifi-
cally designed for game-theoretic evaluation of LLM strategic reasoning capabilities, pro-
viding a reusable foundation that extends beyond the current experimental domains to
support broader strategic evaluation scenarios.
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4 Experimental Design

4.1 Architectural Validation Framework

All experiments are implemented within and serve as empirical validation of our pro-
posed unified multi-agent architecture, where hierarchical reasoning modules, probabilistic
termination mechanisms, and EGTA evaluation protocols constitute inseparable compo-
nents of the system. Rather than isolated case studies, these experiments systematically
validate the architectural design’s capability to capture and evaluate strategic reasoning
patterns across different temporal structures, cognitive processing depths, and environ-
mental dynamics.

The experimental framework leverages the modular architecture’s flexibility to system-
atically manipulate cognitive processing layers (Baseline, CoT, SCoT) while maintaining
consistent game environment management and temporal structure implementation. This
approach enables rigorous assessment of how architectural components interact to influ-
ence strategic behavior, providing comprehensive validation of the framework’s effective-
ness for game-theoretic evaluation of LLM capabilities.

Table 4.1 presents the systematic experimental validation matrix that demonstrates
how each experiment targets specific architectural components while maintaining overall
system integrity.

Table 4.1: Architectural Component Validation Matrix

Experiment
Cognitive
Modules

Temporal
Structure

Environmental
Dynamics

Agent Integration
System

Experiment 1 Fixed (Baseline) p-value variation Static Full validation
Experiment 2 Fixed (Baseline) Finite vs. Infinite Static Full validation
Experiment 3 Fixed (Baseline) Dynamic p-values Trajectory-based Full validation
Experiment 4 Module comparison Fixed conditions Static Module validation

4.2 Agent Architecture Integration and Implementation

The experimental validation employs three distinct LLM architectures systematically
integrated within our unified framework to demonstrate robustness and generalizability
across different AI systems with varying baseline strategic reasoning capabilities [2, 1].
Each agent type represents a different training paradigm, enabling comprehensive evalu-
ation of how the architectural framework performs across diverse LLM approaches.

Table 4.2 specifies the systematic agent integration protocols within the architectural
framework.
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4 EXPERIMENTAL DESIGN

Table 4.2: Agent Architecture Integration Specifications

Agent Type Training
Paradigm

Strategic Base-
line

Architectural
Role

ChatGPT (GPT-4) RLHF methodol-
ogy

High cooperation
tendency

Conversational AI
validation

DeepSeek-V3 Reasoning-focused Moderate coopera-
tion

Analytical capabil-
ity testing

Kimi-Large Long-context opti-
mization

Variable coopera-
tion

Context-dependent
evaluation

All agents operate under identical computational constraints within the architectural
framework and receive standardized interface protocols [36, 39] to minimize confounding
variables while preserving their inherent behavioral characteristics. Each agent processes
game information through the unified cognitive processing modules and makes decisions
based on the systematic interaction protocols implemented within the architectural frame-
work [22].

4.3 Game Environment Validation Scenarios

The architectural framework validation employs two canonical game-theoretic scenar-
ios that systematically test different aspects of strategic interaction processing within
the cognitive modules and temporal structure components [42]. These scenarios serve as
standardized benchmarks for evaluating architectural performance across diverse strategic
contexts.

4.3.1 Prisoner’s Dilemma Architecture Validation

The Prisoner’s Dilemma implementation within the architectural framework tests the
system’s ability to handle fundamental social dilemmas where individual rationality con-
flicts with collective optimality [43, 21]. The standardized payoff matrix integrates seam-
lessly with the cognitive processing modules and temporal structure components:

• Mutual Cooperation (J, J): Architectural reward of 8 points per agent, testing
system’s ability to identify and maintain socially optimal outcomes

• Mutual Defection (F, F): Architectural penalty of 5 points per agent, validating
Nash equilibrium detection capabilities [8]

• Unilateral Defection (F, J) or (J, F): Asymmetric outcomes (10, 0) testing
system’s handling of exploitation dynamics [44]

This payoff structure validates the architectural framework’s ability to process the
standard PD conditions: T > R > P > S while systematically evaluating how cognitive
modules and temporal structures influence strategic reasoning patterns [11].

4.3.2 Battle of the Sexes Architecture Validation

The Battle of the Sexes implementation tests the architectural framework’s coordina-
tion capabilities with asymmetric preferences, validating the system’s ability to handle
complex equilibrium selection challenges [9]. The coordination structure validates differ-
ent architectural components:
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4 EXPERIMENTAL DESIGN

• Successful Coordination: (10, 7) and (7, 10) outcomes test the system’s equilib-
rium identification and preference handling

• Coordination Failure: (0, 0) outcomes validate the architecture’s ability to rec-
ognize and avoid miscoordination penalties

• Preference Asymmetry: Different agent preferences test the framework’s han-
dling of strategic interdependence

This structure systematically validates the architectural framework’s performance in
real-world coordination scenarios where parties must align their actions despite conflicting
preferences [45].

4.4 Baselines

The systematic evaluation of our architectural framework requires comprehensive base-
line comparisons that establish performance benchmarks across theoretical, empirical, and
computational dimensions. These baselines provide essential reference points for interpret-
ing experimental results and validating the architectural framework’s strategic reasoning
capabilities relative to established standards in game theory, behavioral economics, and
artificial intelligence research.

The selection of baselines follows a principled hierarchy that progresses from theo-
retical foundations through empirical human behavior to state-of-the-art computational
approaches. This multi-layered comparison framework ensures that our architectural eval-
uation captures both normative predictions from economic theory and descriptive patterns
from behavioral research, while maintaining alignment with current developments in LLM
strategic reasoning evaluation.

4.4.1 Theoretical Baselines

Nash Equilibrium Analysis serves as the fundamental theoretical baseline, repre-
senting the rational choice benchmark under complete information and perfect compu-
tational capabilities [8, 11]. For the Prisoner’s Dilemma, the Nash equilibrium predicts
mutual defection (F,F) in single-shot interactions, while the Folk Theorem establishes co-
operation sustainability conditions in infinitely repeated games [46, 26]. In Battle of the
Sexes scenarios, multiple Nash equilibria exist, with mixed strategy equilibrium providing
the theoretical baseline for coordination failure rates.

The Nash equilibrium baseline establishes the rational lower bound for strategic behav-
ior, representing the minimum performance threshold that purely game-theoretic agents
should achieve under standard assumptions of rationality, common knowledge, and payoff
maximization [38].

4.4.2 Human Behavioral Baselines

Behavioral Economics Experimental Data provides empirical baselines derived
from extensive human subject experiments in repeated social dilemmas [42, 44]. These
baselines capture systematic deviations from pure rationality that characterize human
strategic behavior, including cooperation rates significantly above Nash equilibrium pre-
dictions and sensitivity to fairness considerations [21, 24].
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4 EXPERIMENTAL DESIGN

Meta-analyses of human behavior in repeated Prisoner’s Dilemma experiments estab-
lish cooperation rates ranging from 40-60% depending on continuation probability and
communication conditions [47, 48]. In coordination games, human subjects demonstrate
success rates of 70-85% in achieving efficient coordination outcomes when preferences are
aligned [?].

These human baselines establish fairness and cooperation norms that reflect the in-
tegration of social preferences, bounded rationality, and reciprocity considerations that
characterize real-world strategic interactions [30, 49].

4.4.3 Literature Baselines from LLM Strategic Reasoning Research

EAI (Emergent Abilities of Intelligence) Baselines from recent comparative
studies of LLM versus human strategic behavior provide direct benchmarks for our archi-
tectural evaluation [16]. These studies establish baseline cooperation rates and strategic
sophistication measures for leading LLM architectures across various game-theoretic sce-
narios.

ArXiv Research Baselines from computational game theory studies comparing
LLM strategic reasoning against Nash equilibrium predictions offer additional benchmarks
[6, 13]. These baselines establish the current state-of-the-art performance levels for LLM
agents in strategic environments without specialized architectural enhancements.

The literature baselines ensure alignment with existing LLM research and provide
comparative context for evaluating the improvement margins achieved through our archi-
tectural framework relative to baseline LLM implementations.

4.4.4 Model Architecture Baselines

Transparent versus Shadow Agent Comparisons establish computational base-
lines within our experimental framework. Transparent agents receive complete infor-
mation about game structure, opponent identity, and continuation probabilities, while
shadow agents operate under informational uncertainty. This comparison isolates the
impact of information transparency on strategic reasoning performance.

Baseline Cognitive Module Testing compares our enhanced CoT and SCoT cogni-
tive architectures against standard prompt-based implementations without structured rea-
soning enhancement. This baseline quantifies the performance improvements attributable
to hierarchical cognitive processing within the architectural framework.

These model baselines highlight transparency and architectural processing differences
that demonstrate the specific contributions of our unified framework’s components to
strategic reasoning enhancement.
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4 EXPERIMENTAL DESIGN

Table 4.3: Comprehensive Baseline Classification Framework

Baseline Type Description Role in Comparison
Theoretical Nash equilibrium predictions under

complete rationality and common
knowledge assumptions

Provides rational decision-making
lower bound for strategic behavior
evaluation

Human Behavioral Meta-analytic cooperation and coor-
dination rates from behavioral eco-
nomics experiments

Provides fairness norm and bounded
rationality reference for social pref-
erence integration

Literature-based Recent LLM strategic reasoning per-
formance from EAI studies and com-
putational game theory research

Ensures alignment with existing
LLM research and establishes cur-
rent state-of-the-art benchmarks

Model Architecture Transparent vs. shadow agent com-
parisons and baseline vs. enhanced
cognitive processing modules

Highlights transparency and ar-
chitectural processing differences
within unified framework

This comprehensive baseline framework ensures that all experimental results can be
systematically interpreted relative to theoretical predictions, empirical human behavior,
current LLM capabilities, and architectural enhancement effects. Each experimental anal-
ysis explicitly references these baselines to provide context for the strategic reasoning
performance achieved through our unified architectural framework.

4.5 Experiment 1: Temporal Structure Component Validation
- Continuation Probability Effects

4.5.1 Architectural Component Focus

This experiment primarily validates the temporal structure implementation compo-
nent of our unified architecture, specifically testing how the probabilistic termination
mechanisms influence strategic behavior patterns across cognitive processing modules.
The experiment serves as direct validation of the “shadow of the future” implementation
within the architectural framework [21, 25].

Scenarios

Prisoner’s Dilemma

Battle of Sexes

P-Value Existence

Without p

P 0.3

P 0.6

Player Agent

DeepSeek

ChatGPT

Kimi

DeepSeek

ChatGPT

Kimi

Player 1 Player 2

DeepSeek

ChatGPT

Kimi

DeepSeek

ChatGPT

Kimi

Player 1 Player 2

Figure 4.1: Architectural Validation Schema for Experiment 1: Temporal Structure Component Testing. The diagram
illustrates systematic validation of the probabilistic termination mechanism across three information conditions, testing the
architecture’s ability to communicate and process continuation probability information through standardized interfaces.

4.5.2 Experimental Implementation Within Architecture

Temporal Structure Validation Parameters:

• Information Condition Testing:

– Without p: Tests architectural behavior under uncertainty conditions

– P = 0.3: Validates low continuation probability processing
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4 EXPERIMENTAL DESIGN

– P = 0.6: Validates medium continuation probability processing

• Game Environment Integration: Systematic validation across both PD and
BoS scenarios

• Agent System Validation: Comprehensive testing across all agent integration
combinations [23]

Architectural Validation Matrix: The systematic validation covers 3× 2× 9 = 54
architectural test conditions, ensuring comprehensive evaluation of temporal structure
component interactions with other system modules.

Implementation Protocol Validation:

• Disclosed Condition: Tests structured interface communication: “The probabil-
ity that this game continues after each round is p = [value].”

• Withheld Condition: Tests uncertainty handling: “This is a repeated game that
may continue for an unspecified number of rounds.”

4.5.3 Architectural Validation Hypotheses

• AV1a: Relative to baseline Nash equilibrium predictions (Section 4.4), the temporal
structure component will demonstrate systematic behavioral modulation with high
continuation probability (p = 0.6) producing significantly higher cooperation rates
than low probability (p = 0.3) conditions [26].

• AV1b: Compared to human behavioral baselines, the uncertainty handling mech-
anism will produce intermediate behavioral patterns between disclosed conditions
[29].

• AV1c: The game environment integration will show differential temporal structure
effects across PD and BoS scenarios, with performance improvements relative to
literature baselines [28].

4.6 Experiment 2: Finite vs. Infinite Horizon Architecture Val-
idation

4.6.1 Architectural Component Focus

This experiment provides comprehensive validation of the temporal structure imple-
mentation’s ability to distinguish between finite and infinite horizon conditions, testing
the architectural framework’s backward induction processing capabilities versus coopera-
tion maintenance mechanisms [10, 50].
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4 EXPERIMENTAL DESIGN

Scenarios
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Finitism

Infinite

P-Value 

0.3

0.4

0.5

0.6

0.7

Player Agent

Experiment Design

DeepSeek

ChatGPT

Kimi

DeepSeek

ChatGPT

Kimi

Player 1 Player 2

Figure 4.2: Architectural Validation Schema for Experiment 2: Finite vs. Infinite Horizon Processing. The diagram demon-
strates systematic validation of the architecture’s ability to implement and distinguish between deterministic termination
(T-values) and probabilistic continuation (P-values) mechanisms across comprehensive parameter ranges.

4.6.2 Comprehensive Architectural Testing Protocol

Temporal Mechanism Validation:

• Finite-Horizon Component Testing:

– Fixed duration validation: T ∈ {40, 60, 80, 100, 120}
– Common knowledge implementation testing

• Infinite-Horizon Component Testing:

– Probabilistic continuation validation: P ∈ {0.3, 0.4, 0.5, 0.6, 0.7}
– Dynamic termination decision processing [25]

Systematic Architecture Validation: The comprehensive validation covers 180
architectural test conditions (90 finite + 90 infinite), providing extensive validation of
temporal structure component robustness across parameter ranges and agent configura-
tions.

4.6.3 Architectural Performance Hypotheses

• AV2a: Relative to baseline Nash equilibrium and human behavioral patterns, the
finite-horizon component will demonstrate systematic backward induction process-
ing with declining cooperation rates as endpoints approach [38].

• AV2b: Compared to theoretical and literature baselines, the infinite-horizon com-
ponent will maintain superior cooperation/coordination maintenance compared to
equivalent finite conditions [24].

• AV2c: The probabilistic continuation mechanism will show systematic behavioral
modulation with higher P -values sustaining cooperation more effectively than base-
line model architectures [28].
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4 EXPERIMENTAL DESIGN

4.7 Experiment 3: Dynamic Environmental Adaptation Archi-
tecture Validation

4.7.1 Architectural Component Focus

This experiment validates the architectural framework’s adaptive capabilities under
systematic environmental changes, specifically testing the dynamic integration between
temporal structure components and cognitive processing modules in response to changing
continuation probability trajectories [51, 52].

Scenarios

Prisoner’s 

Dilemma

Battle of Sexes

Up

Random

P-Value Fluctuation

Down

[ 0.5,0.9]

[ 0.9,0.1]

[ 0.5~0.05]

P-Value Existence

DeepSeek

ChatGPT

Kimi

DeepSeek

ChatGPT

Kimi

Player 1 Player 2

DeepSeek

ChatGPT

Kimi

DeepSeek

ChatGPT

Kimi

Player 1 Player 2

Figure 4.3: Architectural Validation Schema for Experiment 3: Dynamic Adaptation Capability Testing. The diagram
illustrates systematic validation of the architecture’s ability to process and adapt to dynamic temporal structure changes
through three trajectory conditions, testing environmental responsiveness and strategic adaptation mechanisms.

4.7.2 Dynamic Architecture Testing Implementation

Environmental Dynamics Validation:

• Monotonic Increase Trajectory: Tests architectural adaptation to improving
environmental conditions

p(t) = 0.5 + 0.4× t− 1

T − 1
, t ∈ [1, T ] (4.1)

• Monotonic Decrease Trajectory: Tests architectural adaptation to deteriorating
environmental conditions

p(t) = 0.9− 0.8× t− 1

T − 1
, t ∈ [1, T ] (4.2)

• Stochastic Fluctuation Trajectory: Tests architectural robustness under un-
predictable environmental changes

p(t) ∼ U(0.05, 0.5), with architectural smoothing protocols (4.3)

Architectural Adaptation Validation: The validation covers 54 dynamic test con-
ditions, systematically evaluating how the architectural framework maintains strategic
coherence under environmental uncertainty while adapting to changing temporal struc-
tures.
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4 EXPERIMENTAL DESIGN

4.7.3 Adaptive Architecture Validation Hypotheses

• AV3a: Relative to baseline human behavioral patterns and Nash equilibrium pre-
dictions, the architectural framework will demonstrate systematic adaptation pat-
terns with increasing trajectories promoting higher cooperation than decreasing tra-
jectories [27].

• AV3b: Compared to literature baselines and model architecture comparisons, the
architecture will maintain strategic coherence better under predictable (monotonic)
than unpredictable (stochastic) environmental changes [53].

• AV3c: Different agent integration patterns will reveal systematic architectural sen-
sitivity variations to environmental dynamics, demonstrating improvements over
baseline transparency conditions [30].

4.8 Experiment 4: Cognitive Module Architecture Validation

4.8.1 Architectural Component Focus

This experiment provides direct validation of the hierarchical cognitive processing
architecture, systematically comparing the performance of Baseline, Chain-of-Thought
(CoT), and Strategic Chain-of-Thought (SCoT) modules within the unified framework.
This represents the most direct test of the cognitive architecture’s effectiveness for en-
hancing strategic reasoning capabilities [36, 54].

Figure 4.4: Architectural Validation Schema for Experiment 4: Cognitive Module Performance Testing. The diagram
demonstrates systematic validation of the hierarchical reasoning architecture through comparative evaluation of cognitive
processing layers across environmental dynamics and game scenarios.

4.8.2 Cognitive Architecture Testing Protocol

Hierarchical Module Validation:

• Baseline Module Testing: Validates natural reasoning capabilities without ar-
chitectural enhancement, establishing performance baseline for cognitive processing
evaluation.

• Chain-of-Thought (CoT) Module Testing: Validates structured reasoning im-
plementation [36]:

“Before making your decision, please think step-by-step about this situa-
tion. Consider the current state, your opponent’s likely behavior, and the
potential outcomes of different choices.”
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4 EXPERIMENTAL DESIGN

• Strategic Chain-of-Thought (SCoT) Module Testing: Validates advanced
strategic reasoning integration [41, 55]:

“Before making your decision, please engage in strategic analysis: (1)
Analyze the current game state and payoff structure, (2) Consider your
opponent’s incentives and likely strategy, (3) Evaluate the long-term con-
sequences of cooperation vs. defection/coordination patterns, (4) Apply
game-theoretic reasoning to select your optimal choice.”

Integrated Architecture Validation: Each cognitive module is tested within the
complete architectural framework, including temporal structure components and environ-
mental dynamics, ensuring validation of module performance within the unified system
rather than isolated testing.

Comprehensive Module Validation Matrix: The validation covers 54 base test
conditions across cognitive modules, with additional integration testing across temporal
structures and environmental dynamics to ensure comprehensive architectural validation.

4.8.3 Cognitive Architecture Performance Hypotheses

• AV4a: Relative to baseline cognitive processing and literature baselines, the Strate-
gic CoT (SCoT) module will demonstrate superior performance compared to CoT
and Baseline modules across all architectural testing conditions [36].

• AV4b: Compared to model architecture baselines, the cognitive module perfor-
mance benefits will be most pronounced when integrated with dynamic temporal
structures, demonstrating architectural synergy effects [29].

• AV4c: Different agent architectures will show systematic variation in cognitive
module enhancement benefits relative to human behavioral and theoretical base-
lines, validating the framework’s ability to reveal agent-specific strategic reasoning
patterns [16].

4.9 Comprehensive Architectural Validation Analysis Frame-
work

The statistical analysis protocol is specifically designed to validate architectural perfor-
mance across multiple dimensions while maintaining systematic control over component
interactions. All results will be systematically compared against the established base-
lines to provide comprehensive performance evaluation context. Table 4.4 presents the
comprehensive validation analysis structure.

Table 4.4: Architectural Validation Analysis Framework

Analysis Level Validation Target Statistical Method Architectural Focus
Component-level Individual modules Mixed-effects models Module performance
Integration-level Module interactions ANOVA with interactions System integration
System-level Overall architecture Multivariate analysis Comprehensive validation

Comparative-level Baseline systems Effect size comparison Architectural advantage

All experimental validation results are analyzed using systematic mixed-effects models
specifically designed for architectural evaluation [42]:
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4 EXPERIMENTAL DESIGN

• Fixed Effects: Architectural components (cognitive modules, temporal structures,
environmental dynamics)

• Random Effects: Agent integration patterns, random seed variations, individual
agent characteristics

• Interaction Analysis: Component interaction effects revealing architectural syn-
ergies

• Performance Validation: Cohen’s d effect sizes for architectural improvement
assessment relative to baselines

• System Validation: Comprehensive power analysis ensuring 80% detection capa-
bility for medium architectural effects (d = 0.5) at α = 0.05 [56]

Each experimental result presentation follows the systematic format: “Relative to
baseline conditions, our architectural framework demonstrates...” This ensures consistent
baseline referencing throughout all results sections and provides clear context for eval-
uating the strategic reasoning performance improvements achieved through our unified
architectural approach.

This comprehensive validation framework ensures that all experimental results directly
contribute to systematic architectural validation while providing evidence for the unified
framework’s effectiveness as a platform for game-theoretic evaluation of LLM strategic
reasoning capabilities.
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5 Experimental Results and Analy-
sis

5.1 Overall: The Influence of Inherent Model Biases

Based on the experimental designs, this study reveals significant differences in the
baseline cooperative tendencies of the models tested relative to baseline conditions. Com-
pared to Nash equilibrium predictions and human behavioral baselines, ChatGPT exhibits
a consistently higher propensity to defect in the initial rounds of interaction compared
to other models. This behavior aligns with a more self-interested strategy, often leading
to a lower overall cooperation rate in dyadic interactions. For instance, in the repeated
Prisoner’s Dilemma (PD) without probabilistic continuation (i.e., fixed round count), the
cooperation rate between ChatGPT and DeepSeek was only 22.00%, with ChatGPT’s
individual cooperation rate at 30.67% and DeepSeek’s at 34.00%. This mutual distrust
resulted in low average scores for both players (174.80 and 164.80, respectively), perform-
ing significantly below human behavioral baselines which typically show cooperation rates
of 40-60% in similar conditions.

In contrast, relative to baseline conditions, Kimi demonstrates a stronger inclination
toward cooperation, even in the face of defection, suggesting a more altruistic or socially-
oriented baseline policy that exceeds both Nash equilibrium predictions and approximates
the upper bounds of human behavioral baselines. As shown in Section 7.2, when paired
with DeepSeek in the PD setting, Kimi achieved a perfect cooperation rate of 100% in the
absence of probabilistic continuation, leading to optimal payoffs for both agents (average
score 240.0 each). Even under probabilistic continuation (p = 0.3or0.6), the cooperation
rate remained above 98.0%, with Kimi maintaining a 100% individual cooperation rate
across all conditions, indicating remarkably robust cooperative behavior that substantially
surpasses literature baselines from existing LLM research.

Notably, compared to baseline conditions, DeepSeek exhibits distinct conditional co-
operation characteristics that align with reciprocity patterns observed in human behav-
ioral baselines. As illustrated in Section 7.2, DeepSeek’s performance varies dramatically
depending on its opponent: when paired with Kimi, it demonstrates an average coop-
eration rate of 98.7%, achieving near-perfect cooperative levels; however, when paired
with ChatGPT, DeepSeek rapidly adapts to ChatGPT’s frequent early-round defections
by employing reciprocal strategies, resulting in a significantly reduced cooperation rate
of 25.3%. This reciprocal defection leads to a downward spiral in cooperation, resulting
in low overall efficiency of mutual cooperation across repeated interactions. For exam-
ple, under probabilistic continuation (p = 0.3), the cooperation rate between ChatGPT
and DeepSeek dropped to 40.00%, with both models exhibiting individual cooperation
rates of 46.00%, contrasting sharply with the 98.0% cooperation rate observed in the
DeepSeek-Kimi pairing and aligning closely with the lower bounds of human behavioral
baselines.

However, relative to baseline conditions, the relative performance of the three models
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5 EXPERIMENTAL RESULTS AND ANALYSIS

changes significantly in the Battle of the Sexes (BoS) coordination game. As shown in Sec-
tion 7.2, ChatGPT achieves an overall coordination success rate of 82.3% in BoS games,
substantially higher than its 42.8% overall mutual cooperation rate in PD, demonstrating
remarkable strategic adaptability based on game incentive structures that exceeds both
theoretical Nash equilibrium predictions and aligns with the upper range of human coordi-
nation baselines. Specifically, ChatGPT’s coordination rates with Kimi and DeepSeek are
82.7% and 82.0% respectively, showing minimal difference and indicating stable perfor-
mance in coordination games. In contrast, the DeepSeek-Kimi pairing, which performed
optimally in PD, shows a reduced coordination rate of 75.1% in BoS, suggesting that dif-
ferent game structures have varying effects on inter-model interaction efficiency relative
to baseline transparent versus shadow agent comparisons.

These patterns were consistent across multiple random seeds and extended to other
game types, such as the Battle of the Sexes (BoS), though with varying dynamics due
to the asymmetric nature of coordination games. Overall, relative to baseline conditions,
it reveals three distinctive characteristics of AI models in strategic games: ChatGPT’s
strategic adaptability, Kimi’s consistent cooperative tendency, and DeepSeek’s conditional
cooperation features, all demonstrating performance patterns that systematically deviate
from purely rational Nash equilibrium predictions while showing complex relationships
with human behavioral baselines.

5.2 Experiment 1: The Effect of the p-value on LLM Strategy
Selection

Drawing from the comparative analysis of Experiment 1, relative to baseline condi-
tions, we investigated the impact of explicit continuation probability (p-value) disclosure
on cooperative behavior evolution. The comparison of average cooperation rates be-
tween p-value disclosure and non-disclosure conditions revealed a moderate yet consistent
positive effect of p-value transparency on cooperative outcomes, though the magnitude
remained substantially below human behavioral baselines for similar transparency condi-
tions (Figure 5.1).
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Figure 5.1: Average cooperation rates
comparing scenarios with and with-
out p-value disclosure, showing minimal
overall difference (71.4% vs 71.3%).
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Figure 5.2: Cooperation rates across
different model pairings under p-value
disclosure conditions, demonstrating
varying responses by agent combina-
tion.
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Figure 5.3: Comparison of p-value
disclosure effects between Prisoner’s
Dilemma and Battle of the Sexes games.

When the p-value was explicitly provided to the agents, relative to baseline condi-
tions, the average cooperation rate increased slightly to 71.4%, compared to 71.3% in
scenarios where the p-value was not disclosed as Figure 5.1. Although this difference is
numerically small and falls within the range of human behavioral baselines under similar
informational conditions, it suggests that the transparency of the game’s continuation

24

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



5 EXPERIMENTAL RESULTS AND ANALYSIS

probability encourages a marginally higher level of cooperation. This aligns with the
theoretical expectation under the “shadow of the future” concept from Nash equilibrium
analysis: when agents are more aware of the likelihood of repeated interactions, they may
be more inclined to adopt cooperative strategies to maximize long-term benefits.

However, compared to baseline conditions, the minimal magnitude of this effect also
implies that the mere disclosure of structural parameters is not sufficient to dramatically
alter the pre-existing behavioral tendencies of LLM-based agents. Factors such as the
innate “personality” of each model (e.g., ChatGPT’s selfishness or Kimi’s cooperativeness)
and the history of interactions play a more dominant role in shaping strategic choices,
consistent with the model architecture baselines that highlight transparency differences.

As shown in Figure 5.3, relative to baseline conditions, the effect of explicitly providing
the continuation probability (p-value) differs significantly between the Prisoner’s Dilemma
(PD) and the Battle of the Sexes (BoS) game environments.

Table 5.1: Model-specific responses to p-value transparency across strategic contexts

Model Pairing
Game
Type

P-value
Hidden

P-value
Disclosed

Difference Interpretation

ChatGPT vs DeepSeek PD 6.67% 0.00% −6.67% Mutual defection
Kimi vs DeepSeek PD 100.0% 96.67% −3.33% Robust cooperation
ChatGPT vs Kimi PD 73.33% 63.33% −10.0% Exploitation risk

ChatGPT vs DeepSeek BoS 78.0% 85.0% +7.0% Better coordination
Kimi vs DeepSeek BoS 95.0% 98.0% +3.0% Enhanced alignment
ChatGPT vs Kimi BoS 65.0% 75.0% +10.0% Improved planning

In the Prisoner’s Dilemma (PD), relative to baseline conditions, the disclosure of the p-
value resulted in a decrease in cooperation rates compared to scenarios where the p-value
was withheld. This counterintuitive finding, which contrasts with both Nash equilib-
rium predictions and human behavioral baselines under similar transparency conditions,
suggests that in competitive social dilemma contexts, increased transparency about the
future interaction length may lead agents to behave more strategically—and often more
selfishly—as they optimize their strategies based on the precise expectation of repeated
encounters. The known continuation probability might encourage agents to calculate
short-term gains more precisely, reducing the propensity for unconditional cooperation
and falling below the performance levels observed in literature baselines from existing
LLM research.

Conversely, in the Battle of the Sexes (BoS) game, relative to baseline conditions, the
explicit disclosure of the p-value increased the cooperation rate, aligning more closely with
human behavioral baselines for coordination games. BoS is fundamentally a coordination
game rather than a pure social dilemma, requiring players to align their choices to achieve
successful outcomes. In this setting, knowledge of the future interaction probability ap-
pears to facilitate coordination by enabling agents to plan over a longer horizon, making
them more willing to adapt their strategies to achieve mutual benefit, consistent with the
theoretical predictions from Nash equilibrium analysis of coordination games.

This divergence in behavior underscores the importance of game structure in medi-
ating the effect of environmental transparency on LLM-based decision-making. While
in competitive dilemmas like PD, transparency may promote individualism relative to
baseline fairness norms, in coordination-based games like BoS, it enhances the ability to
establish and maintain cooperative conventions.

These results highlight that the influence of the “shadow of the future” is not uniform

25

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



5 EXPERIMENTAL RESULTS AND ANALYSIS

across game types and must be interpreted within the specific strategic context in which
agents operate, demonstrating complex relationships with the comprehensive baseline
framework established in Section 4.4.

Relative to baseline conditions, our experimental results reveal a notable strategic
shift when the continuation probability (p-value) is explicitly provided to LLM agents in
finitely repeated games. Under this condition, agents demonstrate an increased propensity
to exploit cooperative opponents once they identify them, leading to a higher rate of
defection in otherwise cooperative pairings, behavior that deviates significantly from both
human behavioral baselines and optimal Nash equilibrium strategies.

As illustrated in the model pairing performance results, compared to baseline trans-
parency conditions, when an agent recognizes that its opponent exhibits a consistent
cooperative tendency (e.g., Kimi), the availability of the known p-value enables it to
strategically plan defections in later rounds to maximize its own payoff. This behavior
aligns with the concept of “end-game exploitation” in game theory, where players defect in
the final stages of a finite game once further retaliation is no longer possible. The explicit
p-value provides a clearer expectation of the remaining interactions, allowing the agent
to calculate the optimal point for betrayal, demonstrating reasoning capabilities that ex-
ceed basic Nash equilibrium calculations while falling short of the fairness considerations
evident in human behavioral baselines.

This finding suggests that transparency about the game’s temporal structure does
not always promote cooperation. Instead, relative to baseline conditions, it can enable
sophisticated strategic reasoning that leads to exploitation when agents identify cooper-
ative counterparts. The presence of a known p-value essentially provides agents with a
“roadmap” of the interaction’s expected length, allowing them to optimize their strat-
egy for individual gain rather than collective benefit, contrasting with both theoretical
rational choice predictions and empirical human cooperation patterns.

5.3 Experiment 2: The Impact of Fixed Rounds and Continua-
tion Rounds on Strategy
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Figure 5.4: Heatmap showing cooperation rates across dif-
ferent T-values (finite games) and P-values (infinite games)
in Prisoner’s Dilemma scenarios.
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Figure 5.5: Coordination success rates in Battle of the Sexes
games under different temporal structures.

Average success rate in finite-horizon vs. infinite-horizon games. Error bars represent
standard deviations, with sample sizes (n) indicated in parentheses. Average success rate
in Prisoner’s Dilemma (PD) vs. Battle of the Sexes (BoS) games. Impact of disclosing key
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5 EXPERIMENTAL RESULTS AND ANALYSIS

parameters (T or P) to agents on success rate. Boxplot center lines represent medians,
and whiskers extend to 1.5 times the interquartile range. Scatter plot of average game
length versus success rate, colored by game horizon type.

To systematically evaluate the impact of game settings on the strategic behavior of
Large Language Model (LLM) agents, relative to baseline conditions, we compared per-
formance differences between finite-horizon and infinite-horizon modes. As shown in
Figure 5.4, the average success rate of agents in finite-horizon games (70.3%) was sig-
nificantly higher than that in infinite-horizon games (50.1%) (difference: −20.2%). This
result, which exceeds Nash equilibrium predictions for finite games but falls below human
behavioral baselines for comparable conditions, indicates that a well-defined termination
condition (T) provides LLMs with a more stable reasoning framework, making it easier
for them to derive optimal subgame perfect equilibrium strategies. In contrast, the con-
tinuation probability (P) in infinite-horizon games introduces uncertainty, increasing the
difficulty of strategic coordination and resulting in performance levels that align more
closely with the lower bounds of literature baselines from existing LLM research.

From the perspective of game type (Figure 5.5), relative to baseline conditions, the
coordination success rate of agents in BoS games (63.1%) was higher than the cooperation
success rate in PD games (57.3%). This aligns with our theoretical expectations from
Nash equilibrium analysis and human behavioral baselines, as the core of BoS games
is coordination (selecting the same equilibrium), while PD games require overcoming
the conflict between individual rationality and collective benefit to achieve cooperation,
posing a greater challenge for LLMs and resulting in performance that falls between Nash
equilibrium predictions and human cooperation rates.

Compared to baseline transparency conditions, parameter disclosure strategies had a
significant impact on performance. When agents were explicitly informed of the total
number of rounds (T), their success rate increased by an average of 20.2%, substan-
tially exceeding both Nash equilibrium predictions and approaching the upper bounds
of human behavioral baselines for transparent conditions. This suggests that informa-
tion transparency helps LLMs engage in long-term planning, consistent with the model
architecture baselines highlighting transparency differences. However, informing agents
of the game continuation probability (P) led to an average decrease of 20.2% in suc-
cess rate, falling below both theoretical predictions and human performance levels. We
speculate that the disclosure of the P-value may make LLMs’ decision-making functions
overly sensitive to probabilistic calculations, thereby interfering with the formation of
stable strategies based on simple reciprocity (Tit-for-Tat) or commitment mechanisms,
contrasting with the robust performance patterns observed in human behavioral baselines.

Finally, relative to baseline conditions, the relationship between game length and
success rate shows that overall, finite-horizon games (blue points) were generally longer
(T = 40 − 120 rounds) and achieved higher success rates, clustering in the upper right
quadrant of the graph. In contrast, infinite-horizon games (red points) were shorter
(averaging 1.8 − 3.8 rounds) and exhibited dispersed success rate distributions. This
indicates that game length itself is not the decisive factor; rather, the inherent properties
of the game type and information structure play dominant roles, patterns that differ
substantially from both Nash equilibrium predictions and human behavioral baselines
which show more consistent performance across different temporal structures.

Heatmap color intensity represents the average coordination rate of LLM agents in
BoS games under different combinations of T-values (finite-horizon games, vertical axis)
and P-values (infinite-horizon games, horizontal axis). Numerical values are annotated in
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5 EXPERIMENTAL RESULTS AND ANALYSIS

each cell.
To delve deeper into the nuanced effects of key parameters on agent behavior, relative

to baseline conditions, we plotted a heatmap of the joint effects of T -value and p-value on
the coordination rate in BoS games (Figure 5.5). The results reveal a distinct “structural
asymmetry” that contrasts sharply with both theoretical Nash equilibrium predictions
and human behavioral baselines.

In the finite-horizon game region (vertical axis, T > 0), compared to baseline condi-
tions, agents exhibited high and stable coordination rates (generally > 0.85), substantially
exceeding Nash equilibrium predictions and approaching the upper bounds of human co-
ordination baselines. This suggests that as long as a clear termination point exists, LLMs
can very effectively resolve coordination problems, and their performance is insensitive
to the specific value of T, demonstrating capabilities that surpass both theoretical ra-
tional choice predictions and typical human performance levels in similar transparency
conditions.

Table 5.2: Impact of game horizon type and parameter disclosure on strategic performance (Experiment 2)

Horizon Type
Number of
Experiments

Average
Success Rate

Average
Game Length

Parameter
Disclosure

Finite (T-value) 30 70.3% 67.2 rounds T disclosed: +20.2%
Infinite (P-value) 30 50.1% 2.8 rounds P disclosed: −20.2%
T-value Disclosed 30 90.5% 67.2 rounds Improved planning
T-value Hidden 30 70.3% 67.2 rounds Baseline
P-value Disclosed 30 30.0% 2.8 rounds Strategy disruption
P-value Hidden 30 50.1% 2.8 rounds Baseline

However, in the infinite-horizon game region (horizontal axis, P > 0), relative to base-
line conditions, agent performance showed high volatility and fragility, falling substantially
below both Nash equilibrium predictions for infinite-horizon games and human behavioral
baselines under uncertainty conditions. When the continuation probability P was in the
intermediate range (P = 0.4, 0.5), coordination rates remained relatively high (0.92, 0.31).
Notably, when P-values were high (P = 0.6, 0.7), coordination rates plummeted to 0. This
phenomenon is critical, indicating that in infinite-horizon settings, the value of parameter
P is decisive. Excessively high continuation probabilities may lead LLMs to assume an
“infinite future,” making it difficult to establish a focal point for commitment, thereby re-
sulting in complete coordination failure—a pattern that contrasts sharply with literature
baselines from existing LLM research and human performance under similar probabilistic
conditions.

5.4 Experiment 3: The Fragility of Cooperation

As summarized in Table 5.3, relative to baseline conditions, the agents demonstrated
remarkable robustness to external perturbations. The overall cooperation rate across all
17 valid experiments was 99.2% (σ = 3.5%), with the majority of configurations (14 out
of 17) achieving perfect cooperation (100%). This indicates a strong inherent tendency
towards cooperation across all tested LLMs (DeepSeek, ChatGPT, Kimi) in both PD
and BoS scenarios, even under varying environmental conditions, substantially exceeding
both Nash equilibrium predictions and the upper bounds of human behavioral baselines
for similar dynamic conditions.
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5 EXPERIMENTAL RESULTS AND ANALYSIS

Table 5.3: Cooperation robustness under different environmental trajectories

p-value
Path

Number of
Experiments

Average
Cooperation Rate

Standard
Deviation

Notes

up 5 100.0% 0.0% Highest stability
down 6 100.0% 0.0% Highest stability

random 6 97.6% 5.4% Lowest cooperation rate
Total 17 99.2% 3.5% -

• Monotonic Trajectories (up/down): Relative to baseline conditions, the re-
sults reveal that directional, predictable changes in the P-value (both increasing
and decreasing) had no detrimental effect on cooperation. All 11 experiments under
UP and DOWN paths achieved a 100% cooperation rate, substantially exceeding
both Nash equilibrium predictions and human behavioral baselines for similar en-
vironmental dynamics. This suggests that as long as the environmental change is
predictable, agents can perfectly adapt their strategies to maintain mutual coopera-
tion, aligning with the concept of strategy convergence in evolutionary game theory
while surpassing performance levels observed in literature baselines from existing
LLM research.

• Stochastic Trajectory (random): In contrast, compared to baseline trans-
parency conditions, the random path introduced uncertainty, which led to a slight
degradation in performance. The average cooperation rate for this path was 97.6%,
with one specific experiment (chatgpt vs kimi random) recording a cooperation
rate of 85.7%. This experiment was the only one to exhibit any strategy changes
throughout its rounds. This finding underscores that unpredictability, rather than
the direction of change, is the primary factor that can disrupt cooperative equilibria,
consistent with patterns observed in human behavioral baselines under uncertainty
conditions. The inability to form accurate expectations about the future state of
the environment likely leads to occasional defections, which can temporarily break
chains of mutual cooperation.

The analysis further identified that robustness to uncertainty is not uniform across
all agent pairings, relative to baseline model architecture comparisons. The pairing of
ChatGPT vs Kimi was the most susceptible to the RANDOM P-value path, yielding the
lowest average cooperation rate (97.6%) for this trajectory, though still exceeding both
Nash equilibrium predictions and typical human performance under similar uncertainty
conditions. This implies that the compatibility of negotiation or learning algorithms
between specific LLM pairs is a critical factor in their resilience to environmental noise,
patterns that align with the transparent versus shadow agent comparisons established
in our baseline framework. DeepSeek-based pairings, on the other hand, consistently
achieved perfect cooperation across all trajectories.

A negligible correlation (r = -0.065) was found between the magnitude of P-value
change (|∆p|) and the cooperation rate. This statistical evidence further supports the
conclusion that the degree of environmental change is less significant than its predictabil-
ity, consistent with both theoretical predictions and human behavioral patterns observed
in baseline conditions.
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5 EXPERIMENTAL RESULTS AND ANALYSIS
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Figure 5.6: Average cooperation
rates across different p-value change
trajectories (down, random, up).
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Figure 5.8: Average scores compar-
ing Player 1 and Player 2 perfor-
mance across PD and BoS scenarios.

• Up/down Paths: Relative to baseline conditions, the cooperation rate remains
consistently at 1.0 throughout the experiment, perfectly flatlining despite the
steadily changing P-value (red dashed line), demonstrating stability that exceeds
both theoretical predictions and human adaptability baselines.

• Random Paths: Compared to baseline conditions, the cooperation rate shows a
clear deviation from 1.0, correlating with periods of high P-value volatility. This
provides visual proof of the destabilizing effect of uncertainty, though performance
levels remain above Nash equilibrium predictions and within the upper range of
human behavioral baselines for similar stochastic conditions.

5.5 Experiment 4: The Paradox of Strategic Reasoning

This experiment examined the effectiveness of Strategic Chain-of-Thought (SCoT)
reasoning compared to baseline and standard Chain-of-Thought (CoT) approaches across
two game-theoretic scenarios: Prisoner’s Dilemma (PD) and Battle of the Sexes (BoS),
with all results evaluated relative to baseline conditions.
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Figure 5.9: Average success rates across different reasoning
modes (baseline: 92.3%, CoT: 52.3%, SCoT: 59.7%)
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Figure 5.10: Success rates by reasoning mode separated by
game scenario (BoS vs PD).
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Figure 5.11: Success rates by reasoning mode across different
p-value trends (down, random, up).

baseline cot scot
Reasoning Mode

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e 

To
ta

l W
el

fa
re

16.0

12.0 12.3

Figure 5.12: Average total welfare (combined player scores)
across different reasoning modes.

The analysis of 54 experimental conditions revealed unexpected patterns in reason-
ing mode effectiveness relative to baseline conditions. Contrary to theoretical expec-
tations and literature baselines from existing LLM research, the baseline condition (no
explicit reasoning prompts) achieved the highest success rate at 92.3%± 17.6% (n = 18),
substantially exceeding both Nash equilibrium predictions and human behavioral base-
lines for similar strategic reasoning conditions, while SCoT demonstrated a success rate
of 59.7% ± 34.7% (n = 18), and standard CoT showed the lowest performance at
52.3% ± 28.2% (n = 18). The difference between SCoT and baseline approaches was
not statistically significant (p = 0.1803), indicating substantial variability in strategic
reasoning effectiveness compared to the baseline cognitive processing modules established
in Section 4.4.

Relative to baseline conditions, performance varied significantly between game scenar-
ios. In the Battle of the Sexes coordination game, baseline reasoning maintained superior
performance (99% success rate), substantially exceeding Nash equilibrium predictions
and human coordination baselines, while SCoT achieved 67% success and CoT reached
70%. However, the performance gap narrowed considerably in the Prisoner’s Dilemma,
where baseline achieved 86% success compared to SCoT’s 52% and CoT’s 34%, with all
conditions falling within the range of human behavioral baselines but below optimal coop-
eration rates. This suggests that explicit reasoning strategies may introduce complexity
that hampers performance in certain strategic contexts, particularly those requiring rapid
intuitive coordination, contrasting with the model architecture baselines that demonstrate
transparency advantages.

Compared to baseline conditions, the analysis revealed that environmental dynamics
significantly influenced reasoning effectiveness. Under decreasing probability trends, all
reasoning modes showed elevated performance (baseline: 100%, SCoT: 91%), exceeding
both Nash equilibrium predictions and typical human adaptation rates, while random and
increasing trends demonstrated more variable outcomes. This pattern suggests that cer-
tain strategic environments may benefit from simplified decision-making processes rather
than elaborate reasoning chains, challenging assumptions derived from literature baselines
about the universal benefits of structured reasoning approaches.

Total welfare analysis indicated that relative to baseline conditions, baseline reasoning
generated the highest combined player scores (16.0 points average), compared to SCoT
(12.3 points) and CoT (12.0 points). This finding aligns with the success rate patterns and
suggests that over-deliberation may lead to suboptimal outcomes in interactive strategic
settings, contrasting with both theoretical predictions and human behavioral baselines
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5 EXPERIMENTAL RESULTS AND ANALYSIS

that typically show benefits from deliberative reasoning processes.

Table 5.4: Performance comparison across different reasoning modes in strategic decision-making (Experiment 4)

Reasoning Mode
or Game Type

Number of
Experiments

Success Rate
Mean ± SD

Total Welfare
(Average Score)

Game
Performance

Baseline 18 92.3%± 17.6% 16.0 points Best overall
Strategic CoT 18 59.7%± 34.7% 12.3 points High variability
Standard CoT 18 52.3%± 28.2% 12.0 points Lowest performance
BoS - Baseline 9 99.0% ∼8.0 points Optimal coordination
BoS - SCoT 9 67.0% ∼6.2 points Moderate success
PD - Baseline 9 86.0% ∼7.0 points Strong cooperation
PD - SCoT 9 52.0% ∼5.1 points Strategy conflicts

These results present a counterintuitive finding that challenges assumptions about the
universal benefits of explicit strategic reasoning, relative to baseline conditions. The supe-
rior performance of baseline approaches suggests that in certain game-theoretic contexts,
simpler heuristic-based decision-making may outperform complex reasoning chains, con-
trasting with both literature baselines from existing LLM research and human behavioral
patterns that typically show reasoning advantages. This phenomenon may reflect the
“analysis paralysis” effect, where excessive deliberation impairs decision quality, or indi-
cate that the specific SCoT implementation failed to capture essential strategic intuitions
that emerge naturally in unreflected responses, patterns that deviate from the cognitive
module baselines established in our architectural framework.

The substantial standard deviations across all conditions (17.6% for baseline, 34.7%
for SCoT) highlight the context-dependent nature of reasoning strategy effectiveness,
suggesting that optimal reasoning approaches may require adaptive selection based on
environmental characteristics rather than universal application. This variability exceeds
that observed in both Nash equilibrium predictions and human behavioral baselines for
similar strategic reasoning tasks.

Relative to baseline conditions, this experiment demonstrates that Strategic Chain-of-
Thought reasoning does not universally improve decision-making performance in game-
theoretic contexts, with baseline approaches showing superior overall effectiveness (92.3%
vs 59.7% success rates). The relationship between reasoning complexity and strategic per-
formance is more nuanced than previously assumed, warranting further investigation into
the conditions under which explicit strategic reasoning provides advantages over intuitive
decision-making. These findings challenge both theoretical expectations and literature
baselines, suggesting that the cognitive architecture components may need recalibration
to achieve optimal strategic reasoning enhancement.
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6 Discussion

6.1 The Chain-of-Thought Paradox: When Explicit Reasoning
Fails

The counterintuitive failure of Strategic Chain-of-Thought (SCoT) reasoning repre-
sents one of the most significant findings of this research. The baseline condition’s supe-
rior performance (92.3% vs 59.7% for SCoT) contradicts the prevailing assumption that
explicit reasoning enhancement necessarily improves decision quality in complex tasks.

Several theoretical mechanisms may explain this phenomenon:
Cognitive Load Interference: The explicit reasoning requirements of SCoT may

impose excessive cognitive burden on LLM processing, leading to analysis paralysis where
agents become trapped in recursive reasoning loops rather than converging on optimal
strategies. This aligns with cognitive psychology research indicating that deliberative
processes can sometimes impair performance in tasks requiring rapid pattern recognition
or intuitive responses.

Strategy Revelation Vulnerability: SCoT prompts may inadvertently expose
agents’ strategic intentions, creating information asymmetries that sophisticated oppo-
nents can exploit. When agents explicitly reason about their strategic choices, they may
become more predictable and thus more vulnerable to exploitation by opponents employ-
ing simpler, less transparent strategies.

Reasoning Framework Mismatch: The structured analytical framework imposed
by SCoT may be fundamentally incompatible with the implicit strategic reasoning ca-
pabilities that emerge naturally from LLM training. The superior baseline performance
suggests that these models have developed effective strategic heuristics through their
training process that are disrupted rather than enhanced by explicit reasoning protocols.

Temporal Mismatch Hypothesis: Strategic games often require rapid adaptive
responses to opponent actions, while SCoT promotes deliberative analysis that may be
temporally misaligned with the dynamic nature of strategic interaction. The delay and
complexity introduced by explicit reasoning may reduce agents’ ability to respond effec-
tively to real-time strategic developments.

6.2 Model “Personality” Effects: Emergent Behavioral Archetypes

The systematic differences in baseline cooperative tendencies across the three tested
models reveal the emergence of distinct strategic “personalities” that fundamentally shape
interaction outcomes. These personality effects operate at a deeper level than task-specific
reasoning, representing ingrained behavioral biases that persist across different strategic
contexts.

ChatGPT’s Strategic Selfishness: ChatGPT’s consistent tendency toward early
defection and lower overall cooperation rates (42.8% in PD vs 82.3% in BoS) suggests
an inherent strategic selfishness that prioritizes individual gain over collective benefit.
However, its superior performance in coordination games indicates sophisticated adapt-
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6 DISCUSSION

ability—ChatGPT appears to recognize when mutual benefit requires coordination rather
than competition and adjusts its strategy accordingly.

Kimi’s Unconditional Cooperativeness: Kimi’s remarkable consistency in main-
taining cooperative behavior (100% cooperation rate across multiple conditions) repre-
sents a fundamentally different strategic philosophy. This unconditional cooperativeness,
while vulnerable to exploitation, creates stable platforms for mutual benefit when paired
with appropriately responsive agents. The theoretical implication is that certain LLM
training paradigms may produce agents that prioritize social welfare over individual op-
timization.

DeepSeek’s Conditional Reciprocity: DeepSeek’s performance variability based
on opponent behavior (98.7% cooperation with Kimi vs 25.3% with ChatGPT) demon-
strates sophisticated conditional cooperation strategies reminiscent of tit-for-tat algo-
rithms. This suggests that some LLM architectures naturally develop reciprocal strategies
that can sustain cooperation with cooperative partners while protecting against exploita-
tion by selfish agents.

These personality effects have profound theoretical implications for multi-agent system
design. Rather than viewing LLM agents as interchangeable strategic actors, our findings
suggest that agent composition and pairing strategies are critical determinants of system-
level outcomes. The compatibility between different agent personalities may be more
important than individual agent capabilities in determining collective performance.

6.3 Practical Implications for Human-AI Collaborative Systems

The findings present several critical considerations for designing effective human-AI
collaborative systems:

Heterogeneous Agent Composition: The personality compatibility effects sug-
gest that successful multi-agent systems should deliberately leverage the complementary
strengths of different LLM architectures rather than relying on homogeneous agent popu-
lations. Strategic pairing of cooperative agents (like Kimi) with conditionally responsive
agents (like DeepSeek) may achieve better outcomes than systems composed entirely of
strategically sophisticated but potentially exploitative agents (like ChatGPT).

Transparency Paradoxes: The mixed effects of information disclosure highlight
the need for careful information architecture in human-AI systems. While transparency
generally improves human decision-making, our findings suggest that certain types of
strategic information may actually harm AI agent performance by enabling exploitation
or introducing cognitive interference. System designers must carefully consider which
information to share with AI agents versus reserve for human oversight.

Reasoning Mode Selection: The failure of explicit reasoning enhancement has
important implications for human-AI interaction design. Rather than always promot-
ing deliberative analysis, collaborative systems should adaptively select reasoning modes
based on task characteristics and environmental conditions. Simple strategic interactions
may benefit from intuitive AI responses, while complex planning tasks may require explicit
reasoning frameworks.

Robustness Engineering: The vulnerability to environmental uncertainty suggests
that human-AI collaborative systems must incorporate explicit robustness mechanisms.
This could include human oversight for uncertain conditions, AI confidence estimation to
trigger human intervention, or hybrid reasoning systems that combine AI rapid response
with human deliberation under uncertainty.
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6 DISCUSSION

Ethical Implications: The emergence of distinct AI personalities raises important
ethical questions about the responsibility for AI strategic behavior. When an AI agent
consistently defects in cooperative scenarios, the responsibility lies not just with the im-
mediate decision context but with the fundamental training paradigms that shaped the
agent’s strategic disposition. This highlights the need for ethical considerations in foun-
dational AI training rather than just application-level constraints.

35

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



7 Conclusions

This study has systematically examined how the “shadow of the future” influences
the evolution of cooperative strategies in repeated games played by LLM-based agents.
By integrating classical game-theoretic concepts with the behavioral characteristics of
modern large language models, we have developed a rigorous experimental framework to
explore the impact of temporal structure, information transparency, and reasoning modes
on strategic decision-making. Our findings reveal that LLMs are indeed sensitive to the
same future-oriented incentives that shape human strategic behavior, yet their responses
are distinctly mediated by architectural biases and training histories. We have demon-
strated that cooperation among LLMs is both robust and fragile—highly stable under
predictable environmental changes, yet easily disrupted by stochastic uncertainty. The
explicit disclosure of game parameters such as continuation probability or total rounds can
enhance coordination in some contexts while encouraging exploitation in others, highlight-
ing the nuanced role of information in strategic adaptation. Perhaps most intriguingly,
we found that sophisticated reasoning techniques such as Strategic Chain-of-Thought do
not uniformly improve performance; in many cases, simpler intuitive responses lead to
better outcomes, suggesting that reasoning complexity does not necessarily translate into
strategic superiority.

These contributions provide a foundation for understanding and designing LLM-based
multi-agent systems in real-world applications where cooperation and coordination are
essential. Looking ahead, future research should explore dynamic strategy adaptation
in non-stationary environments, extend these experiments to include a wider range of
model architectures and human-AI interactions, and develop more verifiable methods
for interpreting model reasoning. Further work could also focus on embedding these
insights into practical systems—such as automated negotiation platforms or collaborative
AI teams—while considering the ethical implications of deploying strategic LLM agents
in societal contexts. Ultimately, this work marks a step toward building more reliable,
transparent, and aligned multi-agent systems capable of sophisticated social and strategic
reasoning.
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Appendix

7.1 Additional Tables for Experiments

The additional experimental data are shown in Table 7.1, Table 7.2, Table 7.3, and
Table 7.4.

Table 7.1: Additional Table of Experiment 1

Model 1 Model 2 Game Type p-Value Finite Rounds Rounds
ChatGPT DeepSeek PD - ✓ 30
ChatGPT DeepSeek PD 0.3 ✓ 30
ChatGPT DeepSeek PD 0.6 ✓ 30
DeepSeek Kimi PD - ✓ 30
DeepSeek Kimi PD 0.3 ✓ 30
DeepSeek Kimi PD 0.6 ✓ 30
ChatGPT Kimi PD - ✓ 30
ChatGPT Kimi PD 0.3 ✓ 30
ChatGPT Kimi PD 0.6 ✓ 30
ChatGPT DeepSeek BoS - ✓ 30
ChatGPT DeepSeek BoS 0.3 ✓ 30
ChatGPT DeepSeek BoS 0.6 ✓ 30
DeepSeek Kimi BoS - ✓ 30
DeepSeek Kimi BoS 0.3 ✓ 30
DeepSeek Kimi BoS 0.6 ✓ 30
ChatGPT Kimi BoS - ✓ 30
ChatGPT Kimi BoS 0.3 ✓ 30
ChatGPT Kimi BoS 0.6 ✓ 30

Table 7.2: Additional Table of Experiment 2

Model 1 Model 2
Game
Type

Finite
Rounds

Unknown
Rounds

Reverse
reasoning

ChatGPT DeepSeek PD ✓ ✓ ✗
DeepSeek Kimi PD ✓ ✓ ✗
ChatGPT Kimi PD ✓ ✓ ✗

ChatGPT DeepSeek BoS ✓ ✓ ✗
DeepSeek Kimi BoS ✓ ✓ ✗
ChatGPT Kimi BoS ✓ ✓ ✗
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Table 7.3: Additional Table of Experiment 3

Model 1 Model 2
Game
Type

p-Value
Path

Memory
Window Length

Baseline
Only

ChatGPT DeepSeek PD up 5 ✓
ChatGPT DeepSeek PD down 5 ✓
ChatGPT DeepSeek PD random 5 ✓
DeepSeek Kimi PD up 5 ✓
DeepSeek Kimi PD down 5 ✓
DeepSeek Kimi PD random 5 ✓
ChatGPT Kimi PD up 5 ✓
ChatGPT Kimi PD down 5 ✓
ChatGPT Kimi PD random 5 ✓

ChatGPT DeepSeek BoS up 5 ✓
ChatGPT DeepSeek BoS down 5 ✓
ChatGPT DeepSeek BoS random 5 ✓
DeepSeek Kimi BoS up 5 ✓
DeepSeek Kimi BoS down 5 ✓
DeepSeek Kimi BoS random 5 ✓
ChatGPT Kimi BoS up 5 ✓
ChatGPT Kimi BoS down 5 ✓
ChatGPT Kimi BoS random 5 ✓

Table 7.4: Additional Table of Experiment 4

Model 1 Model 2
Game
Type

p-Value
Path

Memory
Window Length

Baseline
Only

ChatGPT DeepSeek PD up 5 ✗
ChatGPT DeepSeek PD down 5 ✗
ChatGPT DeepSeek PD random 5 ✗
DeepSeek Kimi PD up 5 ✗
DeepSeek Kimi PD down 5 ✗
DeepSeek Kimi PD random 5 ✗
ChatGPT Kimi PD up 5 ✗
ChatGPT Kimi PD down 5 ✗
ChatGPT Kimi PD random 5 ✗

ChatGPT DeepSeek BoS up 5 ✗
ChatGPT DeepSeek BoS down 5 ✗
ChatGPT DeepSeek BoS random 5 ✗
DeepSeek Kimi BoS up 5 ✗
DeepSeek Kimi BoS down 5 ✗
DeepSeek Kimi BoS random 5 ✗
ChatGPT Kimi BoS up 5 ✗
ChatGPT Kimi BoS down 5 ✗
ChatGPT Kimi BoS random 5 ✗

7.2 Code and Data Availability

The code and data that support the findings of this study are openly avail-
able in GitHub at https://github.com/SIRIUS-AAA/The-Influence-of-the-Shadow-of-the-
Future-on-the-Evolution-of-Cooperative-Strategies. This repository includes the full im-
plementation of the models, scripts for data processing and analysis, and the datasets
necessary to reproduce the results presented in this paper. We encourage researchers to
use, extend, and validate our work under the terms of the MIT License provided.
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