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Beyond Reactive Assistance: PV-Care Using
Low-Density EEG and AI to Provide Proactive,

Context-Aware Help for MCI
Simon L Liu

Abstract—The growing elderly population gives rise to an
urgent need for intelligent support systems, particularly for
individuals with Mild Cognitive Impairment (MCI). This paper
presents PV-Care, a proactive AI-driven assistance scheme that
integrates wearable electroencephalogram (EEG) sensing with
visual environmental perception to provide real-time, context-
aware voice assistance for MCI users. Unlike traditional assistant
systems that passively wait for user commands, PV-Care actively
initiates helpful interactions based on the user’s detected brain
states— Learning, Memory Recall, or Resting, using a novel deep
neural architecture named Spatial and Frequency Refinement
Network (SFR-Net). By combining EEG-based cognitive state
recognition with AI-based analysis of visual data, PV-Care gener-
ates structured “4W -UT” prompts to control the output of large
language models (LLMs) such as ChatGPT. Simulation results
and user studies validate the high accuracy of the proposed SFR-
Net and the effectiveness of PV-Care’s naturalistic, context-aware
assistance, demonstrating that PV-Care is a feasible solution for
supporting MCI patients in daily living scenarios.

Index Terms—Proactive Service, Mild Cognitive Impairment
(MCI), Electroencephalogram (EEG) Signals,Visual Perception,
LLM

I. INTRODUCTION

THE growing elderly population necessitates innovative
approaches to assist senior individuals, especially those

experiencing mild cognitive impairment (MCI). MCI patients
often encounter problems such as recognizing people or forget-
ting back to home. Thus, caring for those with MCI always
demands personal companions, which requires considerable
effort in terms of time, money, and patience [1].

Human-machine collaboration techniques have garnered
significant attention, especially with the advancements in
Artificial Intelligence (AI) technologies. This collaboration
promotes the idea that machines can serve as embodied AI
assistants that meet human needs and assist them with various
tasks [2]. Silver et al. [3] developed a learning algorithm
capable of mastering complex tasks through self-learning,
further improving the ability to adapt to users’ needs. AI
companion robots, as explored by Clara et al. [4], have been
shown to mitigate loneliness among elders, offering emotional
support and improving their mental well-being. Additionally,
Cantone et al. [5] proposed integrating AI with autonomous
robots and sensors to achieve secure and independent living for
elderly individuals, which has been particularly beneficial for
MCI patients. Zhou et al. [6] demonstrated how an assistant
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robot could enhance the perceived communication quality
for people with MCI. Saunders et al. [7] introduced a user-
personalized companion robot system, and the robot could
learn the user’s preferences with AI methods.

Despite these advancements, existing solutions for elder
care typically rely on users voluntarily issuing commands for
interaction with AI robots or services. Due to cognitive de-
cline, MCI patients often cannot correctly command assistant
systems when they need assistance. Therefore, it is crucial to
monitor the needs of MCI patients and proactively provide
suitable assistance [8].

Electroencephalography (EEG) signals have been widely
adopted to analyze users’ brain activities, which can be used
to identify whether an MCI patient needs help from the
assistant systems. According to Schumacher et al. [9], the
EEG features associated with key brain states, such as the
attentive state and recall state, are consistent for both healthy
individuals and MCI patients. Hence, utilizing EEG analysis to
determine the brain state is a promising approach to analyzing
the needs of MCI patients. The results of such analysis can
be integrated into MCI assistance systems to enable proactive
service delivery, such as proactively prompting MCI patients
about tasks they may struggle to remember or complete.

Various AI methods have been applied to the processing of
EEG data. For example, Yue et al. [10] proposed a temporal-
frequency hierarchical transformer network to capture key in-
formation from EEG signals. Yao et al. [11] introduced TCNN,
which leverages positional encoding and multi-head attention
to extract channel information. Wang et al. [12] utilized a
CNN-LSTM architecture to progressively extract temporal-
spatial features through temporal and spatial convolutions.

However, these methods typically rely on EEG headsets
with 32 or more channels. A major practical challenge is
the inconvenience of wearing such complex equipment. In
practical applications, convenient wearable EEG devices can
often only sense a few channels, such as 4 or 6. To enable
EEG-based MCI assistive systems under these constraints,
more advanced solutions are demanded for robust recognition
of brain states using wearable EEG devices.

Beyond the limitations of EEG analysis, existing assistive
solutions for individuals with MCI remain constrained in their
ability to proactively initiate supportive services based on
environmental context for context-aware interaction. With the
rapid advancement of electronic hardware, such as compact
EEG and visual sensing devices, and breakthroughs in large
language models (LLMs), the development of more intelligent
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Fig. 1. The Proposed Proactive MCI Care Scheme: PV-Care

MCI support systems has become increasingly feasible. This
paper introduces PV-Care, an AI-powered assistance scheme
for individuals with MCI, featuring real-time brain state
monitoring to enable proactive, context-aware conversational
support—particularly valuable when users are unable to ex-
plicitly request help. The main contributions of this work are
summarized as follows:

• We propose PV-Care, a proactive assistance scheme de-
signed to support the daily lives of individuals with MCI.
The scheme integrates EEG signal analysis, visual sens-
ing, and an AI-based conversational agent that emulates
a caring family voice. Specifically, PV-Care proactively
delivers assistance based on the user’s detected brain
activity.

• An innovative method for limited-channel EEG analysis
is introduced. We propose Spatial and Frequency Refine-
ment Network (SFR-Net) to enable accurate identifica-
tion of an individual’s Resting/Learning/Memory-Recall
states. This SFR-Net effectively detects brain activity
states using only a few EEG channels (e.g., 4 channels)
from wearable devices, providing a solid basis for proac-
tively delivering services in our assistance scheme.

• We propose an MCI-oriented conversational agent pow-
ered by a large language model (LLM). It integrates envi-
ronmental information, EEG signals, and other contextual
data to generate a structured “4W -UT” prompt, which
guides the LLM-based agent in providing voice-based
assistance to individuals with MCI. Extensive simulations
and user studies demonstrate the high accuracy of the pro-
posed brain activity recognition method and the overall
effectiveness of the PV-Care scheme.

II. OUR PROPOSAL

A. The Overall Architecture of Proposed Proactive MCI Care
Scheme

The proposed scheme, PV-Care, integrates multiple key
modules. Figure 1 illustrates the overall architecture. By
utilizing wearable EEG sensing and visual sensing modules,
PV-Care enables proactive, context-aware interactions tailored
to the user’s brain activity.

The Environmental Visual Sensing module captures real-
time images of the user’s surroundings and employs image

understanding models such as CLIP [13] to generate de-
scriptive textual representations of the environment. Addition-
ally, if a person is present in the environmental images, we
utilize a family member face database stored on the user’s
smartphone and employ a lightweight model, Mobile FaceNet
[14] to accurately recognize family members. Meanwhile, the
wearable EEG sensing module collects EEG data for SFR-
Net to recognize the user’s cognitive state, such as Learning,
Resting, or Memory Recall. Textual descriptions from the
visual module and cognitive state information analyzed from
EEG data are integrated with additional contextual details,
including time, location, and personal activity logs. These
combined descriptions are then provided to a chatting agent
powered by LLMs, such as ChatGPT, enabling contextually
relevant and personalized interactions. By organizing the dif-
ferent functional modules in this way, PV-Care can proactively
provide timely and precise assistance to MCI users based on
their identified brain states.

For user convenience and comfort, EEG and visual sensing
capabilities are integrated into a single wearable device paired
with a smartphone. The smartphone’s earphones facilitate
voice-based interactions between the user and the AI assistant.
Using Text-to-Speech (TTS) technology, conversational texts
generated by the assistant are converted to voice responses
and delivered through the earphones. Furthermore, since MCI
patients often place greater trust in familiar family members,
voice style transfer techniques [15] can be applied to simulate
their voices, thereby enhancing users’ emotional engagement
and trust in PV-Care.

The detailed methods and implementations of each module
of the proposed PV-Care scheme are presented in the following
sections.

B. Visual Sensing Module and Image-to-Environment Descrip-
tion

1) Visual to Textual Environment Description: In the pro-
posed PV-Care scheme, the Visual Sensing Module captures
real-time environmental images in front of the user, and
the images are sent to the user’s smartphone and further
forwarded for cloud-based image AI analysis. Recent advances
in AI models have demonstrated remarkable performance
in interpreting image content and converting it into textual
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Fig. 2. Example of a sensed image and the corresponding environmental
description generated by the cloud AI model.

descriptions. In our scheme, OpenAI’s GPT-4 Vision model
[16] is employed to analyze the environmental images, and
the captured images are uploaded using the method described
in [17], which processes the images and generates descriptive
captions. For example, as illustrated in Figure 2, a captured
image is converted into the caption: “man, blurred image,
indoor, sitting, wearing face mask, casual attire, table, beer
on table, Sprite on table, Coke on table...”

2) Smartphone-Based Face Recognition: As shown in Fig-
ure 2, when people appear in the environmental images, PV-
Care should identify them. While cloud-based models can gen-
erate detailed environmental descriptions, they cannot reliably
recognize specific individuals, such as family members, which
MCI patients often need.

Typically, an MCI patient only needs to recognize a few
dozen familiar individuals. To achieve this, PV-Care employs
a smartphone-optimized lightweight face recognition model
[14]. Users can configure a personal face database, enabling
the smartphone to accurately and efficiently identify them.
This local processing ensures both low latency and strong
privacy protection, while providing a personalized recognition
experience tailored to each user.

Overall, the Visual Sensing Module captures the user’s
surrounding environment. General objects and scenes are
processed by the cloud-based model to generate descriptive
captions, while the smartphone-based face recognition model
accurately identifies familiar individuals in the scene. This
hybrid image analysis leverages the advantages of cloud-based
AI and on-device recognition to achieve both comprehensive
environmental understanding and personalized assistance.

C. Spatial and Frequency Refinement Network (SFR-Net) for
EEG Analysis

The PV-Care is designed to provide proactive services
based on the user’s brain activity. For instance, when a user
attempts to recall information, PV-Care can offer appropriate
suggestions without the user’s explicit command. Therefore,
accurate analysis of brain activity is essential for enabling
proactive assistance. In our framework, we use EEG signals
to analyze three brain activity states: learning, memory recall,
and resting.

Fig. 3. Experiment for collecting EEG during learning activities.

Fig. 4. Experiment for collecting EEG during memory recall activities
(participants matched background images with memorized faces).

1) EEG Signal Acquisition and Experimental Dataset:
EEG signal processing is inherently influenced by both the
sensing device and individual variability. To support the de-
velopment and validation of PV-Care, we designed a dedicated
EEG data acquisition experiment incorporating both wearable
and high-density EEG devices. Specifically, we employed the
portable Muse EEG headband [18], which provides 4-channels
(AF7, AF8, TP9, and TP10), alongside a standard 64-channel
Neuracle EEG system [19]. By simultaneously recording data
from both devices and aligning their signals, we constructed a
dataset to enhance the performance of our proposed SFR-Net
EEG recognition model. To ensure temporal synchronization,
both devices were sampled at 256 Hz.

More than 30 volunteers participated in our EEG sensing
experiments to establish a comprehensive dataset. Each par-
ticipant wore both the wearable 4-channel EEG device and
the standard 64-channel EEG device throughout the entire
data collection process, as illustrated in the lower-right part
of Figure 3. The 64-channel EEG data is primarily used for
validation. Classical EEG analysis methods were applied to
the 64-channel data to confirm its reliability and ensure the
accuracy of the experimental process.

The EEG data acquisition process was designed as follows:
3-Minute Resting State Session → 5-Minute Learning Task →
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3-Minute Resting State Session → 5-Minute Memory Recall
Task → 3-Minute Resting. This experimental protocol ensures
that the necessary data for all three states are collected in
a single session, adhering to standard EEG data collection
procedures. The specific tasks for each state are described as
follows:

• Resting State: Participants were instructed to remain
seated and relaxed with their eyes open for approximately
3 minutes to establish a baseline EEG signal. This resting
state data serves as a reference for each subject.

• Learning State: Participants were presented with a visual
learning task. They watched a short news video with
highlighted text (Figure 3), and participants were required
to understand and learn the highlighted content. EEG data
collected during this period were labeled as the learning
state.

• Memory-Recall State: After a 3-minute resting inter-
val, participants were asked to memorize a series of
face–background pairs. During the recall phase, back-
ground images were presented, and participants were
instructed to select the corresponding memorized face.
For example, as shown in the lower-right “Choice” panel
of Figure 4, the correct selection is label 1, which matches
the face–background pair in the upper-left “Sample 1”
panel. When the participant correctly selected the face
corresponding to the original sample image, the partic-
ipant’s EEG data were considered valid memory recall
data.

After completing the EEG data collection, we first con-
firmed the validity of the data. Since traditional EEG analysis
methods are well-established and reliable, we initially applied
classical EEG analysis techniques ( methods of Ref. [20]
[21] )to process the 64-channel EEG data. If these traditional
methods can accurately distinguish the three brain states, it
indicates that the participants have properly and diligently
completed the tasks as required.

2) Spatial and Frequency Refinement Network for EEG
Analysis: After validating the EEG signal dataset, we pro-
posed a deep learning architecture named Spatial and Fre-
quency Refinement Network (SFR-Net). This model analyzes
4-channel EEG signals and classifies three brain activity
states—Resting, Learning, and Memory Recall. The SFR-Net
operates on 4-second EEG signal segments, with a prepro-
cessing pipeline consisting of baseline correction, bandpass
filtering (0.5–60 Hz), and artifact removal.

As shown in Figure 5, our SFR-Net model integrates
multi-resolution temporal EEG signals with frequency-domain
features through a multi-branch neural architecture, enabling
robust and hierarchical fusion for enhanced brain state recogni-
tion. Let C be the number of EEG channels (electrodes) and
L the number of time samples in a 4 s segment sampled at
fs = 256Hz, so L = 1024. The proposed SFR-Net processes
three complementary EEG representations as inputs:

• High-resolution temporal signal XHT ∈ RC×L (sampled
at 256 Hz to capture fine-grained temporal dynamics).

• Frequency-domain features XF ∈ RC×L are derived
from the High-resolution temporal signal XHT via the
Short-Time Fourier Transform (STFT). The STFT is

applied to each channel of the input signal x(n) with
a sampling rate of 256 Hz, employing a Hann window
of length N = 256 samples (corresponding to 1 second)
and an overlap of 147 samples, resulting in a hop length
of 109 samples. This yields 8 time frames for a 4-second
EEG segment of length L = 1024.
The STFT is computed as:

X(m,α) =

N−1∑
n=0

x(n+mH)w(n)e−j2παn/N , (1)

where w(n) is the Hann window function, m is the frame
index, H = 109 is the hop length, and α = 0, 1, . . . , N/2
indexes the frequency bins (yielding 129 bins from 0 to
128 Hz).
The magnitude spectrogram is computed, the DC com-
ponent (0 Hz) is discarded, retaining 128 frequency bins.
The resulting 128× 8 matrix per channel is normalized,
transposed and flattened into a 1024-point vector to form
XF across C channels.

• Low-resolution temporal signal XLT ∈ RC×L/k (with
k = 4), obtained by downsampling the 256 Hz original
signal to 64 Hz via average pooling to emphasize slower,
global temporal trends. Here, C denotes the number of
EEG channels, and L denotes the time steps in the high-
resolution (HR) signal and the frequency bins.

This multi-input design is motivated by the fusion of
different brain activity patterns corresponding to EEG signal
features: HR signals excel at detecting rapid neural transients
(e.g., event-related potentials during learning), LR signals
reduce noise and focus on sustained activities (e.g., resting
baselines), and frequency features highlight rhythmic signa-
tures (e.g., the α band of EEG is typically suppressed during
memory recall).

To extract core temporal and spectral patterns and promote
initial cross-modality alignment. The outputs are fused addi-
tively with the frequency branch serving as an anchor to infuse
spectral context into temporal branches early on. This additive
fusion is inspired by residual connections, enhancing gradient
flow while integrating frequency priors to mitigate temporal
aliasing. The initial convolution outputs are denoted as:

F
(1)
HT = f

(1)
HT (XHT ; θ

(1)
HT ) + F(1), (2)

F
(1)
LT = f

(1)
LT (XLT ; θ

(1)
LT ) + F(1), (3)

F(1) = f (1)(XF ; θ
(1)), (4)

where f
(i)
∗ (·) represents the i-th convolutional block

(Convd(·)) with learnable parameters θ(i)∗ for the respective
branch, and the subscript * denotes either HT, LT , or is
omitted. Each branch begins with a convolutional block,
comprising a convolutional layer, batch normalization (BN),
ReLU activation, and dropout. Here, f (1)HT(·) and f (1)(·) are
configured with 16 output channels, kernel size k2, and stride
s2, whereas f (1)LT (·) uses 16 output channels, kernel size k1,
and stride s1. F(1)

HT ,F
(1)
LT ,F

(1) ∈ R16×L1 (with L1 adjusted
post-convolution).

To enhance temporal-frequency interactions and capture
mid-level features, a second convolutional block is applied,
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Fig. 5. Overall architecture of the SFR-Net for EEG classification.

followed by multiplicative feature fusion. This gating mecha-
nism, motivated by attention-like modulation, allows the fre-
quency branch to selectively amplify salient temporal patterns,
fostering adaptive integration across resolutions. The outputs
are:

F
(2)
HT = f

(2)
HT (F

(1)
HT ; θ

(2)
HT )⊗ F(2), (5)

F
(2)
LT = f

(2)
LT (F

(1)
LT ; θ

(2)
LT )⊗ F(2), (6)

F(2) = f (2)(F(1); θ(2)), (7)

where f
(2)
HT(·), f (2)(·), and f

(2)
LT (·) are configured with

32 output channels, kernel size k3, and stride s3. The
⊗ denotes element-wise multiplication calculation, and
F

(2)
HT ,F

(2)
LT ,F

(2) ∈ R32×L2 .

Building on this, a third convolutional layer further refines
hierarchical representations, with additive fusion to reinforce
multi-resolution coherence. This stage is motivated by the
progressive abstraction in neural hierarchies, where deeper
layers integrate broader contexts. The outputs are:

F
(3)
HT = f

(3)
HT (F

(2)
HT ; θ

(3)
HT ) + F(3), (8)

F
(3)
LT = f

(3)
LT (F

(2)
LT ; θ

(3)
LT ) + F(3), (9)

F(3) = f (3)(F(2); θ(3)), (10)

where f (3)HT(·), f (3)(·), and f (3)LT (·) are configured with 48 out-
put channels, kernel size k3, and stride s3. F(3)

HT ,F
(3)
LT ,F

(3) ∈
R48×L3 .

Finally, a fourth convolutional block extracts high-level
fused features, culminating in multiplicative fusion for
fine-grained modulation. This multi-stage alternating fusion
(additive-multiplicative) is a key innovation, enabling dynamic
recalibration and preventing information loss in heterogeneous
EEG modalities. The outputs are:

F
(4)
HT = f

(4)
HT (F

(3)
HT ; θ

(4)
HT )⊗ F(4), (11)

F
(4)
LT = f

(4)
LT (F

(3)
LT ; θ

(4)
LT )⊗ F(4), (12)

where f
(4)
HT(·), f (4)(·), and f

(4)
LT (·) are configured with 64

output channels, kernel size k3, and stride s3. F(4)
HT ,F

(4)
LT ∈

R64×L4 .

To achieve a deeper integration of the multi-resolution tem-
poral and frequency features beyond the stage-wise fusions, we
introduce a final fusion step by applying a fifth convolutional
block. The fused features are defined as:

ZLTF = f
(5)
LT (F

(4)
LT ; θ

(5)
LT ), (13)

ZHTF = f
(5)
HT (F

(4)
HT ; θ

(5)
HT ), (14)

where f
(5)
HT(·) and f

(5)
LT (·) are configured with 64 output

channels, kernel size k4, and stride s4, and ZLTF ,ZHTF ∈
R64×L5 .

The fused branch outputs are then processed through a
Squeeze-and-Excitation (SE) block to emphasize channel-wise
dependencies, motivated by the need to prioritize informative
EEG channels. The SE-enhanced features are denoted as:

ẐLTF = SE(ZLTF ), (15)

ẐHTF = SE(ZHTF ), (16)

where SE(·) applies global average pooling followed by a
two-layer MLP for excitation weights, and ẐLTF , ẐHTF ∈
R64×L5 .

To model long-range temporal dependencies across the
fused multi-resolution features—essential for distinguish-
ing sequential brain states like transitions from resting to
learning—we employ a bidirectional two-layer Long Short-
Term Memory (LSTM) network. This is motivated by LSTM’s
ability to capture bidirectional context in time-series EEG data,
outperforming vanilla RNNs in handling vanishing gradients.
The LSTM processes flattened features from ZLTF and ZHTF

(after max-pooling to reduce dimensionality), yielding hidden
states:

STF = Concat(ẐHTF , ẐLTF ), (17)
H = LSTM(Flatten(STF );ϕ), (18)

where Concat(·) is channel-wise concatenation, Flatten(·)
vectorizes the tensor, LSTM(·;ϕ) is the two-layer bidirec-
tional LSTM with parameters ϕ, and H ∈ R256.

Finally, a Multi-Layer Perceptron (MLP) with two fully
connected layers (hidden size 256, ReLU activation, dropout
0.3) performs the classification, outputting probabilities for the
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Fig. 6. Working flowchart‘4W -UT” and Personal Data Combined Prompts for LLM-Based MCI Chatting Agent.

three brain states. This MLP is motivated by its efficiency
in non-linear decision boundaries for multi-class tasks. The
prediction is:

ŷ = Softmax(MLP(H;ψ)), (19)

where MLP(·;ψ) denotes the MLP with parameters ψ, and
ŷ ∈ R3.

Using the EEG signal dataset, which was accurately labeled
and established in the previous section, our SFR-Net model
was trained end-to-end using cross-entropy loss and incorpo-
rates a multi-branch, multi-stage fusion approach. This inno-
vative SFR-Net model effectively captures the spatial, spectral,
and temporal dependencies within the EEG signals, enabling
robust classification of the three cognitive states—Resting,
Learning, and Memory Recall—required for the PV-Care
scheme, which uses a wearable 4-channel EEG device.

D. “4W -UT” and Personal Data Combined Prompt for LLM-
Based MCI Chatting Agent

Cloud-based AI systems, such as ChatGPT, have demon-
strated remarkable capabilities in conversational tasks and
problem-solving. However, a significant challenge in assisting
MCI patients is the variability in LLM responses.

1) “4W -UT” Prompt for Chatting Setup: In the PV-Care
scheme, we designed a chatting agent, the pipeline of which
is shown in Figure 6. Prompt-based control, such as “role:
system, content: descriptions”, is used in our agent to initialize
the cloud LLM. Specifically, we define the “4W -UT” prompt,
which integrates multi-source context to drive personalized
conversations. The key information of “4W -UT” prompt are:

• Where: the user’s location, derived from the smartphone
GPS (position format: ddmm,N/S, dddmm,E/W).

• When: the current time, also from the smartphone (time
format: year-month-day-time).

• Who: the people present, recognized locally using the
smartphone-based face recognition system.

• What: the surrounding environment description, gener-
ated by the cloud-based visual AI model (e.g., “man,
table, bottle on table, can on table, etc.” as in Figure 2).

• UserState: the user’s cognitive state and personal log. In
addition to Resting, Learning, or Memory Recall, recent
activity history and personalized information of the MCI
patient are incorporated.

By combining these information, chatting agent can proac-
tively initialize chatting with “4W -UT” prompt: For example

shown in Figure 2, and assume the person in the image is
named Leonardo. Based on the collected contextual informa-
tion, a generated “4W -UT” prompt that is sent to the OpenAI
API might be:

role: system, content: “I am in a room with GPS
ddmm,N/S, dddmm,E/W. Current time is year-month-
day-time. Leonardo is here. In front of me: a man,
indoors, sitting, wearing a face mask, casual attire,
and a table with bottles and cans. The user is
currently in a memory state.”

Additionally, our scheme incorporates the user’s recent
weekly activity data and planned next-step actions. For ex-
ample, if an MCI patient leaves home in the morning, they
may forget to return. By maintaining an activity log and
integrating it into the prompt, PV-Care chatting can provide
reminders during memory recall states, such as suggesting the
user should return home and offering the navigation route.

2) The Workflow of Our Assistant Chatting Agent: Figure 6
presents the overall workflow of our chatting agent, and the
details of each module in the chatting agent pipeline are as
follows:

• Brain State Management: This module receives the brain
activity state outputs from the SFR-Net, as described in
the previous section. The Memory Recall and Learning
states activate subsequent modules to proactively initiate
user interactions, while the Resting state does not trigger
any active engagement.

• Context Collection: Multi-source context is collected,
including environmental descriptions generated by the
cloud model from the user’s surroundings, as well as
the identification of potential people using the user’s
smartphone-based face recognition. This completes the
gathering of necessary environmental information for
building the chatting agent’s context.

• Activity Log Memory: This module logs the user’s recent
activities, such as “left home at 9 AM”, which provides
contextual information for subsequent interactions. This
log is particularly useful when the user is in the Mem-
ory Recall state, enabling the system to create relevant
prompts based on past activities.

• 4W -UT Based Prompt Generator: If the user is in a
Memory Recall state, the activity log memory information
is fused with environmental data to form the “4W -UT”
prompt. If the user is not in a Memory Recall state,
the prompt is constructed solely from the environmental
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image recognition descriptions used for the Learning
state.

• Dispatch Prompt and Feedback Loop: The constructed
prompts are proactively sent to the user, using ChatGPT
as the “role: system. Based on the user’s feedback, the
system determines whether assistant chatting has been
established. If no feedback is provided, the system up-
dates the Activity Log and Memory and re-enters the
prompt generation process. This loop continues until a
meaningful conversation is established, at which point the
MCI Assistant Chatting module engages with the user.

Using this conversational agent, PV-Care can provide a
highly personalized and context-aware conversational experi-
ence, and the agent, which uses the ChatGPT API, is avail-
able at [22]. Additionally, the textual responses generated by
LLM are transformed into spoken feedback through Text-to-
Speech (TTS) technology, and delivered via the user’s paired
smartphone earphones, as illustrated in the lower-right part of
Figure 1.

III. SIMULATION FOR OUR PROPOSALS

In the experimental evaluation, we conducted functional
simulations of the proposed proactive MCI assistance scheme.
As illustrated in Figure 1, the PV-Care scheme integrates three
core components: scene image analysis, EEG-based brain state
analysis, and LLM-based chatting agent. The image analysis
is a relatively mature technique, and in our implementation,
we directly utilized OpenAI’s API. Hence, our experiment
primarily focused on the EEG-based brain state recognition,
the usability of PV-Care prototype for proactive assistance.

A. Evaluation of SFR-Net for EEG-Based Brain State Classi-
fication

To evaluate the effectiveness of the proposed SFR-Net
model, we conducted experiments on the 30-subject EEG
dataset described in Section II.C. As supported by [9], EEG
patterns corresponding to cognitive states: Resting, Learning,
and Memory Recall are physiologically consistent between
healthy participants and MCI patients, making this dataset suit-
able for validating SFR-Net, although the data were collected
from healthy participants.

1) Experimental Setup: The EEG signals were prepro-
cessed and segmented into 4-second windows, with both
temporal and frequency-domain features. We adopted 5-fold
cross-validation to improve the reliability of the evaluation
and reduce the impact of data partitioning. For each fold, the
SFR-Net model was trained from scratch and evaluated on the
corresponding held-out set. Our model was implemented in
PyTorch and trained on an NVIDIA GeForce RTX 4090 GPU
using the Adam optimizer (batch size=32, learning rate=0.001)
for up to 300 epochs. Final performance, evaluated on the
test set, reports the average precision, recall, accuracy, and F1
score.

2) Comparison with State-of-the-Art Methods: We com-
pared SFR-Net against several established EEG classification
models:

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT METHODS

Method Acc Precision Recall F1 Score

EEGNet 0.669±0.004 0.675±0.002 0.667±0.008 0.668±0.005
Tsception 0.720±0.018 0.751±0.014 0.715±0.022 0.713±0.024
Conformer 0.726±0.011 0.738±0.012 0.728±0.010 0.728±0.011
MSTCNN 0.754±0.014 0.754±0.015 0.768±0.017 0.754±0.014
CNNLSTM 0.781±0.013 0.800±0.020 0.789±0.016 0.782±0.013
BMFCNet 0.786±0.019 0.779±0.018 0.799±0.019 0.785±0.020
SFR-Net 0.804±0.016 0.812±0.020 0.813±0.011 0.804±0.017

Fig. 7. (a) ROC of SFR-Net for three-state brain activity classification using
5-fold cross-validation, (b) ROC analysis of ablation study for SFR-Net

• EEGNet [23]: A lightweight CNN using depthwise and
separable convolutions for efficient EEG spatial-temporal
feature extraction.

• Tsception [24]: Captures hemispheric asymmetry through
bilateral kernels in its multi-scale temporal-spatial archi-
tecture.

• Conformer [25]: Integrates convolutional layers for local
patterns with self-attention mechanisms to model global
dependencies in EEG signals.

• MSTCNN [26]: Uses parallel temporal convolutions with
varied kernel sizes to extract multi-scale features from
EEG time series.

• CNNLSTM [27]: Combines CNNs for spatial-spectral
feature learning with LSTMs to capture temporal dynam-
ics in EEG sequences.

• BMFCNet [28]: Fuses temporal and spectral EEG rep-
resentations via dedicated bimodal modules for enriched
feature learning.

As shown in Table I, SFR-Net outperforms all base-
lines across all metrics, achieving the highest accuracy of
0.804±0.016. Notably, SFR-Net improves upon the clos-
est competitor, BMFCNet, by approximately 1.8% in accu-
racy, demonstrating the advantages of its hierarchical fusion
of multi-resolution temporal and frequency-domain features.
Lower-performing models rely primarily on single-resolution
inputs, underscoring the limitations of ignoring complemen-
tary dynamics across time scales.

The superiority of SFR-Net is further evidenced by the ROC
curves in Figure 7 (a), where it achieves the highest AUC
of 0.94. This indicates robust separability, with SFR-Net’s
curve is more closer to the top-left corner than baselines such
as CNNLSTM and BMFCNet (both AUC 0.93) or EEGNet
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TABLE II
CHAT PROMPT EVALUATION METRICS FOR PV-CARE, INCLUDING SUBJECTIVE (M1–M4) AND OBJECTIVE (M5) INDICATORS.

No. Metric Name Description Evaluation Method Score

M1 Appropriateness of Proactive Guidance Whether proactive questions or guidance match the user’s context and needs Human rating (1–5 scale) 4.7
M2 Effectiveness of Explanations Whether explanations help the user understand and reduce confusion Human rating (1–5 scale) 4.8
M3 Accuracy of Fact Verification Whether dialogue content aligns with factual information Human rating (1–5 scale) 4.6
M4 Semantic Relevance Semantic similarity between generated content and the user’s context/input Human rating (1–5 scale) 4.7
M5 Discourse Coherence Score Logical and semantic coherence of the dialogue Coh-Metrix [29] (-1–1 scale) 0.92

TABLE III
ABLATION STUDY OF SFR-NET COMPONENTS

Method Acc Prec. Recall F1

w/o LR 0.797±0.010 0.809±0.015 0.803±0.007 0.797±0.009
w/o F 0.685±0.007 0.688±0.007 0.700±0.007 0.684±0.008
w/o LR&F 0.688±0.012 0.697±0.012 0.701±0.010 0.688±0.012
SFR-Net 0.804±0.016 0.812±0.020 0.813±0.011 0.804±0.017

(AUC 0.83). The marginal AUC gains highlight SFR-Net’s
enhanced ability to minimize false positives while maintaining
high true positive rates, which is critical for real-world brain-
computer interface applications where misclassification of
cognitive states (e.g., confusing Learning with Resting) could
impair usability.

3) Ablation Study: To validate the contributions of key
components in SFR-Net—specifically the low-resolution (LR)
temporal branch and the frequency-domain (F) branch—we
performed an ablation study by systematically removing these
elements and retraining the model.

Results in Table III reveal that both branches are essential.
Removing the LR branch (w/o LR) results in a modest
drop in accuracy to 0.797±0.010, suggesting that while high-
resolution inputs capture fine details, the LR branch provides
complementary stability for slower neural dynamics. More
critically, ablating the F branch (w/o F) causes a substantial
decline to 0.685±0.007 accuracy, emphasizing the impor-
tance of spectral features in encoding oscillatory patterns
like theta-band activity during Memory Recall. The combined
removal (w/o LR&F) yields performance comparable to w/o
F (accuracy 0.688±0.012), confirming that frequency-domain
integration is the dominant factor, though LR enhances it
further in the full model.

The ROC analysis in Figure 7 (b) corroborates these
findings, with the full SFR-Net achieving an AUC of 0.94.
Interestingly, w/o LR maintains the same AUC (0.94), but the
table metrics indicate reduced consistency, implying that LR
aids in balanced multi-class performance rather than overall
separability. In contrast, w/o F and w/o LR&F drop to AUCs of
0.86 and 0.87, respectively, with curves deviating further from
the ideal, highlighting how frequency fusion mitigates trade-
offs in false positive rates. These results affirm the innovative
multi-branch, multi-stage fusion in SFR-Net as pivotal for
superior EEG decoding.

To promote reproducibility and further research, the source
code and experimental data for the proposed SFR-Net have
been made publicly available at our GitHub repository [30].

Fig. 8. Wearable PV-Care prototype.

B. Evaluation of “4W -UT” Prompt Controlled Proactive
Chatting

Given the inherent variability and occasional hallucinations
in LLM outputs, we evaluated the stability and reliability of
conversational responses generated under our proposed “4W -
UT” prompt. By setting the LLM’s system role explicitly
through structured environmental, temporal, and cognitive con-
text, we aimed to standardize the dialogue generation process
and improve consistency.

We assessed dialogue quality using both subjective metrics
(M1–M4 in Table II) and objective metrics (M5). Subjective
evaluations included the appropriateness of proactive guidance
(M1) and clarity of explanations (M2), scored on a 5-point
Likert scale by human raters. Objective indicators such as
discourse coherence score (M5) was automatically computed
using established NLP tools including Coh-Metrix [29]. Some
results from the simulation are available at [22].

We used the beverage recognition scenario (Scenario 1)
as a representative case. A total of 50 conversation samples
were generated using identical “4W -UT” prompts. Ten healthy
participants were recruited to review the conversations, each
evaluating all 50 samples. This yielded 500 subjective ratings
per metric. An automated hallucination detection module was
also applied to assess factual consistency and contextual
relevance in the generated responses.

Overall, the evaluation results (Table II) indicate that the
integration of LLM with our structured “4W -UT” prompting
framework enables the PV-Care to deliver reliable, coherent,
and contextually appropriate proactive assistance.

C. Overall Performance Assessment for PV-Care Scheme

1) Hardware Implementation of the PV-Care Prototype: In
addition to evaluating the performance of the proposed SFR-
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Fig. 9. MoCA and MMSE cognitive screening for participant selection.

TABLE IV
COGNITIVE ASSESSMENT SUMMARY FOR 60 PARTICIPANTS

Metric N Age (Years) Gender (Female) MMSE MoCA

Value 60 68.13 ± 6.14 37 (61.7%) 26.13 ± 3.65 23.48 ± 5.02

Net for EEG analysis, we further assessed the overall system
feasibility of the PV-Care scheme through hardware imple-
mentation. To validate the practicality of the proposed system
integration, we developed a functional prototype focused on
environmental sensing and EEG data acquisition.

Given the limited availability of compact and high-quality
EEG devices, we adopted a commercially available 4-channel
wearable EEG headset (Muse) [18], which is capable of
capturing real-time brainwave activity suitable for cognitive
state monitoring. To meet the integrated and wearable design
requirements of PV-Care, we specially developed a lightweight
camera module capable of capturing 640×480 resolution im-
ages for real-time environmental sensing. This visual sensing
unit was mechanically integrated with the EEG headset via
a custom-designed 3D-printed interface and assembly mecha-
nism, ensuring stable alignment during operation while main-
taining user comfort. Furthermore, by equipping the system
with a compact rechargeable power supply, we constructed a
fully functional prototype of the PV-Care sensing hardware,
as illustrated in Figure 8.

2) Participant Selection for Subjective Evaluation: In this
section, we present the subjective usability evaluation of the
PV-Care scheme conducted with MCI patients, along with a
simulated case study to demonstrate its practical functionality
and user experience.

Since PV-Care is designed primarily for individuals with
MCI, we recruited suitable participants in collaboration with
the Brain and Behavior Research Institute (BABRI) [31],
following established ethical guidelines. Cognitive screening
was conducted using two standardized tools: the Montreal
Cognitive Assessment (MoCA) and the Mini-Mental State
Examination (MMSE). The MoCA is known for its high
sensitivity in detecting MCI by assessing memory, language,
attention, and executive functions [32], while the MMSE
provides a general evaluation of cognitive status and is widely
used in dementia screening [33].

60 volunteers from local communities completed the MoCA
and MMSE assessments (Figure 9). Table IV summarizes the
cognitive and demographic profiles of the participants. The
average age was 68.13 years (SD = 6.14), with a majority
being female (61.7%). The mean MMSE and MoCA scores
were 26.13 and 23.48, respectively, confirming mild cognitive

Fig. 10. (a) Environmental image captured by PV-Care. (b) Volunteer wearing
the PV-Care prototype during testing.

TABLE V
SUBJECTIVE EVALUATION OF PV-CARE PROTOTYPE (1 = LOW, 5 = HIGH).

Metric Remarks Avg. Score

Wearing comfort Comfort while wearing the device 4.7
Ease of use User-friendliness and interaction simplicity 4.8
Prompt clarity Clarity of system prompts and feedback 4.6
Overall rating General assessment of system performance 4.8
Willingness to use Interest in continued usage in daily life 4.9

decline in the group.
To ensure effective participation in the usability study,

20 individuals with MoCA scores between 18 and 25 were
selected in our subjective evaluation of PV-Care. These par-
ticipants demonstrated sufficient cognitive capacity to follow
instructions and engage with the system.

3) Prototype Testing and Usability Evaluation: Selected
participants were invited to wear the PV-Care prototype and
complete a series of guided assistance tasks in a controlled
environment. During these simulations, the system provided
real-time interaction and context-aware navigation support,
based on both environmental perception and EEG-based brain
state recognition. One of the participant scenarios is illustrated
in Figure 10.

To assess the system’s usability, participants completed a
subjective evaluation form (Table V) that measured comfort,
usability, prompt clarity, overall satisfaction, and willingness
to use the system long-term.

The subjective evaluation results indicated strong positive
responses across all metrics. Participants rated the device with
an average score of 4.7 for wearing comfort, 4.8 for ease of
use, 4.6 for prompt clarity, 4.8 for overall satisfaction, and
4.9 for willingness to continue using the system. Most users
described the prototype as intuitive, comfortable, and helpful
in managing daily tasks.

4) Case Study: Assistant Chatting Powered by 4W -UT
Prompts: To evaluate the functionality of the PV-Care chatting
agent (In this experiment, we used ChatGPT APIs of OpenAI
as the LLM to support our chatting agent.), we conducted
two representative simulation scenarios that tested the system’s
ability to detect users’ cognitive states, construct contex-
tual prompts, and deliver proactive, context-aware assistance.
Volunteers were invited to participate and provide feedback.
Each simulation involved real-time EEG signal acquisition,
environmental sensing via a wearable camera, and LLM-based
conversational interaction.
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a) Scenario 1: Assisting with Beverage Recognition and
Learning: As shown in Figure 10, a volunteer wearing the
PV-Care prototype was seated at a round table with three
beverages: a bottle of beer, a can of Coke, and a can of Sprite.
To simulate a realistic home scenario, another participant—a
registered family member named Leonardo—was seated op-
posite the volunteer.

Before initiating any conversation, PV-Care performed a
multi-stage perception process. The SFR-Net identified that the
user was in a Learning state based on EEG signals, indicating
a focus on the objects in front. Meanwhile, the wearable
camera captured the surrounding scene, and visual analysis
recognized Leonardo. The system then constructed a “4W -
UT” contextual prompt, which was transmitted to ChatGPT
using the system role (see Section II.D for details). Based
on the generated response, PV-Care proactively initiated a
context-aware conversation, as shown below:

1) PV-Care: I see you’re looking at the three drinks in front
of you, and Leonardo is here with you. Would you like
some help understanding what they are?

2) PV-Care: [Waiting for user response...]
3) PV-Care (if no response within 10 seconds, re-initiates

the prompt): I can help you learn more about the drinks
you’re looking at—just let me know when you’re ready.

4) Loop: repeat 2), 3) processes until a response is received
from the user.

5) PV-Care (upon receiving user response, continues with
contextual explanation): The can with the red label is
Coke. It’s a sweet, caffeinated soft drink....

6) User: I want....
This case demonstrates that PV-Care can recognize when the

user is in a learning state and initiate intelligent, personalized
support. The system integrates EEG-based cognitive monitor-
ing, real-world visual context, and identity recognition to help
users better understand and interact with their environment.

b) Scenario 2: Reminding and Guiding the User to
Return Home: The second scenario simulated a safety-critical
situation for an MCI user. A volunteer equipped with the
PV-Care prototype walked outdoors and paused at a cross-
roads, attempting to recall the correct direction home. At
this moment, SFR-Net detected a Memory Recall cognitive
state. Simultaneously, the wearable camera captured nearby
visual landmarks, and the GPS module determined the user’s
exact location. Combining this information with stored home
address data, PV-Care constructed a safe navigation route
and generated a contextual 4W -UT prompt for the language
model:

“role: system, content: I am on Livernois Road with
GPS ddmm,N/S, dddmm,E/W. Current time is year-
month-day-time. In front of me: road, tree, building.
The user is currently in a memory recall state.”

PV-Care then initiated a proactive navigation dialogue:
1) PV-Care: You seem to be near the park. Are you trying

to find your way home?
2) PV-Care: [Waiting for user response...]
3) PV-Care (if no response within 10 seconds, re-initiates

prompt): If you’re unsure which direction to go, I can
guide you back home. Just let me know when you’re ready.

4) Loop: repeat 2), 3) until a response is received from the
user.

5) PV-Care (upon receiving user response, proceeds with
personalized navigation instructions): From your current
location, turn right at the next intersection. Then continue
straight for about 300 meters until you reach Timberview
Street. Turn left there—your home is just around the
corner.

6) User: Which way...
This scenario demonstrates PV-Care’s capability to identify

memory recall states, contextualize the surrounding environ-
ment, and provide timely, safety-critical navigation support
through its LLM-powered conversational interface.

IV. CONCLUSION

We proposed PV-Care, a proactive assistance scheme for
individuals with MCI. By integrating wearable 4-channel
EEG sensing, environmental perception, and large language
model-based dialogue, PV-Care enables real-time, personal-
ized support. The proposed SFR-Net accurately recognizes
brain states, while structured “4W -UT” prompts guide LLM
to generate context-aware responses. Simulation experiments
and user evaluations confirm the system’s usability, cognitive
recognition performance, and conversational effectiveness. PV-
Care shows strong potential as a practical solution for daily
cognitive support in aging populations.
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本项目旨在为患有轻度认知障碍（MCI）的老年人提供个性化的辅助支持。我负责执行研究框架，
包括构思研究思路、收集数据、进行计算机模拟和撰写论文。
本研究涉及多个关键组成部分，如通过视觉传感进行场景识别和通过脑电信号处理进行认知状态

分析，这些工作是在复旦大学陈智能教授的指导下完成的。陈教授在系统的技术和计算方面提供了宝
贵的见解，帮助优化实验的设计和实现。作为视觉感知技术领域的专家，陈教授在人工智能方法和工
具的使用上提供了极大的帮助。当需要使用视觉分析系统时，陈教授引导并教会我如何使用基于 AI的
在线 API 来分析视觉数据，并将这些数据应用于进一步的分析。
项目的总体设计和组织是在上海高中的姚艳婕博士的精心指导下完成的。姚博士在项目过程中提

供了重要的指导，确保研究遵循了严谨的逻辑过程。作为我在学校的主要导师，姚博士在选题和研究
方向的确定上给予了我很多帮助。我们共同制定了研究项目的进度安排，她为项目设定了具体的时间
节点，并在研究过程中始终作为负责的监督者，确保项目按时推进。

2024 年，我们对系统进行了进一步的改进，尤其是在深度学习模型的整合和脑电数据处理的实际
应用方面。此阶段还包括对 PV-Care 原型的广泛测试，并根据多个用户研究的反馈对系统的响应和互
动性进行了优化。

导师指导过程

• 2024 年 6 月 - 2024 年 8 月：项目启动与文献回顾

– 在陈智能教授的指导下，开展了关于轻度认知障碍（MCI）和基于脑电信号的脑波分析的文
献综述。

– 在姚艳婕博士的协助下，确定了研究目标和范围，重点是开发面向 MCI 患者的 AI 辅助系
统。

• 2024 年 9 月 - 2024 年 12 月：系统设计与原型开发

– 设计了 AI 辅助系统的架构，整合脑电信号处理与视觉识别技术。

– 在陈智能教授的指导下，开发了 EEG-Visual 设备原型，重点开发信号采集和处理算法，包
括利用先进的 AI 技术提升视觉信息处理。

– 陈教授提供了关于如何将 AI 方法应用于系统的视觉识别和分析的详细指导。

– 姚博士在项目管理上提供了全程监督，确保设计目标与总体研究目标的对齐。

• 2025 年 1 月 - 2025 年 4 月：数据收集与实验设置

– 在陈智能教授的指导下，设立了脑电数据采集和视觉信号处理的实验，重点开发基于 SFR-
Net 的脑电信号分析方法进行认知状态检测。

– 与姚博士合作，制定了详细的实验进度和数据收集协议，确保数据收集过程的系统化。

• 2025 年 5 月 - 2025 年 7 月：数据分析与 SFR-Net 验证

– 在陈智能教授的指导下，分析了收集的脑电数据，重点区分认知状态和记忆回忆状态。

– 使用先进的 AI 方法，特别是 SFR-Net（空间增强与重构网络），增强了系统处理和分类脑
活动的能力。

– 进行系统验证实验，测试 AI 驱动对话系统和基于脑电的认知状态识别系统的有效性。
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– 姚博士在这一阶段对分析方法提供了重要反馈，确保了项目里程碑的达成。

• 2025 年 5 月 - 2025 年 8 月：论文撰写与审阅

– 撰写了总结项目成果的研究论文，特别是脑电和 AI 处理部分的技术性章节，经过陈智能教
授的详细审阅。

– 姚博士在论文的结构和学术写作规范上提供了指导。

– 陈教授和姚博士参与了三轮论文修改，提供了修改意见，提升了论文的整体质量。

尽管他们的贡献巨大，姚博士和陈教授依然无偿提供了帮助。感谢姚博士和陈教授的帮助！
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姚艳婕博士是上海高中国际部的二级物理教师，持有上海交通大学物理学博士学位。姚博士在教
学和研究方面有着丰富的经验，曾主讲多门高级课程，包括 IB 和 A-Level 物理，开展了关于脑电信息
处理方面的研究。姚博士还积极参与开发创新的教学方法。
陈智能教授于 2011年获得中国科学院计算技术研究所的博士学位。他曾担任中国科学院自动化研

究所副教授，并曾在香港城市大学计算机科学系担任高级研究员。目前，他是复旦大学计算机科学与
技术学院的预聘教授。陈教授的研究兴趣包括多媒体分析、人机交互，医学图像处理和计算机视觉。陈
教授是多个国家级项目的负责人，包括由国家自然科学基金资助等，并与百度和腾讯等公司有过合作。
他在国内外学术期刊和会议上发表了 60 多篇学术文章。
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