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3

Abstract
Theory of Mind (ToM) enables reasoning about others’ beliefs, intentions, and knowledge, especially with
higher order forms being crucial for complex social interaction. Large language and vision language models 
have shown weak ToM capabilities in recursive inference, multi-modal grounding and contextual continuity.
Current approaches such as AutoToM and MuMA-ToM, while being able to tackle lower-order reasoning 
decently, are unable or not enough competent to process higher-order tasks. To address these challenges, we 
propose an innovative approach for structured multi-modal higher-order mental state inference which consists 
of the following components: Sequential Monte Carlo for belief propagation designed to break down complex 
social interactions and reduce the negative effects of the interactions’ extent on reasoning accuracy, semantic 
retrieval augmented reasoning designed to retrieve examples that closely resemble the one being processed
and to thus improve reasoning accuracy, and reflective memory management which utilizes previous 
reasoning sessions to expand the ground truth database. To address the gaps in the field of multi-modal higher-
order ToM dataset, we construct a novel photorealistic dataset of multi-agent scenarios with zeroth- to fourth-
order reasoning tasks enabling diverse actions and communications with partial observability. Experimental 
results show that our approach can complete the complex higher-order tasks, especially third- and fourth-
order ones, which are not supported by the state-of-the-art approaches. Ablation studies further demonstrate 
the effectiveness and unique value of the proposed technologies for tasks with different orders.

Keywords—Theory of Mind, higher-order reasoning, sequential Monte Carlo, semantic retrieval augmented 
reasoning, reflective memory management
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1 INTRODUCTION
Theory of Mind (ToM) refers to the ability to identify mental states, such as beliefs, goals, intentions, and 
emotions of oneself and others (Premack & Woodruff, 1978). ToM plays a crucial role in social interactions 
such as cooperation, deception, persuasion, behavior prediction, and conflict navigation. Mental states can be 
categorized into lower-order states, which are limited to direct perceptions and beliefs about the environment, 
and higher-order states, which are recursive embeddings of others’ mental states, an “order” corresponding to 
a layer of embedding. For example, a first-order belief is a simple attribution such as “I think that she is going 
left,” a second-order belief embeds another person’s perspective as in “I think he thinks that I am going left,”
and a third-order belief adds yet another layer, e.g., “I think she thinks that I think that she is going left”. A 
typical example is illustrated in Figure 1.

Higher-order ToM is especially significant because 
many real-world interactions depend on such recursive 
reasoning. In law and politics, reasoning about others’ 
nested beliefs can determine judgments and negotiation 
strategies; in finance and commerce, higher-order ToM 
could be very useful for facilitating cooperation; and in 
literature, higher-order ToM enables the 
comprehension of irony, deception, and complex 
character motivations.

As AI becomes increasingly involved in our daily 
lives, equipping AI with ToM capabilities becomes
critical for better human-AI interactions. Achieving
practical machine ToM requires methods capable of 
processing multi-modal inputs, including text, video, 
and other sensory information, with continuity and 
depth. Many attempts have been made to achieve 
machine ToM, the earliest being symbolic reasoning
(e.g., Bolander & Andersen, 2011; Stuhlmüller & 
Goodman, 2014). While such methods offer 
transparency and explicit logic, they suffer from labor-
intensive, handcrafted modelling that impedes 
scalability and flexibility, particularly for recursive 
higher-order reasoning. Large Language Model (LLM)
and Vision-Language Model (VLM) have experienced 
significant and rapid advances in recent years. While 
studies (Kosinski et al., 2023; Ullman et al., 2023; 
Zhang et al., 2024) show a positive correlation between 
the improvement in language abilities and the 
improvement in ToM abilities, state-of-the-art LLMs 
still exhibit significant limitations in ToM reasoning. 
Specifically, they often fail to distinguish between 
intended actions, sub-optimal decisions, and failed 
attempts, leading to misinterpretations; moreover, AI 
neglects temporal continuity and critical contextual 
information while processing videos.

Recently, several research studies aiming to improve LLMs’ ToM abilities have introduced Bayesian 
Inverse Planning (BIP). This new approach addresses some scalability issues but introduces new challenges. 
Methods like MMToM-QA (Jin et al., 2024) and MuMA-ToM (Shi et al., 2024) often struggle to distinguish 
nuanced intentions and fail to handle the escalating complexity of higher-order logic. More advanced methods, 
such as AutoToM (Zhang et al., 2024), which incorporate structured recursive frameworks, remain vulnerable 
to hallucinations. Furthermore, most of these methods operate from an external, observer-centric perspective, 
limiting their ability to handle partial observability and information asymmetry. Additionally, existing 
methods that support multi-modal input often have to also depend on information of other modalities, 

Figure 1. Illustration of higher-order ToM through 
recursive mental-state embeddings. This visualization 
highlights the progression from lower-order reasoning, 
which concerns direct perceptions and beliefs, to 
higher-order reasoning, which involves increasingly 
complex embeddings of others’ mental states.
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sacrificing their applicability in real-world scenarios. In summary, current machine ToM methods exhibit 
critical shortcomings, including (1) extremely limited higher-order reasoning capability, (2) inability to 
reliably identify failed attempts and sub-optimal behaviors, (3) low generalizability, and (4) loss of temporal 
and contextual continuity in multi-modal inputs. 

To address the above persistent challenges, we propose a structured higher-order mental state inference 
approach for multi-modal ToM reasoning in multi-agent scenarios. Our method can handle partial 
observability and information asymmetry inherent in multi-agent interactions very well. Our method
integrates a Sequential Monte Carlo (SMC) module, which dynamically updates hypotheses about agents' 
intentions and beliefs. Semantic retrieval augmented reasoning is designed to retrieve examples that closely 
resemble the one being processed and to thus improve reasoning accuracy. A reflective memory management 
component is designed to utilize previous reasoning sessions to expand the ground truth database. Furthermore, 
to address the gaps in this field and support the development and evaluation of our framework, we also create 
a new photorealistic dataset featuring multi-agent social scenarios requiring higher-order mental state 
reasoning using UnrealZoo (Zhong et al., 2024). The pipeline of the proposed method is illustrated in Figure 
2, with details described in Section 4. Experimental results show that our approach can complete the complex 
higher-order tasks, especially third- and fourth-order ones, which are not supported by the state-of-the-art 
approaches. It also significantly outperforms them on second-order tasks. Ablation studies further demonstrate 
the effectiveness and unique value of the proposed technologies for tasks with different orders.

Our main contributions can be summarized as follows:
 We introduce an automatic data generation pipeline built on photo-realistic virtual worlds and 

construct a Multi-modal dataset for higher-order multi-agent ToM reasoning.
 We propose a structured higher-order mental state inference approach for multi-modal ToM reasoning 

in multi-agent scenarios, including Sequential Monte Carlo for belief propagation, semantic retrieval-
augmented reasoning, and reflective memory management.

 We conduct experiments for evaluating the higher-order multi-modal ToM reasoning capability of 
different methods and the value of the proposed technologies for different tasks with specific orders, 
and demonstrating the usability of our dataset and the significant improvements of our approach.

Figure 2. Overview of the proposed reasoning pipeline. Multi-modal inputs, including videos and questions, are first 
parsed by a pre-trained VLM into structured textual representations. The parsed story is then processed through 
retrieval, Sequential Monte Carlo (SMC), and reflective memory management, which iteratively retrieves relevant 
examples, generates or updates hypotheses, and performs reflection, by collaborating with LLM until the story is 
complete. Finally, the reasoning outputs are aggregated to answer higher-order ToM questions.
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2 RELATED WORK
Numerous approaches from different perspectives have been developed to enhance machine ToM reasoning, 
including psychological principles, reasoning approaches with or without LLM or VLM, datasets and tools.

Psychological Principles Psychological and cognitive science literature has long been a theoretical 
backbone for ToM modelling. Perner and Wimmer (1985) conducted a seminal study demonstrating that 
children begin to understand second-order beliefs, such as "Mary thinks that John thinks…", around seven. 
Moore et al. (1990) extended this line of research by exploring children's grasp of speaker-listener dynamics, 
showing that advanced ToM plays a critical role in pragmatic language understanding. Kinderman et al. (1998) 
examined how higher-order ToM influences adult causal attributions, especially in clinical populations. Miller 
(2009) reviewed various developmental findings and emphasized the roles of language, executive function, 
and social experience in fostering higher-order ToM. That same year, Apperly and Butterfill (2009) proposed 
a dual-systems theory, suggesting that humans rely on a fast, implicit system for basic mental state tracking 
and a slower, cognitively demanding system for recursive, higher-order reasoning. Most recently, Osterhaus 
and Koerber (2021) used structural modelling to reveal that middle childhood ToM reasoning involves 
multiple interrelated components, highlighting its cognitive complexity and layered nature.

Approaches  Early approaches such as symbolic logic-based methods (Bolander & Andersen, 2011; 
Stuhlmüller & Goodman, 2014), BIP without large models (Baker et al., 2009; 2011), I-POMDP framework 
(Gmytrasiewicz & Doshi, 2005), and script-based reasoning (Schank & Abelson, 1997) laid the foundation 
for machine ToM. However, they struggle with flexibility and generalization to real-world complexity. With 
the rise of LLMs and VLMs, more recent efforts can be broadly divided into two categories: prompt-based 
(Kosinski, 2023) and structurally augmented approaches (Jin et al., 2024; Shi et al., 2024; Zhang et al., 2024). 
These newer methods demonstrate improved performance in simulating mental state reasoning. Still, 
significant challenges remain. Prompt-based methods often show limited gains beyond basic prompting, while 
structurally augmented methods encounter difficulty when handling nuanced higher-order beliefs, particularly 
in dynamic multi-agent environments. Further innovation is needed to close the gap between human and 
machine ToM. In addition, recent studies have explored alternative paradigms to enhance LLMs’ reasoning. 
Reflexion introduces verbal reinforcement learning to let language agents iteratively improve via reflective 
feedback (Shinn et al., 2023). Retrieval-Augmented Generation (RAG) integrates external knowledge 
retrieval into the generation process to reduce hallucinations and enhance reasoning, especially in knowledge-
intensive tasks (Gao et al., 2023).

Datasets  To support training and evaluation, many ToM related datasets have been created (Rabinowitz 
et al., 2018; Jain et al., 2019; Sap et al., 2019; Kosinski, 2023; Zhang et al., 2023; Zhang et al., 2024). However, 
these datasets present several key limitations. Many are either unimodal or single agent, for example, Social 
IQa (Sap et al., 2019) and ToM Tasks (Kosinski, 2023) are purely textual, lacking perceptual grounding, while 
SCoNe (Jain et al., 2019) remains focused on written narratives. Datasets like CLEVR-Mental-State (Zhang 
et al., 2023) attempt to introduce visual inputs but rely on synthetic, static scenes with limited ecological 
validity, and higher-order ToM is also rarely addressed. Most datasets target only first-order inferences, and 
even those that support higher-order reasoning, like Hi-ToM (He et al., 2023), suffer from low-fidelity visuals 
and rigid character actions. Additionally, agent embodiment and real-time interactivity are often absent, as in 
Rabinowitz et al. (2018), where agents operate in abstract environments without grounded social exchange. 
These factors limit how much models trained on such datasets can generalize to complex, real-world mental 
state reasoning.

Utility  Tools for creating multi-modal datasets have evolved alongside advancements in machine ToM. 
VirtualHome (Puig et al., 2018) enables the simulation of household activities through scripted sequences of 
symbolic actions, supporting studies on task planning and high-level execution. However, its abstraction of 
physical interactions and low-fidelity video output limit its utility for tasks requiring motor precision or rich 
sensory input. iGibson 2.0 (Li et al., 2021) improves on this by offering a physically grounded, object-centric
environment with interactive manipulation and realistic visuals. It supports diverse sensory and control 
modalities, making it better suited for embodied learning. Still, its computational demands can hinder 
scalability and integration with higher-level reasoning. UnrealZoo, built on Unreal Engine, represents the 
most advanced platform. It combines photo-realism, dynamic interactions, and diverse scene layouts, 
overcoming key shortcomings of its predecessors. Unlike VirtualHome’s symbolic abstractions, UnrealZoo 20
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enables both visual and physical realism, and it offers broader, more flexible environments than iGibson 2.0, 
making it especially well-suited for next-generation multi-modal ToM research.

3 HIGHER-ORDER MULTI-MODAL DATASET GENERATION
We construct a multi-agent simulation dataset using UnrealZoo that covers zeroth- to fourth-order problems. 
Our dataset contains high resolution videos at 60fps that show social interactions happened in photorealistic 
3D environments with multiple rooms and interactive objects. The stories in our dataset are based on the Hi-
ToM (He et al., 2023) dataset, each containing approximately 15 actions or utterances. An example is shown 
in Figure 3.

Within this simulation, agents engage in rich multi-modal interactions. They can manipulate objects, e.g., 
pick up, move, or drop items in containers and communicate with one another either publicly or privately. A 
public speech is audible to all agents in the vicinity. In contrast, a private utterance is directed at a specific 
agent. Meanwhile, all agents continuously observe each other’s actions when they are within line-of-sight or 
the same room, which means an event, such as an object being moved or a statement being made, is only 
witnessed by those present. This controlled communication and observability structure leads to knowledge 
asymmetry: some agents gain information that others lack, setting the stage for higher-order ToM reasoning.
The process of data generation is shown in Algorithm 1.

We generate the dataset using the aforementioned environment and interactions. Each scenario is presented 
as a short video with synchronized dialogue transcript and visual events, accompanied by a ToM reasoning
task. The question with multiple choices focuses on an agent’s nested beliefs about others. For example, a 

Figure 3. A typical example interaction from our dataset that shows the complexity of higher-order ToM reasoning. 
For one to reach the correct answer, they must comprehend the notion of partial observability and keep track of the 
mental states of multiple agents.

A third-order episode with 5 agents and 15 steps

Step 1: Carter, Avery, Jacob, Jackson and Alexander 
were on the rooftop.

Step 2: The turkey was on the trash bin.
Step 3: Carter made no movements and stayed on the 

rooftop for 1 minute.
Step 4: Carter went downstairs.
Step 5: Avery moved the turkey near the vent.
Step 6: Avery went downstairs.
Step 7: Jacob moved the turkey under the patio umbrella.
Step 8: Jacob went downstairs.
Step 9: Jackson made no movements and stayed on the 

rooftop for 1 minute.
Step 10: Jackson went downstairs.
Step 11: Alexander made no movements and stayed on 

the rooftop for 1 minute.
Step 12: Alexander went downstairs.
Step 13: Carter, Avery, Jacob, Jackson and Alexander 

entered the living room.
Step 14: Jacob publicly claimed that the turkey was on the 

trash bin.
Step 15: Alexander privately told Jacob that the potato was 

in the kitchen drawer.
Question: Where does Alexander think Jacob thinks 
Carter thinks the potato is?
Answer: on the trash bin

(a) Before Step 5

(b) Step 5

(c) Step 14 & 15
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9

question may ask what an agent thinks of the thought about another agent of yet another agent. This question-
answer format enables quantitative evaluation of a method or human participant’s understanding of the 
scenario’s mental state dynamics.

Each video scenario consists of approximately 15 discrete steps, depicting a sequence of agent actions and 
communications that unfold the story. The scenarios are explicitly designed to require higher-order ToM 
inferences: each one targets a zeroth-, first-, second-, third-, or fourth-order belief reasoning challenge. In all 
cases, the correct answer to the scenario’s question hinges on understanding these nested beliefs rather than 
just simple beliefs or facts.

Throughout these events, the agents’ beliefs are formed and updated step by step, resulting in a complex 
tapestry of who knows what – and who knows that others do not know. Crucially, by the end of this scenario, 
the participants have misaligned mental states that require higher-order reasoning to untangle. This design of 
the dataset ensures that evaluating on our 300 episodes rigorously tests a method’s higher-order ToM 
reasoning in multi-modal, dynamic social environments.

4 METHOD
Higher-order ToM reasoning in a multi-agent environment is challenging. In order to track and infer the 
evolving mental states of multiple agents, we design a reasoning mechanism that maintains a hypothesis space 
of possible beliefs for each agent and updates these hypotheses as new observations of actions or utterances 
arrive. It consists of three components: (1) Sequential Monte Carlo (SMC) mechanism to initialize and 
rejuvenate a set of belief hypotheses over time, (2) a Semantic Retrieval Augmented Reasoning (SRAR)
component that leverages stored examples of ground truth and successful past experiences to guide future
hypothesis updates, and (3) a Reflective Memory Management (RMM) component that generates feedback 
after each inference episode and stores it as metadata for future retrieval. This section details the algorithms 
and notations of our method, describing how it propagates beliefs and learns from each scenario.

4.1 Belief Modeling for Multi-Agent Higher-Order ToM

At the core, our method infers higher-order beliefs, enabling reasoning about what agents believe about others’ 
beliefs. In this section, we define symbols and notations for belief modeling that would be later used to explain 
our algorithm and provide an overview of how we model nested beliefs. A first-order belief 𝐵𝐵𝑖𝑖(𝑝𝑝) denotes 

Algorithm 1. Algorithmic workflow for episode generation. Starting from a Hi-ToM–derived scenario seed, the 
procedure (1) instantiates an UnrealZoo scene with agents and interactable objects, (2) schedules a stepwise script of 
actions and utterances, and (3) renders the video and aligns a time stamped dialogue transcript.

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



agent 𝑖𝑖’s belief in proposition 𝑝𝑝, while a second-order belief 𝐵𝐵𝑖𝑖 �𝐵𝐵𝑗𝑗(𝑝𝑝)� denotes 𝑖𝑖’s belief about 𝑗𝑗’s belief in 
𝑝𝑝.

In realistic social settings, no agent possesses complete information about the environment. Our method
therefore maintains a separate knowledge state for each agent, capturing only the events they directly observed 
or were informed of. Each event or utterance is tagged with the set of perceiving agents, ensuring belief 
updates occur only from appropriate perspectives. This design encodes information asymmetry, allowing the 
model to represent divergent beliefs and track how false beliefs persist when an agent misses critical 
observations; that is, our method takes agents’ ignorance into consideration, such as deducing that an agent 𝐴𝐴
does not know 𝑝𝑝 if they missed the relevant event. This design helps to ensure coherence: when an agent 

Figure 4. Illustration of the diversity of our dataset: agents operate in photorealistic, multi-location environments 
with over 20 types of interactive objects. (a) Various episodes and scenes. (b) Pickable Objects: A diverse set of 
interactable objects used in the scenarios, enabling rich manipulation actions. (c) Human Characters: The pool of 
animated agents used to enact multi-agent social scenarios with varied appearances and roles.

(b) Pickable Objects

(c) Human Characters

(a) Episodes and Scenes
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11

learns new information, only the beliefs of agents who observed this learning are updated, while others retain 
their prior false or outdated beliefs.

4.2 Sequential Monte Carlo for Belief Propagation

Taking into consideration the importance of continuity, our study leverages the principles of SMC to structure 
the belief update process as illustrated in Figure 5. Specifically, we use an LLM to qualitatively generate, 
assess, and rejuvenate particles rather than doing so quantitatively as in the classical approach.

The LLM assumes the core functional roles traditionally handled by mathematical operations in SMC. 
Instead of proposing new particles from a probabilistic motion model, the LLM generates new belief 
hypotheses based on its understanding of the evolving narrative. Rather than assigning and updating numerical 
weights based on observation likelihoods, the LLM qualitatively assesses the plausibility of each hypothesis 
in light of new events, effectively ranking them. Finally, the resampling and rejuvenation steps are replaced 
by a logical process where less plausible hypotheses are discarded and replaced with new, more coherent 
alternatives generated by the LLM, ensuring the diversity and relevance of the hypothesis pool.

In our framework, each "particle" is not a state vector but rather a rich, text-based hypothesis representing 
a candidate mental state for an agent. For example, a particle might encapsulate a complex belief such as, 
"Agent A incorrectly believes that Agent B thinks the object is still in the box, because A did not witness B 
seeing the object being moved". By manipulating a set of these descriptive hypotheses over time, our method 
can track the intricate, nested, and often non-obvious mental states of multiple agents in a dynamic 
environment. The following subsections detail the specific algorithms for this qualitative belief propagation 
process.

4.2.1  Initialization

We employ SMC algorithm to perform belief propagation for each agent across a sequence of observations. 
In this context, each “particle” represents a candidate hypothesis about an agent’s mental state, for example, 
what that agent believes about a particular fact or situation. As agents interact in the scenario, their beliefs 
may involve nested and higher-order reasoning about each other. We denote an n-th-order belief concerning 
a proposition p using a nested notation. A first-order belief is written as 𝐵𝐵𝑖𝑖(𝑝𝑝), a second-order belief as 
𝐵𝐵𝑖𝑖 �𝐵𝐵𝑗𝑗(𝑝𝑝)�, and a general 𝑛𝑛-th-order belief is defined as:

𝐵𝐵(𝑖𝑖1) �𝐵𝐵(𝑖𝑖2) �… �𝐵𝐵(𝑖𝑖𝑛𝑛)(𝑝𝑝)�… �� (1)

where, for example, 𝐵𝐵𝑎𝑎,𝑏𝑏
2 (𝑝𝑝) means “agent 𝑎𝑎 believes that agent 𝑏𝑏 believes 𝑝𝑝”, and so on. The hypothesis 

space maintained by our SMC module includes both lower-order beliefs as direct beliefs about the 
environment and higher-order beliefs as beliefs about others’ beliefs.

At the start of an episode (time 𝑡𝑡 = 0), the model draws an initial set of hypotheses for each agent’s mental 
state based on the context. Formally, let ℋ𝒾𝒾,0 = {𝐻𝐻𝑖𝑖,0

(𝑝𝑝)}𝑝𝑝=1𝑁𝑁 be the set of 𝑁𝑁 hypothesis particles for agent 𝑖𝑖’s 

Parsed 
Scene Data

Previous 
Particles
𝑃𝑡𝑡−1

Initialization

LLM

Hypotheses

𝑃𝑡𝑡 = 𝛷 𝑜𝑜𝑡𝑡 ,𝑃𝑡𝑡−1,ℛ

ℎ1 ℎ2 ℎ3 ...

Revised and 
Proposed Particles 

Re-Ranking

LLM

Hypotheses
ℎ1

ℎ2

ℎ3

...

ℎ4

ℎ2

ℎ3

...

Particles 𝑃𝑡𝑡

Figure 5. Sequential Monte Carlo for Belief Propagation
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state, e.g. what agent 𝑖𝑖 believes about key facts at the beginning of the scenario. These initial particles {𝐻𝐻𝑖𝑖,0
(𝑝𝑝)}

are generated by a function implemented via an LLM prompt that infers plausible mental states consistent 
with the scenario. This serves as an approximate prior distribution over agent 𝑖𝑖’s beliefs before any dynamic 
observations. We rank each hypothesis 𝐻𝐻𝑖𝑖,0

(𝑝𝑝) by plausibility as determined by the language model.

4.2.2  Belief Update with New Observations

Maintaining consistency of beliefs over time is critical. In dynamic multi-agent environments, new 
information arrives sequentially, and agents’ beliefs must be updated accordingly. A major challenge is 
ensuring that these updates do not introduce contradictions either within an agent’s own belief set or across 
the nested beliefs of different agents.

An example of maintaining consistency is handling a change-of-state with limited observability. Suppose 
initially agent 𝐴𝐴 and agent 𝐵𝐵 both believe a box is in Room1. Then the box is moved to Room2 while 𝐵𝐵
watches but 𝐴𝐴 does not. After this event, our model updates 𝐵𝐵𝐵𝐵1(”Box in Room2”) to true, and 
correspondingly 𝐵𝐵’s belief that the box is in Room1 to false. For 𝐴𝐴, however, BA

1(”Box in Room2”) remains 
false (since 𝐴𝐴 didn’t see the move, 𝐴𝐴 continues to believe the box is in Room1). Now consistency requires 
that 𝐵𝐵’s second-order belief about 𝐴𝐴 reflects 𝐴𝐴’s ignorance: specifically, BB,A

2 (”Box in Room2”) should be 
false, meaning 𝐵𝐵 believes that “𝐴𝐴 does not know the box’s new location”. Our model ensures this alignment 
in its representation of 𝐵𝐵’s beliefs about 𝐴𝐴. Later, if 𝐴𝐴 is informed or observes that the box is in Room2, we 
update 𝐴𝐴’s beliefs accordingly. We also update BB,A

2 (”Box in Room2”) once 𝐵𝐵 becomes aware that 𝐴𝐴 has 
learned the new location, for instance, if 𝐵𝐵 saw 𝐴𝐴 open the box in Room2 or heard someone tell 𝐴𝐴. Through 
these carefully coordinated updates, the model maintains a globally coherent picture of all agents’ minds over 
time.

Let ℋ𝒾𝒾,𝓉𝓉−1 = �ℎ𝑖𝑖,𝑡𝑡−1
(1) ,⋯ ,ℎ𝑖𝑖,𝑡𝑡−1

(𝐾𝐾) � be the agent-centric hypothesis set at time 𝑡𝑡 − 1 , where each ℎ is a 
complete, perspective-aware assignment over first and higher order beliefs, e.g., whether 
𝐵𝐵𝑎𝑎1(𝑝𝑝) or 𝐵𝐵𝑏𝑏,𝑎𝑎

2 (𝑝𝑝) holds, consistent with all prior events. When a new observation 𝑂𝑂𝑡𝑡 as an action or 
utterance arrives, the model does not compute numeric likelihoods or weights. Instead, it prompts a language 
model to qualitatively examine each hypothesis for coherence with 𝑂𝑂𝑡𝑡, revise those that can be reconciled by 
incorporating the newly revealed information and visibility constraints, and propose alternatives where 
reconciliation is untenable. We summarize this step by an abstract update operator:

ℋ𝒾𝒾,𝓉𝓉 = Update�ℋ𝒾𝒾,𝓉𝓉−1,𝑂𝑂𝑡𝑡,𝐸𝐸𝑡𝑡�, (2)

where 𝐸𝐸𝑡𝑡 represents a set of relevant examples retrieved from the memory store, which are incorporated into 
the language model's prompt to guide more accurate qualitative reasoning, as detailed in Section 4.3. 
Operationally, the update proceeds in the following two phases:
 Revision and Proposal: applies a perspective-aware transformation to each ℎ ∈ ℋ𝒾𝒾,𝓉𝓉−1 and injects 

new candidates only when needed;
 Qualitative Ordering and Truncation: imposes an LLM-internal pre-order ⪯𝑡𝑡 (a “most-to-least 

plausible” ranking with no numeric scores) and keeps the top 𝐾𝐾.
We define:

ℋ𝚤𝚤,𝑡𝑡� = �Reflect𝐸𝐸𝑡𝑡(ℎ,𝑂𝑂𝑡𝑡) � ℎ ∈ ℋ𝒾𝒾,𝓉𝓉−1� ∪ Propose𝐸𝐸𝑡𝑡�𝑂𝑂𝑡𝑡 ,ℋ𝒾𝒾,𝓉𝓉−1�,ℋ𝒾𝒾,𝓉𝓉 = Select𝐾𝐾! �Rank𝑜𝑜𝑡𝑡! �ℋ𝚤𝚤,𝑡𝑡� �� . (3)

here, Reflect𝐸𝐸𝑡𝑡(ℎ, 𝑜𝑜𝑡𝑡) edits only those particles that the new event licenses from the correct perspective, e.g., 
a private perception changes 𝐵𝐵𝑣𝑣1(⋅) for the viewer 𝑣𝑣 but leaves non-viewers’ beliefs intact; a public assertion 
updates 𝐵𝐵𝑟𝑟,𝑗𝑗

2 (⋅) for each listener 𝑟𝑟 about speaker 𝑗𝑗’s belief. If a prior ℎ cannot be reconciled without violating 
perspective safety, Propose𝐸𝐸𝑡𝑡 introduces a fresh explanation that honors who saw or heard what. The LLM 
then produces ⪯𝑡𝑡 implicitly—articulating which explanations are more compelling after 𝑂𝑂𝑡𝑡—and Select𝐾𝐾
clips the list to capacity, ensuring �ℋ𝒾𝒾,𝓉𝓉� = 𝐾𝐾. In effect, the update functions as a particle filter’s correction 20

25
 S

.-T
. Y

au
 H

igh
 S

ch
oo

l S
cie

nc
e A

ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



13

step without numeric scoring: the model keeps, edits, or replaces hypotheses purely by qualitative reasoning 
over content and visibility, optionally nudged by retrieved analogies 𝐸𝐸𝑡𝑡.

4.2.3 Resampling and Rejuvenation

Following revision, the model executes a qualitative analog of resampling. It retains the revised hypotheses 
that remain coherent after 𝑂𝑂𝑡𝑡 and rejuvenates the rest by replacing them with newly proposed alternatives, 
again with no numeric weights involved. Conceptually, the procedure partitions the previous set into those 
that survive reflection and those that are discarded, then fills any vacancies with new candidates tailored to 
𝑂𝑂𝑡𝑡 optionally conditioned on 𝐸𝐸𝑡𝑡 to keep diversity at capacity 𝐾𝐾. We summarize the pool-construction step by:

ℋ𝚤𝚤,𝑡𝑡� = � Reflect𝐸𝐸𝑡𝑡(ℎ,𝑂𝑂𝑡𝑡) � ℎ ∈ ℋ𝒾𝒾,𝓉𝓉−1,  coherent under 𝑂𝑂𝑡𝑡����������������������������������
retained & revised

∪ Propose𝐸𝐸𝑡𝑡! �𝑂𝑂𝑡𝑡 ,  ℋ𝒾𝒾,𝓉𝓉−1����������������
rejuvenated replacements

. (4)

The final ℋ𝒾𝒾,𝓉𝓉 is obtained by qualitatively ordering ℋ𝚤𝚤,𝑡𝑡� (the LLM’s implicit ⪯𝑡𝑡) and truncating to the top 
𝐾𝐾, as already expressed above. In practice, this resampling-with-rejuvenation functions as a “keep the good, 
replace the rest” cycle that continually refreshes the hypothesis set. Retained items provide temporal stability 
and carry forward long-range constraints, e.g., persistent ignorance or entrenched false beliefs, while 
rejuvenated items explore new explanatory avenues unlocked by 𝑂𝑂𝑡𝑡, e.g., alternative attributions of intent or 
knowledge transfer paths. Because proposals are context-conditioned and optionally memory-augmented via 
𝐸𝐸𝑡𝑡, the injected diversity is targeted: it expands exactly where the prior set failed to reconcile the latest event. 
Over time, repeating this cycle yields a top 𝐾𝐾 pool that remains both focused on the most defensible 
interpretations and adaptable to unexpected turns in the narrative, all without invoking numeric likelihoods, 
scores, or probabilities.

4.3 Semantic Retrieval Augmented Reasoning

While the SMC mechanism maintains temporal coherence of beliefs, it may still suffer from limited 
generalization and vulnerability to complex multi-agent interactions. To address these shortcomings, we 
introduce a semantic retrieval module that supplements SMC with relevant prior experiences, enabling the 
model to ground its updates in both current observations and analogous past scenarios, as shown in Figure 6.

By utilizing semantic vector store, we maintain a long-term memory ℳ which is a set of stored episodes, 
each indexed by a dense semantic embedding, as well as associated metadata, such as a brief context summary, 
the final correct mental state, and an abstract reflection. When a new reasoning task defined by the current 
scenario context, ongoing actions and utterances and the subject of inference is given, we construct one or 
more textual queries capturing the essence of the task. For example, if the subject of inference is “each 
character’s belief about the location of the object” and the current context involves certain actions, the model
might form a query combining keywords from the context including agents’ names, object names, key events 
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Figure 6. Semantic Retrieval Augmented Reasoning
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along with phrases indicating “belief” or “thought about [object]”. We denote the set of query variants as 𝑄𝑄 =
{𝑞𝑞1,𝑞𝑞2, … , 𝑞𝑞𝑚𝑚}, designed to cover different lexical formulations of the information need.

4.3.1 Hybrid Retrieval with Dense and Lexical Approaches

For each query 𝑞𝑞 ∈ 𝑄𝑄, we perform two kinds of search over ℳ: 
 Dense Vector Similarity Search: the query 𝑞𝑞 is embedded into the same vector space as the memory 

entries, using the embedding model of the vector store, and we find the entries with highest cosine 
similarity to 𝑞𝑞. 

 Lexical Search: we use a BM25-based search over the textual metadata of entries to find those with 
common keywords. Let TopKdense(𝑞𝑞) be the top 𝐾𝐾 retrieved items by semantic similarity, and 
TopKlex(𝑞𝑞) the top 𝐾𝐾 items by lexical matching. 

We take the union of results from all query variants and both methods, then eliminate duplicates, yielding 
a candidate set 𝐷𝐷cand of potentially relevant memory entries:

𝐷𝐷cand = ��TopKdense(𝑞𝑞𝑖𝑖) ∪ TopKlex(𝑞𝑞𝑖𝑖)�
𝑚𝑚

𝑖𝑖=1

. (5)

Each candidate entry 𝑑𝑑 ∈ 𝐷𝐷cand comes with a stored content, e.g. a short description of a scenario or a 
distilled outcome, and metadata. At this stage, Dcand might still be large and contain some less relevant items 
due to noise from broad semantic matches or keyword overlaps. We therefore apply a reranking and filtering 
process to select the most relevant and diverse examples to actually use in reasoning.

4.3.2 Relevance Re-Ranking and Maximal Marginal Relevance Selection

For relevance re-ranking, we first score each candidate d ∈ Dcand for relevance to the current query using a 
cross-encoder model FCE. This model takes the pair (𝑞𝑞, content𝑑𝑑) and produces a relevance score 𝑅𝑅(𝑞𝑞,𝑑𝑑). 
Compared to the initial vector similarity, 𝑅𝑅(𝑞𝑞,𝑑𝑑) is a more precise semantic relevance measure (e.g., 
capturing whether the memory entry truly addresses a similar question or situation as our current task). We 
compute 𝑅𝑅(𝑞𝑞,𝑑𝑑) for all candidates, then sort Dcand by this score in descending order.

We also implement Maximal Marginal Relevance (MMR) selection. Rather than simply picking the top 𝐾𝐾
highest R(q, d) entries, which could be redundant, e.g. multiple entries that are near duplicates of each other, 
we use a Maximal Marginal Relevance strategy to ensure diversity among the retrieved examples. We will 
select a final subset E = {d1, d2, … , dK} of 𝐾𝐾 examples iteratively. Initialize an empty set 𝑆𝑆 =  ∅. At each 
selection step, choose the candidate d ∈ Dcand ∖ S that maximizes a trade-off between relevance and 
dissimilarity to already-selected items. The MMR objective for selecting the next example 𝑑𝑑∗ can be written 
as:

𝑑𝑑∗ = arg max
𝑑𝑑∈𝐷𝐷cand∖𝑆𝑆

�λ𝑅𝑅(𝑞𝑞,𝑑𝑑) − (1 − λ) max
𝑑𝑑′∈𝑆𝑆

sim (𝑑𝑑,𝑑𝑑′)� . (6)

Here sim(d, d′) is the cosine similarity between the embedding vectors of two candidate entries, and 0 ≤ λ ≤
1 is a parameter, e.g. λ = 0.7, controlling the relevance-vs-diversity balance. Intuitively, this criterion prefers 
entries that have high relevance 𝑅𝑅(𝑞𝑞,𝑑𝑑) to the query while penalizing those that are overly similar to any 
already chosen entry to promote informational diversity. We add 𝑑𝑑∗ to 𝑆𝑆 and repeat until 𝐾𝐾 entries are 
selected (or until Dcand is exhausted). The outcome is a set E = d1, … , dK of the most pertinent and diverse 
examples from memory for the task at hand.

4.3.3 Augmenting Reasoning with Retrieved Examples

The selected examples 𝐸𝐸 are then incorporated into the LLM’s prompt to guide hypothesis generation and 
rejuvenation. Each example d ∈ E is represented in a concise textual form, typically including a brief 
description of the prior scenario’s context and the relevant outcome, for example, what the true state was,20
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along with any stored reflection or lesson from that scenario as will be detailed in the next subsection. An 
example might be presented as: “Example 1: In the context of '<scenario summary>', <outcome>. Here is a 
piece of advice: <reflection>.” Listing a few such examples before the current scenario prompt provides the 
model with analogical cases. This retrieval-augmented prompt acts as a set of implicit constraints or hints, 
helping the model to avoid pitfalls and leverage patterns learned from prior similar situations. 

For instance, if the memory contains a scenario where an agent was misled by another agent’s action to a 
false belief, and our current task has a structurally similar deception, a retrieved example might remind the 
model that “the belief of others can be influenced by the actions of multiple agents, leading to complex chains 
of belief that may not align with reality.” By seeing this hint, the model is more likely to correctly hypothesize 
the presence of a false belief in the current scenario. 

Formally, the hypothesis update function from the SMC step is now augmented with memory 𝐸𝐸: instead of 
relying solely on 𝑂𝑂𝑡𝑡 , the update uses the combined information (𝑂𝑂𝑡𝑡 ,𝐸𝐸) when revising and re-ranking the 
particles. This can be seen as conditioning the proposal distribution for new hypotheses on both the latest 
observation and the retrieved knowledge. The result is a semantics-augmented SMC update that is better 
informed and less prone to prior mistakes, since the model can “remember” how similar belief reasoning 
problems were resolved in the past.

4.4 Reflective Memory Management

A reflection mechanism is designed to allow the model to learn from each completed inference and accumulate 
abstract knowledge for future use, as illustrated in Figure 7. The SMC updates and SRAR have led to a final 
set of hypotheses, and typically a final answer to the query, such as the most likely mental state for each agent. 
After that, the model performs a post-hoc reflection on its reasoning process. This component generates an 
abstract feedback statement for each hypothesis–answer pair and stores this information into the semantic 
vector store as metadata.

4.4.1 Generating Abstract Feedback

The reflection process takes as input the scenario context 𝐶𝐶, the sequence of actions 𝐴𝐴 and utterances 𝑈𝑈 that 
occurred, the final hypothesis 𝐻𝐻 produced by the model for the query, e.g. the model’s inferred answer about 
an agent’s belief, and the correct answer 𝑆𝑆, the ground-truth mental state or outcome, if known from the 
simulation or annotation. Using these, we prompt the LLM to reflect on the reasoning behind the hypothesis 
𝐻𝐻, focusing on aspects like consistency, accuracy, and coherence with the scenario. 

Crucially, the prompt explicitly instructs the model not to mention any scenario-specific details in its 
reflection. Instead, it must distill a general insight or suggestion for improving future reasoning in similar 
tasks, phrased in a single sentence. For example, if the model’s hypothesis was incorrect because it failed to 

Scenario Context 
“The potato is initially …”

Actions and Utterances 

“Alex privately tells Jacob 
that …”

Ground Truth 
“Alexander thinks Jacob thinks 
Carter thinks the potato is in 

the cabinet.”

Final Hypothesis 
“Alexander thinks Jacob thinks 
Carter thinks the potato is in 

the cabinet.” or “… in the 
basket.”

Re�lection Generation Semantic 
Memory 

Re�lection 
“It is important to 

keep track of 
partial 

observability.”

Please re�lect on the reasoning behind this hypothesis.
Consider consistency, accuracy, and coherence based on the scenario provided.
Please provide general suggestions for improving future reasoning within a single sentence.
An example suggestion could be: "The belief of others can be in�luenced by the actions of 
multiple agents, leading to complex chains of belief that may not align with the actual state 
of objects."
DO NOT mention ANY CONTEXT-RELATED details in your response!
I repeat, DO NOT mention ANY CONTEXT-RELATED details in your response!

Figure 7. Reflective Memory Management
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consider that an agent could be misinformed by another, the reflection might be a general statement like: “An 
agent’s belief can be incorrect if it is based on another agent’s misleading action, so future reasoning should 
consider the possibility of deception.” This sentence does not reference any character or object by name; it is 
an abstract lesson extracted from the particular scenario.

Formally, we can denote the reflection generation as a function freflect applied to the scenario and outcome:

𝑅𝑅 = 𝑓𝑓reflect(𝐶𝐶,𝐴𝐴,𝑈𝑈,𝐻𝐻, 𝑆𝑆), (8)

where 𝑅𝑅 is the resulting reflection sentence. The model freflect is the same LLM but used in a special “reflection 
mode” with a crafted prompt as described. Because 𝐻𝐻 and 𝑆𝑆 are given as part of the input, the model can 
analyze the relationship between its hypothesis and the true state, effectively performing an error analysis or 
self-evaluation. The output 𝑅𝑅 is a high-level critique or advice that could help avoid the mistake or reinforce 
the correct reasoning in the future. Notably, we design this reflection to be agnostic to the concrete story 
details so that it may apply broadly: it functions as a piece of transferable knowledge.

4.4.2 Persisting Reflection as Metadata

Once the reflection 𝑅𝑅 is generated, the model stores a new entry into the semantic memory ℳ (the vector 
store). This entry includes the key aspects of the just-completed scenario and the reflection. We represent an 
entry as a tuple �(𝐶𝐶,𝐴𝐴,𝑈𝑈), 𝑆𝑆, 𝑅𝑅�, consisting of a representation of the context and events (𝐶𝐶,𝐴𝐴,𝑈𝑈), the final 
correct state 𝑆𝑆 , and the reflection sentence 𝑅𝑅 . In practice, the context (𝐶𝐶,𝐴𝐴,𝑈𝑈) may be summarized or 
embedded rather than stored verbatim if it’s long, but the entry retains enough information to be searchable 
via semantic vectors and keywords later. The vector store’s metadata fields for this entry record the type of 
inference, e.g. whether 𝑆𝑆 was a “belief” state, an “intention,” etc., corresponding to the subject of inference, 
as well as the text of 𝑅𝑅. We denote the storage operation as:

ℳ ≔ℳ∪ {�(𝐶𝐶,𝐴𝐴,𝑈𝑈), 𝑆𝑆,𝑅𝑅�}. (9)

By adding this entry, the model learns from its experience. In subsequent reasoning episodes, the retrieval 
module can search this memory and potentially retrieve the newly stored example if the future query is 
semantically similar. The reflection 𝑅𝑅 then serves as a piece of meta-knowledge or advice, attached to a 
scenario reminiscent of the new one. Over time, as more scenarios are processed and more reflections stored, 
the model’s semantic memory grows into a repository of distilled Theory-of-Mind reasoning insights. This 
contributes to improved performance: the model increasingly benefits from past lessons, thus gradually 
mitigating repeated errors. 

The Reflection mechanism essentially implements a form of iterative self-improvement: each run of the 
ToM reasoning loop not only produces an answer but also a training signal, the reflection, for the next loops. 
Because the reflections are abstract and generalized, the model avoids overfitting to specific past contexts and 
instead accumulates broadly applicable wisdom, e.g. recognizing common pitfalls like ignoring an agent’s 
false belief or misinterpreting an ambiguous action.

5 EXPERIMENTS

5.1 Experiment Settings

We evaluated the proposed method on the generated multi-modal dataset with totally 300 question–answering 
reasoning asks spanning zeroth-, first-, second-, third-, and fourth-order, with 60 tasks per order. Each task 
features a short photorealistic video depicting multi-agent interactions with partial observability, accompanied 
by a multiple-choice question requiring nested belief inference. The overall experimental goal is to assess 
both the scalability and the structural robustness of our model across increasing orders of recursive reasoning.

We employed Gemini 2.5 Pro as the vision–language model for extracting structured textual representations 
from videos, and GPT-5 and Qwen-3 Max as the core reasoning backend for all baselines and our proposed 
method. For the comparison experiments, we included GPT-5, GPT-5 Thinking, Qwen-3 Max, and the multi-
modal benchmark, MuMA-ToM and AutoToM, tested in both GPT-5 and Qwen-3 Max configurations. Among 20
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them, Qwen-3 Max and GPT-5 Thinking represent current frontier models for integrated reasoning, while 
MuMA-ToM and AutoToM serves as the SOTA methods of publicly available structured multi-modal baseline.

The ablation study is also performed with the components of SRAR, RMM and SMC removed
incrementally. This setup isolates the contribution of each structural component to overall reasoning depth 
and generalization and evaluate the effectiveness of each one.

All methods received the same scene inputs, dialogue transcripts, and question formats, ensuring 
comparability. Each model was allowed to output only a single answer per question without iterative self-
correction. Accuracy was computed as the percentage of correctly answered questions out of 60 for each order. 
We report both quantitative comparisons and ablation results to reveal how sequential belief propagation, 
retrieval augmentation, and reflective memory jointly enhance performance across reasoning orders.

5.2 Experiment Results

5.2.1 Quantitative Results

The quantitative comparison across reasoning orders is summarized in Table 1. The benchmark contains 60 
tasks per order, and the results demonstrate clear and consistent improvements of our structured model over 
all baselines. Specifically, our full model with both GPT-5 and Qwen-3 Max achieves the highest accuracies 
on zeroth-, first-, second-, third-, and fourth-order reasoning respectively, representing a substantial advantage 
as the reasoning order increases.  Especially, the results for third- and fourth-order reasoning tasks explicitly 
proved the overwhelming advantage against other methods. 

For the simplest tasks with only zeroth- and first order, there is no significant different among all the tested 
methods, though our method achieves the highest accuracy. Even GPT-5 Thinking could achieve the similar 
accuracy with our method, marginally outperforms the others. From second-order tasks, the difference in 
results between our method and other methods become significant. For third-order task, MuMA-ToM could 
not support perform reasoning, and AutoToM achieves 0% without any right answer. Our method achieves 
the highest score, 51.67%, significantly outperforming the second one, GPT-5 Thinking with only 18.3%.For 
the most complex tasks with fourth-order, our model could achieve the accuracy of 21.67%, while the other 
methods could rarely generate the right answer, with only Qwen 3-Max and GPT-5 Thinking occasionally 
correctly answer 1-2 out of 60 questions. 

Overall, our approach surpasses the best baseline by a wide margin—especially at third- and fourth-order 
levels, where all other models struggle to produce any correct answers. This evidences the necessity of explicit 
structured reasoning for multi-agent, multi-modal Theory-of-Mind tasks. The advantage of our method grows 

Table 1 Results of Comparison Experiments.

Base
Model Method Zeroth-Order First-Order Second-Order Third-Order Fourth-Order

Qwen-3 Max 98.33 90.00 75.00 11.67 1.67

Qwen-3 
Max MuMA-ToM 96.67 91.67 80.00 Not supported Not supported

AutoToM 96.67 91.67 80.00 0.00 0.00

Ours 100.00 98.33 83.33 51.67 21.67

GPT-5 100.00 95.00 78.33 18.33 0.00

GPT-5 
Thinking 100.00 98.33 78.33 18.33 3.33

GPT-5 MuMA-ToM 96.67 93.33 83.33 Not supported Not supported

AutoToM 96.67 93.33 83.33 0.00 0.00

Ours 100.00 98.33 91.67 46.67 21.6720
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rapidly with increasing order, validating its capability to manage deeply nested belief structures. Particularly 
at third- and fourth-order reasoning, the performance gap reaches over 33.4% comparing to GPT-5 Thinking, 
emphasizing the contribution of explicit belief propagation and retrieval-based augmentation.

To further validate the effects of each component, we conducted an ablation study disabled SRAR, RMM
and SMC, with the results presented in Table 2. Disabling RMM has impact to the results of third-order and 
fourth-order tasks with 1.67%-3.34% right answers reduced.  Disabling both SRAR and RMM has impact to 
the results of all the higher-order tasks with 8.34%-11.67% right answers reduced. Our method with only
SMC component caused difference of all tasks with different orders. This demonstrates that all the 3 
components play essential roles for high order reasoning. SRAR provides structured generalization through 
example grounding, and RMM consolidates the reasoning experience into reusable abstract insights. Their 
combination enables consistent reasoning depth and adaptability to unseen, asymmetric belief hierarchies.

5.2.2 Subjective Evaluation 

Qualitative assessment of the model’s responses further supports these quantitative findings. Compared with 
GPT-5 and GPT-5 Thinking, our model consistently provides shorter and more coherent justifications aligned 
with agents’ perspectives. It avoids over-explanation and maintains internal consistency across nested beliefs. 
In high-order reasoning cases involving deception or missed observations, the structured belief propagation 
prevents logical leakage and ensures temporally consistent reasoning. Overall, the updated results affirm that 
explicitly structured belief modeling, retrieval-based grounding, and reflective meta-learning jointly yield 
stable and scalable higher-order ToM reasoning that baseline LLMs cannot achieve.

6 CONCLUSION
This work presents a structured higher-order mental state inference method that integrates a qualitative 
Sequential Monte Carlo mechanism, semantic retrieval augmented reasoning, and a reflective memory 
management component. Together with a photorealistic multi-agent dataset designed to induce knowledge 
asymmetries through partial observability and public versus private communication, the approach delivers a 
coherent pipeline for multi-modal ToM reasoning.

Empirically, the method substantially outperforms recent baselines on tasks that require recursive belief 
attribution. Ablation studies show that retrieval and reflection contribute materially to deeper recursion.
Qualitative inspection further indicates that perspective-safe updates prevent omniscience leaks and help 
maintain temporal and cross-level consistency, enabling concise, defensible answers rather than brittle chains 
of reasoning.

These results support two conclusions. First, explicit structure is crucial: representing nested beliefs within 
agent-indexed state and updating them under visibility constraints is more reliable than treating ToM as 
unstructured text generation. Second, learned memory is beneficial: example-guided retrieval and distilled 
reflections reduce recurrent failure modes in multi-agent settings, especially when deception, missed 
observations, or asynchronous disclosures create belief divergence.

In summary, this study advances machine ToM by coupling principled structure with experience-driven 
augmentation. By making higher-order belief tracking more accurate, consistent, and sample-efficient, it 

Table 2  Results of Ablation Study.

Method Zeroth-Order First-
Order Second-Order Third-Order Fourth-Order

Ours 100.00 98.33 91.67 46.67 21.67

Ours w/o RMM 100.00 98.33 93.33 45.00 18.33

Ours w/o RMM and 
SRAR 100.00 98.33 81.67 35.00 13.33

GPT-5 100.00 95.00 78.33 18.33 0.00
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moves AI closer to robust social understanding in complex, real-time environments, with implications for 
collaborative robotics, education, healthcare, and assistive technologies.
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