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CraftMesh: High-Fidelity Generative
Mesh Manipulation via Poisson
Seamless Fusion

Abstract

Controllable, high-fidelity mesh editing remains a significant, challenge
in 3D content creation. Existing generative methods often.struggle with
complex geometries and fail to produce detailed.results. 'We propose
CraftMesh, a novel framework for high-fidelity. generative mesh manip-
ulation via Poisson Seamless Fusion. Our(key insight” is to decompose
mesh editing into a pipeline that leverages. the strengths of 2D editing
and 3D generation models: we edit a 2D reference.image, then generate
a region-specific 3D mesh, and seamlessly fuse it/into the original model.
We introduce two core techniques: Poisson-Geometric Fusion, which uti-
lizes a hybrid SDF /Mesh representation with'nermal blending to achieve
seamless geometric integration, and PoissonTexture Harmonization for
visually harmonious texture blending. Experimental results demonstrate
that CraftMesh outperforms,state-of-the-art methods, delivering superior
global consistency and local detail in ecomplex editing tasks.

Keywords: 3D Mesh Editing, Generative Models, Poisson Fusion, Texture
Harmonization
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“Give the deer wings”

“Add a dragon s head and a goat’s head” Drag-based editing

Fig. 1: Mesh editing results produced by CraftMesh. CraftMesh is a versatile
3D mesh editing framework that enables‘users to perform text-based and drag-
based editing for insertion; deletion” and replacement, while producing high-
quality results.

1 Introduction

In recent years, the rapid-advancement of 3D generation technologies [1-4] has
enabled the-synthesis of high-quality 3D content directly from text prompts
or images through~diffusion-based generative models. These advances have
substantially accelerated downstream applications in video games, augmented
and virtual reality (AR/VR) [5], robotics [6], and digital manufacturing [7].
Despite these notable achievements in 3D generation, the challenge of con-
trollable 3D editing remains largely unresolved. Most current 3D generation
frameworks-are designed to reconstruct 3D models from 2D images and provide
limited. flexibility for localized modifications. Neural field-based representa-
tions, such as Neural Radiance Fields (NeRF) [8] and 3D Gaussian Splatting
(3DGS) [9], have demonstrated strong capability in capturing fine-grained
details while leveraging differentiable rendering. Consequently, research has
focused on neural field editing, encompassing appearance-guided and text-
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or image-driven approaches [10-12], which remain restricted to appearance-
level modifications and cannot inherently support geometric manipulations on
explicitly surfaced meshes.

In contrast to the rapidly expanding body of work on neural field edit-
ing, mesh-based generative editing has received considerably less attention;
even though meshes remain the most widely adopted representation.in pro-
fessional 3D content creation pipelines. In practical design workflows, artists
and engineers often need to iteratively refine meshes with precise part-level
control to satisfy both aesthetic and functional requirements, while avoiding
unintended alterations to unrelated geometry. This demand underscores’ the
necessity for editing methods that enable fine-grained controllability while
faithfully preserving the geometry of the original model.

Existing generative mesh editing methodologies can.be’ broadly catego-
rized into two principal paradigms: score distillation’ sampling (SDS) based
approaches and multi-view diffusion (MVD) bagsed~approaches:s SDS-based
methods [13, 14] enhance 3D awareness by.directly optimizing the mesh
through an SDS loss. MVD-based approaches.[15-17] pair. multi-view consis-
tent editing with a reconstruction step. However, these methods exhibit several
limitations: (1) they are not well-suited for editing eomplex models; (2) the
quality of the generated edits is frequently. suboptimal,-failing to satisfy the
requirements for high-fidelity mesh manipulation.

To address these challenges; we “propese an novel methodology that
harnesses the capabilities of generative models ‘by reframing editing tasks
as generative processes. We introduce an image editing—mesh genera-
tion—seamless fusion framework that fully capitalizes on the strengths of
2D models for image editing and 3D medels for high-quality mesh generation.
Specifically, we edit the image; generate 3D content for the edited region, and
integrate the generated mesh into the original model. The principal challenge
lies in ensuring both geometri¢ and textural consistency between the generated
mesh and the original model:

In this paper, we present a High-Fidelity Generative Mesh Manip-
ulation framework, coinedCraftMesh, which harnesses the capabilities of
generative large models to accomplish complex mesh editing tasks (see Fig. 1).
Firsty we employ a 2D image editing model to edit reference images derived
from the original mesh, extract the modified regions, and generate region-
specific meshes for these edited regions. Second, we propose a Poisson
Geometric/Fusion strategy, employing a robust SDF/Mesh representation
with a Poisson normal blending technique to achieve seamless geometric fusion
of the edited region mesh with the original mesh. Finally, we introduce a Pois-
son Texture Harmonization strategy to facilitate seamless texture fusion
between the edited region mesh and the original mesh within texture space.
Experimental results demonstrate the superiority of our approach in achieving
high-fidelity mesh editing. Additionally, we conduct further experiments uti-
lizing a drag-based method for fine-grained image editing, demonstrating ours
framework’s versatility and (see Fig. 6).

Our contributions are summarized as follows:
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® A novel framework that reformulates mesh editing as an image edit-
ing—mesh generation—seamless fusion pipeline integrating 2D and 3D
generative models.

® Seamless geometric fusion, introducing a Global and Local Consistency Pois-
son Geometric Fusion strategy for integrating the edited region mesh into
the original mesh.

® Seamless texture harmonization, proposing a Poisson Texture Harmoniza-
tion strategy that enables coherent blending of edited textures with the
original appearance.

2 Related Work

3D Generation Models. Recent advances in 2D diffusion models [18-20]
have profoundly accelerated 3D content creation.

SDS-based Approaches. Score Distillation Sampling (SDS) bridges 2D dif-
fusion priors and 3D optimization. DreamFusion [21] first optimized NeRF
under text-to-image diffusion guidance, followed. by Magic3D [22], which intro-
duced a two-stage low-to-high resolution refinement.’ Later, LucidDreamer
[23] further enhanced stability and fidelity through interval score matching,
whereas ProlificDreamer [24] incorporated.a variational SDS formulation to
improve diversity and quality. These methods suecessfully bridge 2D diffusion
priors and 3D optimization, although.they frequently remain computationally
intensive.

MVD-based Approaches..Multi-view diffusion (MVD) enforces view consis-
tency during image synthesis te reconstruct 3D assets. SyncDreamer [25] and
MVDream [26] exploit ‘multi-view ‘diffusion for geometrically coherent text-
to-3D generation. Wonder3D [27] ‘and ‘One-2-3-45++ [28] further extend this
paradigm to single-image 3D generation. Recent large-scale methods such as
SV3D [29] and Instant3D [30]‘achieve high-quality reconstructions from sparse
views.

3D Native Generation.Approaches. More recently, researchers have shifted
toward training generative models directly on large-scale 3D datasets, thereby
overcoming the inherent limitations of 2D priors. Foundational resources such
as Objaverse [31},.Objaverse-XL [32], and OmniObject3D [33] provide millions
of diverse, well-annotated 3D objects, enabling scalable learning of both geome-
try and appearance. Clay [34] demonstrates controllable large-scale text-to-3D
generation by training on millions of objects. Trellis [35] proposes structured
3D latent representations that improve scalability and versatility, making gen-
erative.models more efficient at capturing complex shapes. Hunyuan3D 2.0 [1]
pushes diffusion-based 3D generation to high-resolution textured assets, sig-
nificantly enhancing realism. 3DTopia-XL [36] scales primitive-based diffusion
approaches, achieving improved generalization across diverse categories. These
native 3D models mark a shift toward more direct, efficient, and realistic 3D
generation.
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Generative Mesh Editing. Most existing generative editing approaches pri-
marily focus on implicit representations [10-12, 37, 38]. While these methods
achieve promising results, they are constrained by implicit representations and
thus cannot be applied to mesh-level editing. In this paper, we focus on gen-
erative mesh editing, which can be broadly categorized into two paradigms:
SDS-based editing and MVD-based editing.

SDS-based Editing. SDS-based editing approaches extend the concept of
Score Distillation Sampling (SDS) loss to editing tasks by guiding ‘mesh
optimization using pretrained diffusion priors. FocalDreamer [13].introduces
focal-fusion assembly for localized text-driven 3D editing, thereby enabling
controllable, region-specific modifications. MagicClay [14] bridges generative
neural fields with mesh sculpting, allowing users to refine or modify mesh
geometry under the guidance of Score Distillation Sampling:

MVD-based Editing. MVD-based Editing approaches employ multi-view
diffusion to ensure multi-view consistency during editing,.thus bridging 2D
image generation and 3D mesh manipulation. MVEdit [15] adapts generic 3D
diffusion priors for controlled multi-view editing. CMD [L7] purpesed CondMV,
which takes a target image and multi-view conditions and generates multi-view
consistent edits. Instant3dit [16] introduces fast multi=view inpainting to accel-
erate editing workflows, while MaskedLRM. [39] leverages large reconstruction
models with masked conditioning for/efficient mesh editing.

However, these methods fail te edit highly complex models or achieve high-

quality mesh manipulation. In this paper, our method fully capitalizes on the
complementary strengths of 2D _and 3D ‘generative models. By employing a
Poisson seamless fusion strategy, our approeach merges generated region-specific
meshes with the original' mesh, thereby achieving high-fidelity and structurally
consistent mesh manipulation:
Seamless Editing. Seamless editing is a fundamental topic in computer
graphics and digital image processing. The primary goal is to achieve smooth
and imperceptible.transitions in images or textures, thus maintaining visual
consistency [40-43]. Liaowet al.[44] develop Deep Image Analogy, which lever-
ages convolutional neural networks to establish semantically meaningful dense
correspondences between two images, thus advancing seamless editing capabil-
ities. Yu et al.[45] apply the Poisson equation to mesh editing, enabling smooth
geometric merging via gradient field manipulation, although this method does
not address appearance blending.

Recently,SeamlessNeRF [46] achieves seamless stitching of neural radiance
fields through gradient propagation, focusing on radiance field merging without
considering explicit mesh geometry. GS-Stitching [47] advances example-based
3D meodeling by introducing 3D Gaussian stitching. While these works offer
smooth merging in radiance fields or 3D Gaussians, explicit mesh geometry
is not considered. In this paper, we consider both geometry and appearance,
ensuring seamless fusion between the edited region mesh and the original mesh.
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Edited Region Meshes Generation Poisson Geometric Fusion
Original Edited Edited Edited Original
Mesh Reference Mesh Region Mesh Reference Mesh Mesh Merged mesh
/ .
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Region Mesh
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Fig..2: /The overview of CraftMesh’s architecture. First, Edited Region-
Specifie’ Meshes Generation is done as the basis of editing. Then, Poisson
Geometric Fusion harmonizes a rough geometric transition. Last, Poisson Tex-
ture Harmonization colors the edited parts in a seamless manner.

3 Method

We propose CraftMesh, a high-fidelity generative mesh manipulation frame-
work that integrates 2D image editing, 3D mesh generation, and Poisson-based
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fusion. Fig. 2 illustrates the overall workflow. Our framework is designed to
address the limitations of existing 3D editing approaches, which are often
not well-suited for editing highly complex models and achieving high-fidelity
mesh manipulation. Specifically, we first edit reference images using 2D image
editing models to achieve user-intent-consistent modifications, followed by gen-
erating edited region meshes with 3D generative models. Second, we propose a
Poisson Geometric Fusion strategy that employs global and local consistency
constraints to achieve seamless geometric fusion of the edited region mesh
with the original mesh. Finally, we introduce a Poisson Texture Harmoniza~
tion strategy to ensure appearance consistency and facilitate seamless texture
fusion between the edited region mesh and the original mesh. This design
enables controllable editing while maintaining both the struetural integrity
and high visual quality of the final mesh.

3.1 Edited Region Meshes Generation

Text-to-image models have demonstrated remarkable performance in control-
lable image editing, producing semantically ‘aligned and’globally consistent
results. Representative examples include FLUX Kontext [20}, Qwen3 [48], and
Gemini 2.5 [49], which can effectively.preserve content structure while intro-
ducing new details. Compared with direct 3D editing, these 2D approaches
are lightweight, controllable, and well-suited for generating high-quality edited
reference images. On the other hand, recent progress in 3D generative model-
ing, such as CraftsMan3D [3] and Hunyuan3D [1], has enabled the synthesis
of meshes with unprecedented geometric fidelity and textural realism. How-
ever, existing 3D mesh editing. methods-lag significantly behind. For instance,
Instant3dit [16] fine-tunessmulti-view diffusion models to regenerate 3D con-
tent, but often struggles with consistency. Similarly, FocalDreamer [13] and
MagicClay [14] are limited to/simple objects and frequently yield low-quality
results in the edited region.

To bridge this gap, we propose jointly leveraging the complementary advan-
tages of 2D image editing models and 3D mesh generation models. Specifically,
we generate Edited Region Meshes as intermediate assets, which are later
fused with the original mesh. The generation proceeds in two steps:

2D Editing. We begin by editing the reference image rendered from the
original mesh; guided by the user’s intent. Users can leverage a variety of tools,
such_as image editing models [20], software, or other instruments, providing
flexibility ‘and creative control. Next, we use FLUX Kontext [20], a state-of-
the-art image editing model, to extract the edited region image from the edited
reference. image, highlighting only the modified areas, thereby localizing the
mesh editing scope. FLUX Kontext excels at fine-grained text-guided edits
while maintaining structural consistency and handling occlusions.

3D Generation. We then use CraftsMan3D [3] to generate meshes from
both the edited reference image and the edited region image, producing the
edited reference mesh and the edited region mesh, respectively. The edited refer-
ence mesh provides a global structure but typically lacks fine detail. In contrast,
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Poisson Geometric Fusion

SDF S, SDF Normal 7y

Lpoisson

Poisson
Image
Editing

Fig. 3: Details of Poisson Geometric Fusion.

the edited region mesh offers higherloecal fidelity but isn’t seamlessly integrated
with the original meshs This discrepancy arises from the inherent generative
trade-off: holistic reconstructions emphasize plausibility over accuracy, whereas
localized generation prioritizes detail at the expense of alignment.

Our central idea is to fuse the edited region mesh into the original mesh
while using the“edited referénce mesh as guidance. This ensures that the
final model inherits the global smoothness of the edited reference mesh and
the fine-grained quality of the edited region mesh. Compared with prior
methods, CraftMesh offers: (1) no requirement for manual specification of
precise 3D editing-locations, unlike FocalDreamer [13], MagicClay [14], and
Instant3dit [16], making editing more controllable and user-friendly; (2) effec-
tive integration of 2D editing capabilities with 3D mesh generation, ensuring
high-quality edited regions with global coherence.

3.2 Poisson Geometric Fusion

Naively integrated the edited region mesh into original mesh using mesh
Boolean can introduce noticeable artifacts, such as surface normal disconti-
nuities and inharmonious geometric details. Our objective is to seamlessly
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integrate the edited region into the original mesh while simultaneously preserv-
ing local fine-grained details and maintaining global structure. To this end, we
propose a Poisson Geometric Fusion strategy, which leverages the edited ref-
erence mesh as structural guidance. This ensures that the final reconstructed
mesh inherits the harmonious global structure of the reference mesh while
retaining the local details of the edited region.

Fig. 3 gives an overview of the workflow. We first employ a mesh Boolean
operation [50] to obtain a coarse merged mesh from the original mesh and the
edited region mesh. We then adopt a hybrid SDF /Mesh representation, which
enables flexible refinement of mesh geometry by optimizing vertex positions,
splitting triangles and collapsing edges. The refinement is guided by normal
maps rendered from both the edited reference mesh and the edited region
mesh, which are blended using a Poisson-based approach. This fusion strategy
allows the edited region to be naturally incorporated into the original mesh
with smooth boundary transitions.

Intersection Region Extraction Given.the original mesh M, and the
edited region mesh M,, we first apply a mesh Boolean operation to obtain
a merged mesh M;. For insertion tasks, we use mesh Boolean union, and for
deletion tasks, we use mesh Boolean difference. Since geometric discontinuities
mainly occur at the transition boundary, we explicitly refine this region using
a hybrid SDF /Mesh representation.

The Boolean operation produces.a-set of vertices V;, at the intersection
between M, and M,. We align the edited.reference mesh M, with M;, and
define the corresponding intersection regions as:

M= {,U € My | min' |[u — vz < 60}, (1)
u&Vin

= Lot fu— ol < o). )
u€Vin

where €g controls the extent of the intersection. We further define the
optimization region as a-smaller subset within the intersection:

MP = {v c M™ | min Ju—vl2 < 61} ;€1 < €. (3)

n

This ensures that the optimization is restricted to M;” t focusing refinements
on' the transition area, while M!™ provides structural guidance for achieving
smooth.and coherent fusion.

Poisson Normal Blending Guidance To refine the optimization region
M{P",we bind a neural SDF S, to the mesh, changes in the SDF will be propa-
gated to the mesh through vertex optimization. SDF-based vertex optimization
offers stable convergence and robustness against noise, achieving more precise
and natural geometry than voxel-based methods like DMTet [51].
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During optimization, we render multiple supervision images from random
viewpoints: (1) a normal map of M;", denoted n;; (2) a binary mask of M,
denoted mask®P; (3) a normal map rendered from the SDF S;, denoted 7;
(4) a normal map of M, denoted n.. To enforce consistency, we apply thé
classical Poisson Image Editing (PIE) algorithm [40] to blend n; and n. under
maskPt:

ny = I'(ng, ne, mask?"), (4)
where I'(-) denotes the Poisson blending operator. This blended nermal map
n, preserves fine-grained details from n. inside the mask while achieving a
smooth transition into n; at the mask’s boundary.

We then minimize the discrepancy between the rendered nermal f; and
the blended normal n:

£poisson - Z Hﬁ?ﬁ - n;;”%“, (5)
%

where || - || denotes the Frobenius norm and i-indexesdifferent camera view-
points. Although the blended normal maps n; are not_strictly multi-view
consistent, the implicit SDF effectively resolves inecomsistencies and learns a
coherent transition geometry. Following MagicClay;/we further incorporate
additional regularization terms, such as a smoothness loss Lgnooth and an
Eikonal loss Lejk, to improve geometric fidelity and to enforce implicit surface

constraints. The final loss is formulated as:
Egeo = Epoisson + )\l['smooth + >\2£eik> (6)

where \; and )\, are hyperparameters.

3.3 Poisson Texture Harmonization

After geometric editing; the newly synthesized regions of the mesh M; lack
texture information. A straightforward solution is to employ texture genera-
tion models for color synthesis; however, the resulting textures often exhibit
noticeable color shifts from the original mesh and discontinuities along region
boundaries. Although recent work [46, 47] has explored seamless texture fusion
in NeRF and 3DGS frameworks, no existing method directly addresses this
challenge for- explicit mesh representations.

Distribution-Aware Color Alignment. Let M;**" denote the newly
synthesized geometry and M}" the preserved geometry. The preserved mesh
MP" “inherits textures directly from the original mesh M,, while M*" is
textured using a generative model (MeshyAl [52]). Following [14], colors are
encoded using an implicit neural color field defined over R3. The predicted col-
ors form a probability density distribution in RGB space, which we regularize
using kernel density estimation (KDE):
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p(q) = %iexp (—%) : (7)

where 7;)¥.; are sampled mesh colors and o is the standard deviation of the
Gaussian kernel.

We denote the color distributions of M[*** and M!" as p"*“ and p’’,
respectively. Distribution-aware alignment is achieved by minimizing the
discrepancy between these two distributions:

N
1
Laensity = 5 2 10" (@) = 7" (0 ()
=1

where ¢;i = 1V are color samples from Mpew.

Gradient-Preserving Poisson Fusion. For each 3D point, x'on the mesh,
let C(x) denote its color, and Cp, and Cj.,, represent color fields on M/ and
MPe? | respectively. To preserve fine-grained- appearance details, we enforce
gradient consistency across regions:

‘Cgrad = MSE (O_ (chr> y O (vc’ne’w>> ’ (9)
’7 8

where V denotes numerical color-gradients,/o(+) is a sigmoid function, and
v is a gradient scaling constant.

Smooth Transition Refinement. To ensure smooth transitions at the
intersection boundary, we.introduce a'distance-weighted color matching loss:

Lecolor = Z wiHCnew (plnew) - Cp,«(pfr)”g, (10)

p?ew EM?ew

where p’" is'the nearest point on M} to pP™, and

6 2
w;=(1- _ : 11
( [pFe — b} Hz) 1

attenuates the influence with distance. The parameter ¢ controls the effective
boundary width.
The overall optimization objective for Poisson Texture Harmonization is:

Ctex - Edensity + 01 Cgrad + 02£color7 (12)

where #; and 0, balance the gradient and boundary consistency terms. Unlike
prior mesh editing pipelines that synthesize only textures, our formulation
directly extends to physically based rendering (PBR) materials, as texture
generation models inherently support multi-channel PBR texture maps.
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4 Experiments

4.1 Experiment Setup

Implementation. We use FLUX Kontext [20] as the generative image-editing
method, and CraftsMan3D [3] as the image-to-mesh method. It is worth noting
that our framework is agnostic to these choices. As more powerful models
come out, they should be used instead when conducting experiments. We use
MagicClay [14] as the hybrid SDF /Mesh representation backbone and implicit
neural color field backbone. On a single 4090 GPU, Poisson Geometric Fusion
takes 5 minutes and 1000 iterations, Poisson Texture Harmonization .takes 1
minute and 2000 iterations

Mesh Dataset The evaluation dataset consists of meshes with-intricate
detail and complex geometry. We test these meshes with-complex-editing tasks
to best showcase our method’s capabilities for insertion, deletion, ‘and drag-
based mesh editing, and demonstrate our method’s achievements in global
geometry consistency and local high-quality deétail.

Baselines We compare our method /against_ recent mesh editing
approaches, specifically FocalDreamer [13];«MagicClay [14); and Instant3dit
[16]. The official open-source implementations of these baselines are used.

4.2 Qualitative Results

Fig. 4 presents a qualitative comparison with baseline methods. As illustrated,
the baselines struggle with complex examples, resulting in coarse geometry and
a lack of detail. The generated colorsare often simple, flat, and inharmonious.
In contrast, our method produces intricate geometry with a harmonious global
structure, rich local details, and high-fidelity colors. For the fourth task, where
mesh removal is applied on the volcano, MagicClay replaces the volcano with
a rock of a distorted color style; Instant3dit substitutes the volcano with a
bland patch of grass, but fails to preserve the original part’s geometry and
quality; our anethod seamlessly removes the volcano and fills the space with
rocks similar to those in. adjacent regions, thereby achieving both visual and
geometric harmony:

Method | CLIPgm T CLIPgi; T NIQE | NIMA 1t
FocalDreamer 20.831 8.224 3.377 4.834
MagicClay 20.350 2.201 3.797 4.886
Instant3dit 19.530 2.079 3.790 4.765
Ours 22.768 13.594 3.203 5.071

Table 1: Quantitative comparison with other methods using CLIP similarity
(CLIPgiy, ), directional CLIP similarity (CLIPg;, ), NIQE, and NIMA scores.
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“Give the fox nine tails”

“Give the deer wings”

“Add a dragon’s head and goat’s head ’

3

“Remove the creature’s volcano”’

B ﬁ
“Add the sculpture’s right hand”

o

Fail

A
%
]

“Give the knight a cat’s head”

i

¥
B
¢

i

Input Focal Dreamer Magic Clay Instant3dit CraftMesh (Ours)

Fig. 4: Qualitative comparisons show that our method produces intricate
geometry with a harmonious global structure, rich local details, and high-
fidelity colors.
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N

(a) w/o Poisson (b) w/ Poisson (c) w/o Poisson (d) w/ Poissofi
Geometric Fusion Geometric Fusion Texture Harmonization  Texture Harmonization

(&) W/0 Lensity (D) w/o Lgrqa (g) w/o Leoor

Fig. 5: Ablation study. (a,b) Poisson Geometric Fusion; (c,d) Poisson Texture
Harmonization; (e-g) Poisson Texture Harmonization losses.

4.3 Quantitative Results

Following prior work [13, 53], we use CLIP-based metrics for quantitative eval-
uation: (1) CLIPg;y,, which measures the alignment between a rendered view of
the edited mesh and the target text deseription; and (2) CLIPg;,, which eval-
uates editing effectiveness by computing the directional CLIP similarity [54]
between the initial and edited.meshes; based on their respective text prompts.
In addition, we report NIQE-{55]and NIMA [56], two no-reference image qual-
ity metrics that assess/perceptual fidelity and better correlate with human
visual judgment.

Table 1 present the results of the four metrics. Our method achieves the
highest scores /across all of them, demonstrating its strong ability to pro-
duce edits that are both semantically faithful and visually consistent with the
desired objectives.

4.4 Ablation

As seen in Fig. 5, Poisson Geometric Fusion resolves the harsh geometric tran-
sition with natural details, while Poisson Texture Harmonization corrects the
shifted colors of the hand, rectifying the bright whiteness to the body’s darker
gray. The details of the hand are retained, and texture continuity is achieve at
the boundary.

We conduct ablations for each loss of Poisson Texture Harmonization.
Without properly learning the color distribution of the original mesh (Fig. 5e),
the resulting hand has a darker white and a greener blue, breaking har-
mony. Without retaining the original gradients (Fig. 5f), the original details
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are blurred. When colors aren’t learned at the boundary (Fig. 5g), the
discontinuity of colors at the boundary is noticeable.

(a) Original (b) Edited

Fig. 6: Drag-based mesh editing. (a) shows the original mesh, with-arrows
drawn indicating the desired drag to apply. (b) shows-the results.

4.5 Drag-based Mesh Editing

Beyond mesh insertion and deletion, our approach can be extended to more
sophisticated mesh editing tasks. To showcase this versatility, we apply our
framework to enable drag-based mesh editing via drag-based image
editing.

Unlike prompt-based image editing; drag-based image editing empowers
users to specify edits by drawing arrows that encode the desired drag defor-
mations, providing precise and intuitive control over the editing process. For
this operation, we leverage LightningDrag [57] as the drag-based image editor.

The workflow for drag-based mesh editing involves three steps: First, drag-
based image editing, is performed; Then, mesh deletion is applied to the
corresponding region of theesh; Last, mesh insertion is conducted using the
Edited Region meshes.derived from the edited images.

Fig. 6a depicts the original meshes, with arrow annotations drawn, sig-
nifying the intention to~open the angle’s wings and raising the cat’s hands.
Fig.6b are'the stuceessful results of drag-based mesh editing. The effectiveness
in drag-based-mesh editing validates the adaptability of our approach, demon-
strating the feasibility of extending our ideas to other advanced mesh editing
operations.

5 Conclusion

We present CraftMesh, a framework for high-fidelity mesh manipulation. Our
approach addresses the limitations of current methods by combining 2D image
editing and 3D generation models. We further purpose a Poisson Seamless
Fusion strategy, which ensures both geometric and textural consistency when
integrating new content. The proposed Poisson Geometric Fusion and Pois-
son Texture Harmonization techniques enable complex, detailed edits that
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are seamlessly blended into the original mesh. Experimental results demon-
strate that CraftMesh achieves superior performance over existing baselines,
achieving harmonious global geometric structure, intricate local detail, and
high-fidelity colors. The framework is also designed to be extensible, enabling
seamless integration with future advances in generative Al driven by the rapid
development of image editing and mesh generation models. Future work can be
done to apply our ideas to more advanced mesh editing operations, ot ensure
robustness against edge cases.
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