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Abstract

Theory of Mind (ToM) enables reasoning about others’ beliefs, intentions, and knowledge, especially with
higher order forms being crucial for complex social interaction. Large language and vision language . models
have shown weak ToM capabilities in recursive inference, multi-modal grounding and contextual continuity.
Current approaches such as AutoToM and MuMA-ToM, while being able to tackle lower-order reasoning
decently, are unable or not enough competent to process higher-order tasks. To address these challenges;-we
propose an innovative approach for structured multi-modal higher-order mental state inference which consists
of the following components: Sequential Monte Carlo for belief propagation designed to’break'‘down complex
social interactions and reduce the negative effects of the interactions’ extent on reasoning accuracy,semantic
retrieval augmented reasoning designed to retrieve examples that closely resemble the one being processed
and to thus improve reasoning accuracy, and reflective memory management which utilizes previous
reasoning sessions to expand the ground truth database. To address the gaps in the field of multi-modal higher-
order ToM dataset, we construct a novel photorealistic dataset of multi-agent'scenarios with zeroth- to fourth-
order reasoning tasks enabling diverse actions and communications with partial observability. Experimental
results show that our approach can complete the complex higher-order-tasks, especially third- and fourth-
order ones, which are not supported by the state-of-the-art approaches. Ablation studies further demonstrate
the effectiveness and unique value of the proposed technologies for tasks with different orders.

Keywords—Theory of Mind, higher-order reasoning, sequential. Monte Carlo; semantic retrieval augmented
reasoning, reflective memory management
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1 INTRODUCTION

Theory of Mind (ToM) refers to the ability to identify mental states, such as beliefs, goals, intentions, and
emotions of oneself and others (Premack & Woodruff, 1978). ToM plays a crucial role in social interactions
such as cooperation, deception, persuasion, behavior prediction, and conflict navigation. Mental states.can be
categorized into lower-order states, which are limited to direct perceptions and beliefs about the environment,
and higher-order states, which are recursive embeddings of others’ mental states, an “order” corresponding to
a layer of embedding. For example, a first-order belief is a simple attribution such as “I think that she is going
left,” a second-order belief embeds another person’s perspective as in “I think he thinks that I am going left,”
and a third-order belief adds yet another layer, e.g., “I think she thinks that I think that she is going left”. A
typical example is illustrated in Figure 1.

Higher-order ToM is especially significant because
many real-world interactions depend on such recursive

reasoning. In law and politics, reasoning about others’ :

& POTHE g S : Third-Order
nested beliefs can determine judgments and negotiation
strategies; in finance and commerce, higher-order ToM | = y | think she thinks that | think
could be very useful for facilitating cooperation; and in that she's going left.

literature,  higher-order =~ ToM  enables  the
comprehension of irony, deception, and complex
character motivations.

As Al becomes increasingly involved in our daily _
lives, equipping Al with ToM capabilities becomes : [ think he thinks
critical for better human-Al interactions. Achieving pad 1 #t 'm ooing left.
practical machine ToM requires methods capable of " T R
processing multi-modal inputs, including text, video,
and other sensory information, with continuity and
depth. Many attempts have been made to sachieve
machine ToM, the earliest being symbolic reasoning
(e.g., Bolander & Andersen, 2011; Stuhlmiiller &
Goodman, 2014). While such methods offer :
transparency and explicit logic, they suffer from labor- | /s
intensive, handcrafted modelling . that. impedes First-Order d
scalability and flexibility, particularly for recursive {1 think that she’s gaing left.
higher-order reasoning. Large<Language Model (LLM) ' f
and Vision-Language Model (VLM) have experienced
significant and rapid advances in recent ‘years. While
studies (Kosinski et al.,“2023; Ullman. et al., 2023;
Zhang et al., 2024) show a positive correlation between
the improvement' in { language abilities and the
improvement in“ToM abilities, state-of-the-art LLMs Figure 1. Illustration of higher-order ToM through
still exhibit significant limitations in ToM reasoning. I CUrsIVe mental-state .embeddmgs. This v1suahzagon
Specifically, they often fail to. distinguish between highlights the progression from lower-order reasoning,
. . . .. . which concerns direct perceptions and beliefs, to
intended acm?ns’ SUb'f)Ptlmal dec;1s10ns, and failed higher-order reasoning, which involves increasingly
attempts, leading to.misinterpretations; moreover, Al complex embeddings of others” mental states.
neglects ‘temporal (continuity and critical contextual
information while processing videos.

Recently, several research studies aiming to improve LLMs’ ToM abilities have introduced Bayesian
Inverse Planning (BIP). This new approach addresses some scalability issues but introduces new challenges.
Methods like MMToM-QA (Jin et al., 2024) and MuMA-ToM (Shi et al., 2024) often struggle to distinguish
nuanced intentions and fail to handle the escalating complexity of higher-order logic. More advanced methods,
such as AutoToM (Zhang et al., 2024), which incorporate structured recursive frameworks, remain vulnerable
to'hallucinations. Furthermore, most of these methods operate from an external, observer-centric perspective,
limiting“their ability to handle partial observability and information asymmetry. Additionally, existing
methods that support multi-modal input often have to also depend on information of other modalities,
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Figure 2. Overview of the proposed reasoning pipeline. Multi-modal inputs, including videos and questions, are first
parsed by a pre-trained VLM into structured textual representations:»The parsed story is then processed through
retrieval, Sequential Monte Carlo (SMC), and reflective memory management, which iteratively retrieves relevant
examples, generates or updates hypotheses, and performs reflection, by collaborating with LLM until the story is
complete. Finally, the reasoning outputs are aggregated to answer-higher<order ToM questions.

sacrificing their applicability in real-world scenarios. In summary, current machine ToM methods exhibit
critical shortcomings, including (1) extremely limited higher-order reasoning capability, (2) inability to
reliably identify failed attempts and sub-optimal behaviors, (3)dow generalizability, and (4) loss of temporal
and contextual continuity in multi-modal inputs:

To address the above persistent challenges, we propose a structured higher-order mental state inference
approach for multi-modal ToM reasoning “in multiagent scenarios. Our method can handle partial
observability and information asymmetrywinherent.in ‘multi-agent interactions very well. Our method
integrates a Sequential Monte Carlo (SMC) module; which dynamically updates hypotheses about agents'
intentions and beliefs. Semantic retrieval augmented reasoning is designed to retrieve examples that closely
resemble the one being processed.and to thus improve reasoning accuracy. A reflective memory management
component is designed to utilize previous reasoning sessions to expand the ground truth database. Furthermore,
to address the gaps in this field and support.the.development and evaluation of our framework, we also create
a new photorealistic dataset featuring .multi-agent social scenarios requiring higher-order mental state
reasoning using UnrealZoo (Zhong et al.; 2024). The pipeline of the proposed method is illustrated in Figure
2, with details described in Section 4. Experimental results show that our approach can complete the complex
higher-order tasks;-especially third- and fourth-order ones, which are not supported by the state-of-the-art
approaches. It also significantly outperforms them on second-order tasks. Ablation studies further demonstrate
the effectiveness and unique value of the proposed technologies for tasks with different orders.

Our main contributions can be summarized as follows:

. We introduce. an._automatic data generation pipeline built on photo-realistic virtual worlds and

construct a Multi-modal dataset for higher-order multi-agent ToM reasoning.

We proposea structured higher-order mental state inference approach for multi-modal ToM reasoning
in multi-agent scenarios, including Sequential Monte Carlo for belief propagation, semantic retrieval-
augmented reasoning, and reflective memory management.

We conduct experiments for evaluating the higher-order multi-modal ToM reasoning capability of
different methods and the value of the proposed technologies for different tasks with specific orders,
and demonstrating the usability of our dataset and the significant improvements of our approach.



2 RELATED WORK

Numerous approaches from different perspectives have been developed to enhance machine ToM reasoning,
including psychological principles, reasoning approaches with or without LLM or VLM, datasets and tools.

Psychological Principles Psychological and cognitive science literature has long been a theoretical
backbone for ToM modelling. Perner and Wimmer (1985) conducted a seminal study demonstrating that
children begin to understand second-order beliefs, such as "Mary thinks that John thinks...", around seven.
Moore et al. (1990) extended this line of research by exploring children's grasp of speaker-listener. dynamics,
showing that advanced ToM plays a critical role in pragmatic language understanding. Kinderman etal. (1998)
examined how higher-order ToM influences adult causal attributions, especially in clinical populations. Miller
(2009) reviewed various developmental findings and emphasized the roles of language;-executive function,
and social experience in fostering higher-order ToM. That same year, Apperly and Butterfill (2009) proposed
a dual-systems theory, suggesting that humans rely on a fast, implicit system for basic'mental state tracking
and a slower, cognitively demanding system for recursive, higher-order reasoning. Mest recently, Osterhaus
and Koerber (2021) used structural modelling to reveal that middle childhood ToM reasoning involves
multiple interrelated components, highlighting its cognitive complexity and.layered nature.

Approaches Early approaches such as symbolic logic-based methods (Bolander & ‘Andersen, 2011;
Stuhlmiiller & Goodman, 2014), BIP without large models (Baker et'al.,.2009; 2011),.I-POMDP framework
(Gmytrasiewicz & Doshi, 2005), and script-based reasoning (Schank & Abelson;*1997)laid the foundation
for machine ToM. However, they struggle with flexibility and generalization to real-world complexity. With
the rise of LLMs and VLMs, more recent efforts can be broadlydivided into/two_categories: prompt-based
(Kosinski, 2023) and structurally augmented approaches (Jin etal., 2024; Shi et al., 2024; Zhang et al., 2024).
These newer methods demonstrate improved performance in simulating mental state reasoning. Still,
significant challenges remain. Prompt-based methods often show limited gains beyond basic prompting, while
structurally augmented methods encounter difficulty when handling nuanced higher-order beliefs, particularly
in dynamic multi-agent environments. Further innovation is needed to close the gap between human and
machine ToM. In addition, recent studies haveexplored alternative paradigms to enhance LLMs’ reasoning.
Reflexion introduces verbal reinforcement learning to let language agents iteratively improve via reflective
feedback (Shinn et al., 2023). Retrieval-Augmented «Generation (RAG) integrates external knowledge
retrieval into the generation process to reduce hallucinations.and enhance reasoning, especially in knowledge-
intensive tasks (Gao et al., 2023).

Datasets To support training and evaluation, many. ToM related datasets have been created (Rabinowitz
etal.,2018; Jain et al., 2019; Sap etal.;2019; Kosinski, 2023; Zhang et al., 2023; Zhang et al., 2024). However,
these datasets present several key limitations: Many-are either unimodal or single agent, for example, Social
IQa (Sap et al., 2019) and ToM Tasks (Kosinski, 2023) are purely textual, lacking perceptual grounding, while
SCoNe (Jain et al., 2019) remains focused on'written narratives. Datasets like CLEVR-Mental-State (Zhang
et al., 2023) attempt to introduce visual inputs but rely on synthetic, static scenes with limited ecological
validity, and higher-order.ToM is also rarely addressed. Most datasets target only first-order inferences, and
even those that support higher-order reasoning, like Hi-ToM (He et al., 2023), suffer from low-fidelity visuals
and rigid character-actions. Additionally, agent embodiment and real-time interactivity are often absent, as in
Rabinowitz et al. (2018), where agents operate in abstract environments without grounded social exchange.
These factors limit how much models trained on such datasets can generalize to complex, real-world mental
state reasoning.

Utility Tools for creating multi-modal datasets have evolved alongside advancements in machine ToM.
VirtualHome (Puig/et al., 2018) enables the simulation of household activities through scripted sequences of
symbolic actions, supporting studies on task planning and high-level execution. However, its abstraction of
physical interactions and low-fidelity video output limit its utility for tasks requiring motor precision or rich
sensory input. iGibson 2.0 (Li et al., 2021) improves on this by offering a physically grounded, object-centric
environment with interactive manipulation and realistic visuals. It supports diverse sensory and control
modalities, making it better suited for embodied learning. Still, its computational demands can hinder
scalability and integration with higher-level reasoning. UnrealZoo, built on Unreal Engine, represents the
most. advanced platform. It combines photo-realism, dynamic interactions, and diverse scene layouts,
overcoming key shortcomings of its predecessors. Unlike VirtualHome’s symbolic abstractions, UnrealZoo



A third-order episode with 5 agents and 15 steps

Step 1: Carter, Avery, Jacob, Jackson and Alexander
were on the rooftop.

Step 2: The turkey was on the trash bin.

Step 3: Carter made no movements and stayed on the
rooftop for 1 minute.

Step 4: Carter went downstairs.

Step 5:  Avery moved the turkey near the vent.

Step 6: Avery went downstairs.

Step 7: Jacob moved the turkey under the patio umbrella.

Step 8: Jacob went downstairs.

Step 9: Jackson made no movements.and stayed on the
rooftop for 1 minute.

Step 10: Jackson went downstairs.

Step 11: Alexander made no'movements and stayed on
the rooftop for.l minute.

Step 12: Alexander went downstairs.

(b) Step 5 Step 13: Carter, Avery, Jacob, Jackson and Alexander
entered the living room.

Step 14: Jacob publicly claimed that the turkey was on the
trash bin.

Step 15: Alexander privately toldJacob that the potato was
in the kitchen drawer:

Question: Where does“Alexander think Jacob thinks

Carter thinks the potato is?

Answex; on the trash bin

(c) Step 14 & 15

Figure 3. A typical example interaction from-our dataset that shows the complexity of higher-order ToM reasoning.
For one to reach the correct answer, they must comprehend the notion of partial observability and keep track of the
mental states of multiple agents.

enables both visual and physical realism, and it offers'broader, more flexible environments than iGibson 2.0,
making it especially well-suited. for next-generation multi-modal ToM research.

3 HIGHER-ORDER MULTI-MODAL DATASET GENERATION

We construct a multi-agent simulation dataset using UnrealZoo that covers zeroth- to fourth-order problems.
Our dataset contains high resolution videos at 60fps that show social interactions happened in photorealistic
3D environments with multiple rooms and interactive objects. The stories in our dataset are based on the Hi-
ToM (He et al., 2023) dataset, each containing approximately 15 actions or utterances. An example is shown
in Figure 3.

Within this simulation, agents engage in rich multi-modal interactions. They can manipulate objects, e.g.,
pick up, move, or drop items in containers and communicate with one another either publicly or privately. A
public speech is audibleto all agents in the vicinity. In contrast, a private utterance is directed at a specific
agent. Meanwhile, all agents continuously observe each other’s actions when they are within line-of-sight or
the‘same room; which means an event, such as an object being moved or a statement being made, is only
witnessed by those present. This controlled communication and observability structure leads to knowledge
asymmetry:‘'some agents gain information that others lack, setting the stage for higher-order ToM reasoning.
The process of data generation is shown in Algorithm 1.

We generate the dataset using the aforementioned environment and interactions. Each scenario is presented
as a'short video with synchronized dialogue transcript and visual events, accompanied by a ToM reasoning
task. The question with multiple choices focuses on an agent’s nested beliefs about others. For example, a



Algorithm 1 General procedure for UnrealZoo/UnrealCV dataset recording
(Initialize environment, control agents and objects, record annotated frames)
1: Connect to UnrealCV API via gym.make (env_id); reset environment
2: Initialize capture settings (resolution, viewmode, flags, FOV); set camera pose
3: Spawn agent Blueprints (BP_Character_C_*) in circle layout; assign app_id
4: for each frame block do

5 Set or keep camera; advance env with NOOP; sleep to meet target FPS

6 if navigation is required then

7: Issue nav_to_goal/obj to move BP to target (z,y, z)

8 Loop tick() until within tolerance or timeout; break on stall

9:  end if

10: if pickable object interaction is required then

11: Attempt pick.up: repeat {approach — set_pickup — check is_picked} up.to N times
12: To drop: navigate to drop (z,y, z); toggle set_pickup; verify not picked
13:  end if

14: Optionally print public/private utterances; short hold for annotation

15: end for

16: Close environment and disconnect

Algorithm 1. Algorithmic workflow for episode generation. Starting.from a Hi-ToM—derived scenario seed, the
procedure (1) instantiates an UnrealZoo scene with agents and interactable.objects;«(2) schedules a stepwise script of
actions and utterances, and (3) renders the video and aligns a time stamped dialogue transcript.

question may ask what an agent thinks of the thought about another agent of yet another agent. This question-
answer format enables quantitative evaluation of a method or human participant’s understanding of the
scenario’s mental state dynamics.

Each video scenario consists of approximately 15 discrete steps, depicting a sequence of agent actions and
communications that unfold the story. The scenarios are explicitly.designed to require higher-order ToM
inferences: each one targets a zeroth-, first-, second-, third-; or fourth-order belief reasoning challenge. In all
cases, the correct answer to the scenario’s/question hinges.on understanding these nested beliefs rather than
just simple beliefs or facts.

Throughout these events, the agents’ beliefs are formed and updated step by step, resulting in a complex
tapestry of who knows what — and who knows that others do not know. Crucially, by the end of this scenario,
the participants have misaligned mental states that require higher-order reasoning to untangle. This design of
the dataset ensures that evaluating on our 300 episodes rigorously tests a method’s higher-order ToM
reasoning in multi-modal, dynamic social.€nvironments.

4 METHOD

Higher-order ToM reasoning in-a multi-agent environment is challenging. In order to track and infer the
evolving mental states,of multiple’agents, we design a reasoning mechanism that maintains a hypothesis space
of possible beliefs for eachiagent and updates these hypotheses as new observations of actions or utterances
arrive. It.Consists of three components: (1) Sequential Monte Carlo (SMC) mechanism to initialize and
rejuvenate aset of belief hypotheses over time, (2) a Semantic Retrieval Augmented Reasoning (SRAR)
component that leverages.stored examples of ground truth and successful past experiences to guide future
hypothesis updates, and (3) a Reflective Memory Management (RMM) component that generates feedback
after-each inference episode and stores it as metadata for future retrieval. This section details the algorithms
and notations of our method, describing how it propagates beliefs and learns from each scenario.

4.1 Belief Modeling for Multi-Agent Higher-Order ToM

Atthe core, our method infers higher-order beliefs, enabling reasoning about what agents believe about others’
beliefs. In this section, we define symbols and notations for belief modeling that would be later used to explain
our algorithm and provide an overview of how we model nested beliefs. A first-order belief B;(p) denotes



(c) Human Characters

Figure 4. Illustration of the diversity of our dataset: agents operate in photorealistic, multi-location environments
with over 20 types of interactive objects. (a) Various episodes and scenes. (b) Pickable Objects: A diverse set of
interactable objects used in the scenarios, enabling rich manipulation actions. (¢) Human Characters: The pool of
animated agents used to enact multi-agent social scenarios with varied appearances and roles.

agent i’s'belief in proposition p, while a second-order belief B; (Bj (p)) denotes i’s belief about j’s belief in

p.
In realistic social settings, no agent possesses complete information about the environment. Our method

therefore: maintains.a separate knowledge state for each agent, capturing only the events they directly observed
or were informed of. Each event or utterance is tagged with the set of perceiving agents, ensuring belief
updates‘oceur only from appropriate perspectives. This design encodes information asymmetry, allowing the
model torepresent divergent beliefs and track how false beliefs persist when an agent misses critical
observations; that is, our method takes agents’ ignorance into consideration, such as deducing that an agent A
does not know p if they missed the relevant event. This design helps to ensure coherence: when an agent
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Figure 5. Sequential Monte Carlo for Belief Propagation

learns new information, only the beliefs of agents who observed this learning are updated, while others retain
their prior false or outdated beliefs.

4.2 Sequential Monte Carlo for Belief Propagation

Taking into consideration the importance of continuity, our study‘leverages the principles of SMC to structure
the belief update process as illustrated in Figure 5. Specifically;.we use an-LLM to qualitatively generate,
assess, and rejuvenate particles rather than doing so quantitatively as in thé classical approach.

The LLM assumes the core functional roles traditionally handled by mathematical operations in SMC.
Instead of proposing new particles from a probabilistic motion model;;the LLM generates new belief
hypotheses based on its understanding of the evolving narrative. Rather than assigning and updating numerical
weights based on observation likelihoods, the LLM qualitatively assesses:the plausibility of each hypothesis
in light of new events, effectively ranking them: Finally, the resampling and rejuvenation steps are replaced
by a logical process where less plausible hypotheses are discarded.and replaced with new, more coherent
alternatives generated by the LLM, ensuring the diversity and relevance of the hypothesis pool.

In our framework, each "particle" is nota'state vector but rather a rich, text-based hypothesis representing
a candidate mental state for an agent. For.example, a particle might encapsulate a complex belief such as,
"Agent A incorrectly believes that Agent B. thinks the object is still in the box, because A did not witness B
seeing the object being moved". By manipulating a set.of these descriptive hypotheses over time, our method
can track the intricate, nested, and often.non-obvious mental states of multiple agents in a dynamic
environment. The following subsections detail the specific algorithms for this qualitative belief propagation
process.

4.2.1 Initialization

We employ SMC algorithm to perform:belief propagation for each agent across a sequence of observations.
In this context, each “particle” represents a candidate hypothesis about an agent’s mental state, for example,
what that agent believes about a particular fact or situation. As agents interact in the scenario, their beliefs
may involve nested and higher-order reasoning about each other. We denote an n-th-order belief concerning
a proposition,p using a nested notation. A first-order belief is written as B;(p), a second-order belief as

B; (Bj (p)), and a general n-th-order belief is defined as:

B, (B(iz) (- (B ®) - )) (1)

where; for example, B2, (p) means “agent a believes that agent b believes p”, and so on. The hypothesis
space maintained by our SMC module includes both lower-order beliefs as direct beliefs about the
environment and higher-order beliefs as beliefs about others’ beliefs.

At thesstart of an episode (time ¢ = 0), the model draws an initial set of hypotheses for each agent’s mental
()
0,0
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state based on the context. Formally, let ;o = {H, }g=1 be the set of N hypothesis particles for agent i’s



state, e.g. what agent i believes about key facts at the beginning of the scenario. These initial particles {Hi(‘g)}

are generated by a function implemented via an LLM prompt that infers plausible mental states consistent

with the scenario. This serves as an approximate prior distribution over agent i’s beliefs before any dynamic

(2]

observations. We rank each hypothesis H; " by plausibility as determined by the language model.

4.2.2 Belief Update with New Observations

Maintaining consistency of beliefs over time is critical. In dynamic multi-agent environments, .new
information arrives sequentially, and agents’ beliefs must be updated accordingly. A major, challenge is
ensuring that these updates do not introduce contradictions either within an agent’s own-belief set or across
the nested beliefs of different agents.

An example of maintaining consistency is handling a change-of-state with limited observability. Suppose
initially agent A and agent B both believe a box is in Rooml1. Then the box issmoved to Room2 while B
watches but A does not. After this event, our model updates Bj(*Boxin Room2”) to true, and
correspondingly B’s belief that the box is in Room1 to false. For A, however, B ("Box-in Room2”) remains
false (since A didn’t see the move, A continues to believe the box is in.Room1). Now consistency requires
that B’s second-order belief about A reflects A’s ignorance: specifically, BIZB‘ A("Box«in Room?2”) should be
false, meaning B believes that “A does not know the box’s new location”.-Our model ensures this alignment
in its representation of B’s beliefs about A. Later, if A is informed or observes that the box is in Room?2, we
update A’s beliefs accordingly. We also update Bé‘ A("Box inRoom?2”) once B becomes aware that A has
learned the new location, for instance, if B saw A open the box in-Room2 or heard someone tell A. Through
these carefully coordinated updates, the model maintains a globally coherent picture of all agents’ minds over
time.

Let H; 1 = {hﬁ)_l, 'hl(It(zl} be the agent-centric_hypothesis set at time t — 1, where each h is a
complete, perspective-aware assignment over first and <higher order beliefs, e.g., whether
Bl(p) or Bf,a(p) holds, consistent with all“prior events.“When»a new observation O, as an action or
utterance arrives, the model does not compute numeric likelihoods or weights. Instead, it prompts a language
model to qualitatively examine each hypothesis for coherence with O,, revise those that can be reconciled by
incorporating the newly revealed information and wisibility constraints, and propose alternatives where
reconciliation is untenable. We summarize this step‘by.an abstract update operator:

3, . =Update(Ft, ,_1, 0, E;), 2

where E; represents a set of relevant examples retrieved from the memory store, which are incorporated into
the language model's prompt to guidesmore accurate qualitative reasoning, as detailed in Section 4.3.
Operationally, the update proceeds‘in thefollowing two phases:
Revision and Proposal: applies a perspective-aware transformation to each h € H; ,_; and injects
new candidates only whenneeded,;
Qualitative Ordering and Truncation: imposes an LLM-internal pre-order <; (a “most-to-least
plausible” ranking with ne numeric scores) and keeps the top K.
We define:

= {ReﬂectEt(h, 0, | he :H:i,t—l} U PTOPOSGEt(Op7'[¢,t-1),7‘f¢,t = Selecty! (Rankot! (}Ff;t)) 3)

here; Reflectg, (h, o) edits only those particles that the new event licenses from the correct perspective, e.g.,
a private perception changes BL(+) for the viewer v but leaves non-viewers’ beliefs intact; a public assertion
updates Bﬁ} j(-) for each listener r about speaker j’s belief. If a prior h cannot be reconciled without violating
perspective safety, ProposeEt introduces a fresh explanation that honors who saw or heard what. The LLM
then produces =<, implicitly—articulating which explanations are more compelling after O,—and Selecty
clips the list to capacity, ensuring |I7-[¢,t| = K. In effect, the update functions as a particle filter’s correction
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Figure 6. Semantic Retrieval Augmented Reasoning

step without numeric scoring: the model keeps, edits, or replaces hypotheses purely by qualitative reasoning
over content and visibility, optionally nudged by retrieved analogies E-

4.2.3 Resampling and Rejuvenation

Following revision, the model executes a qualitative analog of resampling. Tt retains the revised hypotheses
that remain coherent after O, and rejuvenates the rest by replacing them with newly proposed alternatives,
again with no numeric weights involved. Conceptually, the procedure partitions the previous set into those
that survive reflection and those that are discarded, then fills-any vacancies with new candidates tailored to
O, optionally conditioned on E; to keep diversity at capacity K. We summarize the pool-construction step by:

= {ReﬂectEt(h, 0.) | h € 3,43, coherent under 0.} U Propose,, ! (0r, Hipq). 4)

retained & revised rejuvenated replacements

The final H; ; is obtained by qualitatively ordering .’]-E ¢« (the LLM’s implicit <;) and truncating to the top
K, as already expressed above. In practice, this resampling-with-rejuvenation functions as a “keep the good,
replace the rest” cycle that continually refreshes the hypothesis set. Retained items provide temporal stability
and carry forward long-range constraints, e.g., petsistent ignorance or entrenched false beliefs, while
rejuvenated items explore new explanatoryavenues unlocked by O;, e.g., alternative attributions of intent or
knowledge transfer paths. Because:proposals.are context-conditioned and optionally memory-augmented via
E,, the injected diversity is targeted: it expands exactly where the prior set failed to reconcile the latest event.
Over time, repeating this cycle yields<a top K pool that remains both focused on the most defensible
interpretations and.adaptable to unexpected ‘turns in the narrative, all without invoking numeric likelihoods,
scores, or probabilities.

4.3 Semantic Retrieval Augmented Reasoning

While the SMC mechanism maintains temporal coherence of beliefs, it may still suffer from limited
generalization and vulnerability to complex multi-agent interactions. To address these shortcomings, we
introduce a semantic retrieval module that supplements SMC with relevant prior experiences, enabling the
model.to‘ground its'updates in both current observations and analogous past scenarios, as shown in Figure 6.

By utilizing semantic vector store, we maintain a long-term memory M which is a set of stored episodes,
each indexed by a dense semantic embedding, as well as associated metadata, such as a brief context summary,
the final correct mental state, and an abstract reflection. When a new reasoning task defined by the current
scenario’ context, ongoing actions and utterances and the subject of inference is given, we construct one or
more textual queries capturing the essence of the task. For example, if the subject of inference is “each
character’s belief about the location of the object” and the current context involves certain actions, the model
might form a query combining keywords from the context including agents’ names, object names, key events
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along with phrases indicating “belief” or “thought about [object]”. We denote the set of query variants as Q =
{41, 92, -, @}, designed to cover different lexical formulations of the information need.

4.3.1 Hybrid Retrieval with Dense and Lexical Approaches

For each query g € Q, we perform two kinds of search over M':
Dense Vector Similarity Search: the query g is embedded into the same vector space as the:memory;
entries, using the embedding model of the vector store, and we find the entries with highest cosine
similarity to q.
Lexical Search: we use a BM25-based search over the textual metadata of entries to'find those with
common keywords. Let TopKgen.(q) be the top K retrieved items by semantic similarity, and
TopK.(g) the top K items by lexical matching.

We take the union of results from all query variants and both methods, then eliminate'duplicates, yielding
a candidate set D,,q of potentially relevant memory entries:

m
Dcand = U(TopKdense(qi) u TOpKlex(qi)) 0 (5)

i=1

Each candidate entry d € D_,,q comes with a stored content, e.g. a short description of a scenario or a
distilled outcome, and metadata. At this stage, D ,,q might still/be large and contain some less relevant items
due to noise from broad semantic matches or keyword overlaps. We therefore‘apply a reranking and filtering
process to select the most relevant and diverse examples to'actually use.in.reasoning.

4.3.2 Relevance Re-Ranking and Maximal Marginal Relevance Selection

For relevance re-ranking, we first score each candidate d € D4 for relevance to the current query using a
cross-encoder model Fep. This model takes the pair (g, contenty) and produces a relevance score R(q, d).
Compared to the initial vector similarity, R(q,d) is ‘a-more precise semantic relevance measure (e.g.,
capturing whether the memory entry truly addresses a similar question or situation as our current task). We
compute R(q, d) for all candidates, then sort:D,,q by this'score in descending order.

We also implement Maximal Marginal Relevance (MMR) selection. Rather than simply picking the top K
highest R(q, d) entries, which could be.redundant, e.g. multiple entries that are near duplicates of each other,
we use a Maximal Marginal Relevance strategy to ensure diversity among the retrieved examples. We will
select a final subset E = {d;, d,, .., dx} of K examples iteratively. Initialize an empty set S = @. At each
selection step, choose the ‘candidate d €D,q \ S that maximizes a trade-off between relevance and
dissimilarity to already-selected items. The MMR objective for selecting the next example d* can be written
as:

d* =arg derg)lax\s (?\R(q, d) — (1-2) maxsim (d,d )). (6)

cand

Here sim(d, d") is the cosine similarity between the embedding vectors of two candidate entries,and 0 < A <
1 is a parameter, e.g. A = 0:7, controlling the relevance-vs-diversity balance. Intuitively, this criterion prefers
entries that have high relevance R(q, d) to the query while penalizing those that are overly similar to any
already chosen entry to promote informational diversity. We add d* to S and repeat until K entries are
selected (or until D, is exhausted). The outcome is a set E = dg, ..., dg of the most pertinent and diverse
examples from memory for the task at hand.

4.3.3 Augmenting Reasoning with Retrieved Examples

The selected examples E are then incorporated into the LLM’s prompt to guide hypothesis generation and
rejuvenation. Each example d € E is represented in a concise textual form, typically including a brief
description of the prior scenario’s context and the relevant outcome, for example, what the true state was,
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along with any stored reflection or lesson from that scenario as will be.detailed in the next subsection. An
example might be presented as: “Example 1: In the context of '<seenario summary>', <outcome>. Here is a
piece of advice: <reflection>.” Listing a few such examples before the current scenario prompt provides the
model with analogical cases. This retrieval-augmented prompt acts as a set of implicit constraints or hints,
helping the model to avoid pitfalls and leverage patterns learned from prior similar situations.

For instance, if the memory contains a scenario where an agent was.misled by another agent’s action to a
false belief, and our current task has a structurally similar deception; a retrieved example might remind the
model that “the belief of others can be influenced by the actions.of multiple agents, leading to complex chains
of belief that may not align with reality.” By seeing this hint, the'model is more likely to correctly hypothesize
the presence of a false belief in the current scenario.

Formally, the hypothesis update function from the SMC step.is now augmented with memory E: instead of
relying solely on O, the update uses the combined information (O, E) when revising and re-ranking the
particles. This can be seen as conditioning the proposal distribution for new hypotheses on both the latest
observation and the retrieved knowledge. The result is'a semantics-augmented SMC update that is better
informed and less prone to prior mistakes; since the.model can “remember” how similar belief reasoning
problems were resolved in the'past.

4.4 Reflective Memory Management

A reflection mechanism is'designed to allow the model to learn from each completed inference and accumulate
abstract knowledge for future use, as illustrated in Figure 7. The SMC updates and SRAR have led to a final
set of hypotheses; and typically a final answer to the query, such as the most likely mental state for each agent.
After that, the model performs a post-hoc reflection on its reasoning process. This component generates an
abstract feedback statement for each hypothesis—answer pair and stores this information into the semantic
vector store,as metadata.

4.4.1 Generating Abstract Feedback

The reflection process takes as input the scenario context C, the sequence of actions A and utterances U that
occurred, the final hypothesis H produced by the model for the query, e.g. the model’s inferred answer about
an agent’s belief, and the correct answer S, the ground-truth mental state or outcome, if known from the
simulation or annotation. Using these, we prompt the LLM to reflect on the reasoning behind the hypothesis
H, focusing on aspects like consistency, accuracy, and coherence with the scenario.

Crucially, the prompt explicitly instructs the model not to mention any scenario-specific details in its
reflection. Instead, it must distill a general insight or suggestion for improving future reasoning in similar
tasks, phrased in a single sentence. For example, if the model’s hypothesis was incorrect because it failed to
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consider that an agent could be misinformed by another, the reflection might be a general statement like: “An
agent’s belief can be incorrect if it is based on another agent’s misleading action, so future reasoning should
consider the possibility of deception.” This sentence does not reference any character or object by name; it'is
an abstract lesson extracted from the particular scenario.

Formally, we can denote the reflection generation as a function f,.q.. applied to the scenario and outcome:

R= freﬂect(CJ A' U’ H' S); (8)

where R is the resulting reflection sentence. The model f,.q.; is the same LLM but used in a special “reflection
mode” with a crafted prompt as described. Because H and S are given as part of the input, the model ecan
analyze the relationship between its hypothesis and the true state, effectively performing an error analysis or
self-evaluation. The output R is a high-level critique or advice that could help avoid.the mistake-or reinforce
the correct reasoning in the future. Notably, we design this reflection to be agnostic to the concrete story
details so that it may apply broadly: it functions as a piece of transferable knowledge.

4.4.2 Persisting Reflection as Metadata

Once the reflection R is generated, the model stores a new entry into the semantic memory M (the vector
store). This entry includes the key aspects of the just-completed scenario and the reflection. We represent an
entry as a tuple ((C LA U), S, R), consisting of a representation of'the context and events (C, 4, U), the final
correct state S, and the reflection sentence R. In practice, the context.(C; 4;U) may be summarized or
embedded rather than stored verbatim if it’s long, but the entry retains.enough.information to be searchable
via semantic vectors and keywords later. The vector store’s. metadata fields:for this entry record the type of
inference, e.g. whether S was a “belief” state, an “intention;” etc., corresponding to the subject of inference,
as well as the text of R. We denote the storage operation as:

M =M U{((C, 4, U),S,R)}. 9)

By adding this entry, the model learns from its experience. In subsequent reasoning episodes, the retrieval
module can search this memory and potentially retrieve the newly stored example if the future query is
semantically similar. The reflection R'then serves as.a piece of meta-knowledge or advice, attached to a
scenario reminiscent of the new one: Over time, as'more scenarios are processed and more reflections stored,
the model’s semantic memory grows into‘a repository. of distilled Theory-of-Mind reasoning insights. This
contributes to improved performance: the.model inereasingly benefits from past lessons, thus gradually
mitigating repeated errors.

The Reflection mechanismiessentially implements a form of iterative self-improvement: each run of the
ToM reasoning loop not only produces an answer but also a training signal, the reflection, for the next loops.
Because the reflections are abstract and generalized, the model avoids overfitting to specific past contexts and
instead accumulates broadly applicable wisdom, e.g. recognizing common pitfalls like ignoring an agent’s
false belief or misinterpreting an ambiguous action.

5 EXPERIMENTS

5.1 Experiment Settings

We evaluated the proposed method on the generated multi-modal dataset with totally 300 question—answering
reasoning asks spanning zeroth-, first-, second-, third-, and fourth-order, with 60 tasks per order. Each task
features asshort photorealistic video depicting multi-agent interactions with partial observability, accompanied
by a multiple-choice question requiring nested belief inference. The overall experimental goal is to assess
both the'scalability and the structural robustness of our model across increasing orders of recursive reasoning.

We employed Gemini 2.5 Pro as the vision—language model for extracting structured textual representations
from videos, and GPT-5 and Qwen-3 Max as the core reasoning backend for all baselines and our proposed
method. For the comparison experiments, we included GPT-5, GPT-5 Thinking, Qwen-3 Max, and the multi-
modal benchmark, MuMA-ToM and AutoToM, tested in both GPT-5 and Qwen-3 Max configurations. Among



them, Qwen-3 Max and GPT-5 Thinking represent current frontier models for integrated reasoning, while
MuMA-ToM and AutoToM serves as the SOTA methods of publicly available structured multi-modal baseline.

The ablation study is also performed with the components of SRAR, RMM and SMC remoyed
incrementally. This setup isolates the contribution of each structural component to overall reasoning depth
and generalization and evaluate the effectiveness of each one.

All methods received the same scene inputs, dialogue transcripts, and question formats, “ensuring
comparability. Each model was allowed to output only a single answer per question without iterative self-
correction. Accuracy was computed as the percentage of correctly answered questions out of 60 for €ach order.
We report both quantitative comparisons and ablation results to reveal how sequential belief propagation;
retrieval augmentation, and reflective memory jointly enhance performance across reasoning orders.

5.2 Experiment Results

5.2.1 Quantitative Results

The quantitative comparison across reasoning orders is summarized in Table 1. The benchmark contains 60
tasks per order, and the results demonstrate clear and consistent improvements of our structured model over
all baselines. Specifically, our full model with both GPT-5 and Qwen-3"Max achieves, the highest accuracies
on zeroth-, first-, second-, third-, and fourth-order reasoning respectively;representing a substantial advantage
as the reasoning order increases. Especially, the results for third- and fourth-order reasoning tasks explicitly
proved the overwhelming advantage against other methods.

For the simplest tasks with only zeroth- and first order, there is no significant different among all the tested
methods, though our method achieves the highest accuracy."Even GPT-5.Thinking could achieve the similar
accuracy with our method, marginally outperforms the others. *From second-order tasks, the difference in
results between our method and other methods become significant: For third-order task, MuMA-ToM could
not support perform reasoning, and AutoToM achieves 0% without.any right answer. Our method achieves
the highest score, 51.67%, significantly outperforming the sécond one, GPT-5 Thinking with only 18.3%. For
the most complex tasks with fourth-order,/our model could achieve the accuracy of 21.67%, while the other
methods could rarely generate the right answer, with.only Qwen 3-Max and GPT-5 Thinking occasionally

correctly answer 1-2 out of 60 questions.

Overall, our approach surpasses the best baseline.by a-wide margin—especially at third- and fourth-order
levels, where all other models struggle to produce any correct answers. This evidences the necessity of explicit
structured reasoning for multi-agent, multi-modal Theory-of-Mind tasks. The advantage of our method grows

Table 1 Results of Comparison Experiments.

Ml(?szle Method Zeroth-Order First-Order Second-Order  Third-Order Fourth-Order
Qwen-ax 98.33 90.00 75.00 11.67 1.67

%Kina MuMA-ToM 96.67 91.67 80.00 Not supported Not supported
AutoToM 96.67 91.67 80.00 0.00 0.00
Ours 100.00 98.33 83.33 51.67 21.67
GPT-5 100.00 95.00 78.33 18.33 0.00
Thilfljrig 100.00 98.33 78.33 18.33 3.33

GPT-5 MuMA-ToM 96.67 93.33 83.33 Not supported Not supported
AutoToM 96.67 93.33 83.33 0.00 0.00
Ours 100.00 98.33 91.67 46.67 21.67
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rapidly with increasing order, validating its capability to manage deeply nested belief structures. Particularly
at third- and fourth-order reasoning, the performance gap reaches over 33.4% comparing to GPT-5 Thinking;
emphasizing the contribution of explicit belief propagation and retrieval-based augmentation.

To further validate the effects of each component, we conducted an ablation study disabled SRAR, RMM
and SMC, with the results presented in Table 2. Disabling RMM has impact to the results of third-order.and
fourth-order tasks with 1.67%-3.34% right answers reduced. Disabling both SRAR and RMM has impact to
the results of all the higher-order tasks with 8.34%-11.67% right answers reduced. Our method with only
SMC component caused difference of all tasks with different orders. This demonstrates that all the 3
components play essential roles for high order reasoning. SRAR provides structured generalization through
example grounding, and RMM consolidates the reasoning experience into reusable abstract insights. Their
combination enables consistent reasoning depth and adaptability to unseen, asymmetric belief hierarchies.

Table 2 Results of Ablation Study.

First-

Method Zeroth-Order Order Second-Order Third-Order Fourth-Order
Ours 100.00 98.33 91.67 46.67 21.67
Ours w/o RMM 100.00 98.33 93.33 45.00 18.33
Ours w/o RMM and
SRAR 100.00 98.33 81.67 35.00 13.33
GPT-5 100.00 95.00 7833 18.33 0.00

5.2.2 Subjective Evaluation

Qualitative assessment of the model’s responses further supports.these quantitative findings. Compared with
GPT-5 and GPT-5 Thinking, our model consistently provides shorter.and more coherent justifications aligned
with agents’ perspectives. It avoids over-explanation and ' maintains internal consistency across nested beliefs.
In high-order reasoning cases involving deception or missed.observations, the structured belief propagation
prevents logical leakage and ensures temporally consistent reasoning. Overall, the updated results affirm that
explicitly structured belief modeling, retrieval-based grounding, and reflective meta-learning jointly yield
stable and scalable higher-order ToM reasoning.that baseline LLMs cannot achieve.

6 CONCLUSION

This work presents a structured higher-order mental state inference method that integrates a qualitative
Sequential Monte Carlo mechanism, Semantic retrieval augmented reasoning, and a reflective memory
management component. Together with a photorealistic multi-agent dataset designed to induce knowledge
asymmetries through partial observability and public versus private communication, the approach delivers a
coherent pipeline for multi-modal ToM reasoning.

Empirically, the method substantially outperforms recent baselines on tasks that require recursive belief
attribution., Ablation studies show that retrieval and reflection contribute materially to deeper recursion.
Qualitative inspection further indicates that perspective-safe updates prevent omniscience leaks and help
maintainitemporal and cross-level consistency, enabling concise, defensible answers rather than brittle chains
of reasoning.

These results'support two conclusions. First, explicit structure is crucial: representing nested beliefs within
agent-indexed state and updating them under visibility constraints is more reliable than treating ToM as
unstructured text generation. Second, learned memory is beneficial: example-guided retrieval and distilled
reflections,_reduce recurrent failure modes in multi-agent settings, especially when deception, missed
observations;.or asynchronous disclosures create belief divergence.

In.summary, this study advances machine ToM by coupling principled structure with experience-driven
augmentation. By making higher-order belief tracking more accurate, consistent, and sample-efficient, it



moves Al closer to robust social understanding in complex, real-time environments, with implications for
collaborative robotics, education, healthcare, and assistive technologies.
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