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Abstract

Eddy current testing (ECT) is a widely used method for industrial-structural-health monitoring.
Traditionally, it relies on manual interpretation of detection signals to identify the location and
type of defects. However, this process is complex, has limited.accuracy;.and heavily depends on
expert experience. In recent years, deep learning has been.applied to ECT signal analysis, greatly
improving the level of automation. Nevertheless, ECT .signals are inherently complex-valued,
containing both amplitude and phase information. Most existing deep learning models are real-
valued, exploiting only amplitudes or hand-crafted  features, which<limits their ability to fully
utilize the rich information in multi-frequency ECT signals.

To address this challenge, we propose C-TranAD (Complex-valued Transformer-based Anomaly
Detection), a novel time-series anomaly detection network in the complex domain. C-TranAD
enables end-to-end processing of multi-frequency ECT signals, avoiding feature loss and
information redundancy. Its main contributions are as follows:

1. High-quality ECT defect dataset: We construct a proprietary dataset, SGT-ECT-13C5F,
that preserves complex amplitude—phase features and covers typical defect patterns,
providing a reliable benchmark for model-training and evaluation.

2. End-to-end complex-domain modeling: We extend TranAD into the complex domain for
the first time, achieving end<to-end representation of ECT signals. This design fully
preserves coupled amplitude—phase features and improves the characterization of defect
patterns in multi-frequency scenarios.

3. Learnable complex activation and hierarchical classification: We introduce learnable
complex activation functions and a hierarchical classification mechanism. Through
adaptive nonlinearity and multi-branch hierarchical representations, this approach ensures
physical consistency with ECT principles, enhances robustness, and improves sensitivity
to subtle phase variations and complex defect patterns.

Extensive experimentson our multi-frequency ECT dataset demonstrate that C-TranAD achieves
an accuracy of up.to 96%, significantly outperforming real-valued TranAD and other mainstream
methods in terms of detection accuracy, recall, and robustness. This work provides new insights
into the application of complex-valued deep learning to ECT and establishes a methodological
foundation for defect identification in multi-frequency settings.

Keywords: TranAD, Complex-valued Neural Network, Eddy Current Testing, complex domain
activation function
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1. Introduction

Nuclear energy serves as a highly efficient and clean energy source, holding a significant position
in the global energy structure [1]. As shown in Figure 1, the heat transfer tube bundle within a
steam generator acts as a critical barrier between the primary and secondary circuits of a reactor.
Its structural integrity is directly related to the containment of radioactive materials, the operational
safety of the power plant, and the efficiency of energy conversion [2]. However,.under long-term
exposure to complex conditions such as high temperature, high pressure, fluid’ erosion, and
corrosion, the heat transfer tubes are highly susceptible to defects like cracks and thinning [3].
Once a defect destabilizes and propagates, it can lead to severe radioactive leakage incidents with
catastrophic consequences. Therefore, conducting regular, efficient;.and precise in-service
inspections to promptly identify and evaluate heat transfer tube defectss an essential measure to
ensure the safe and reliable operation of nuclear power plants [4].

Figure 1. Typical‘heat exchanger: nuclear power plant steam generator

In this process, complex.signal processing plays a crucial role. As a key direction in modern signal
and information processing, complex-domain methods are widely applied in fields such as
communications, energy, medical imaging, and structural health monitoring. Their core value lies
in the ability to simultaneously-represent both amplitude and phase, thereby more completely
characterizing the dynamic properties of a physical system. For the eddy current inspection of
steam generator heat transfer tubes, the impedance signal naturally exists in a complex form, where
the coupled changes in amplitude and phase directly reflect the material's internal structural state
and potential defects. Among the various non-destructive testing (NDT) techniques, Eddy Current
Testing (ECT) has become the preferred method for in-service inspection of steam generators and
various heat exchangers due to its high sensitivity, high detection speed, and non-contact nature
[5, 6]. This technique works by inducing an eddy current in a conductive tube using a probe coil
and then identifying defects by measuring changes in the complex impedance of the probe coil
caused by these defects. The resulting complex signal contains rich amplitude and phase
information, which is a critical basis for assessing the integrity of the tube wall [7,8,9]. Therefore,
eddy-eurrent testing has become the most practical and scientifically significant inspection method
for steam generator tubes in nuclear power plants, and improvements in its signal analysis and
processing methods are of great importance for enhancing defect identification accuracy and
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ensuring the operational safety of nuclear power plants [10]. However, due to the diversity of
nuclear power plant types in China, different heat exchangers exhibit significant variations in‘heat
transfer tube materials, manufacturing processes, and structural features [11]. Coupled with
complex operating conditions and high-risk inspection environments, the processing and analysis
of eddy current signals face immense challenges.

Figure 2. Typical multi-channel eddy currentsignal diagram of a heat exchanger heat transfer tube

As shown in Figure 2, detection signals are often accompanied by strong field noise [12] and are
interfered with by structural factors such:as tube sheets, support plates, tube expansions, and bends,
which can mask defect signatures. [13;, 115].<The current signal interpretation still relies on
experienced professionals [16], who must manually identify faint defect signals. This method is
not only inefficient and costly-but is also.often influenced by subjective factors. Concurrently, with
the advancement of signal acquisition technology, the rate of data acquisition has increased
exponentially, but manual analysis can no longer match this in terms of speed and accuracy, failing
to meet current inspection demands:

To resolve this contradiction, researchers have begun to explore the introduction of deep learning
methods to achieve automated-analysis of eddy current signals [17, 18]. In recent years, deep
learning has offered new avenues for the intelligent analysis of eddy current signals. However,
existing methods still face two main limitations. First, in terms of task modeling, most methods
simplify eddy current inspection into a supervised classification problem, training models to
identify "a specifictype of defect" versus "no defect"[19]. This approach not only relies on a large
amount of diverse labeled data but also has poor generalization capabilities for new or rare defects
not seen during training[20]. Second, regarding signal representation, current methods commonly
split the .complex impedance signal into two independent real-valued channels—real and
imaginary parts—for processing. This practice disrupts the intrinsic structure of the complex signal,
particularly neglecting the phase angle feature. Phase information is crucial for distinguishing
between defects and structural interferences like tube sheets and support plates; its loss severely
compromises the model's detection accuracy.
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Figure 3 C-TranAD model strueture

Based on the issues described, this paper introduces a completely new defect detection paradigm.
Instead of directly modeling the task as a classificationproblem, weredefine it as a reconstruction-
based anomaly detection problem. The core idea is to leverage-the powerful sequence modeling
and representation capabilities [21] of a model to.learn only/th¢.intrinsic patterns of "defect-free"
normal eddy current signals and use this knowledge to accurately.reconstruct them. As illustrated
in Figure 3, during the training phase, the. model.is exposed only to normal eddy current signals,
gradually capturing their coupled amplitude and phase characteristics to form a generator that
highly fits the normal patterns. During the detection phase, when a new eddy current signal is input,
the model attempts to reconstruct it based on the learned normal patterns. If the input signal is
indeed defect-free, the original and reconstructed signals will be highly similar, resulting in a
minimal reconstruction error. If ‘a defect is present; its amplitude and phase characteristics will
deviate from the learned patterns, producing.a significant reconstruction error. By setting an
appropriate threshold, we can determine the presence of a defect based on the magnitude of this
error. Building upon this foundation, the C-TranAD model proposed in this paper further achieves
end-to-end modeling in the full complex domain, avoiding the structural information loss caused
by splitting complex signals into.real/imaginary channels in traditional methods. Specifically, we
have incorporated learnable complex activation functions, a complex-domain anomaly measure,
and a hierarchical classification' mechanism into the architecture. This allows the model to
simultaneously capture and amplify subtle fluctuations in both amplitude and phase during the
reconstruction process. This design not only preserves the geometric integrity of the eddy current
signal in the complex plane but also endows the model with stronger hierarchical discrimination
and.anomaly amplification capabilities, enabling it to exhibit higher sensitivity to small phase
perturbations caused by defects. The method proposed in this paper has achieved excellent results
in practical engineering applications. In real-world detection tasks, the model can reach an
accuracy 0f96%, significantly enhancing the reliability of defect identification. Furthermore, due
to'its end-to-end automated processing capability, its detection workflow is simple and efficient,
making it directly applicable and scalable for industrial field use.

The.main contributions of this paper are:
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1) Dataset Construction and Validation: We constructed a proprietary eddy current defect
detection dataset, my data, which preserves complex amplitude-phase information while
covering typical defect patterns. This dataset provides a reliable benchmark for ‘model
training and evaluation. Experiments have validated that C-TranAD is significantly
superior to real-valued methods and other mainstream models in terms (of. accuracy,
robustness, and false alarm rate control.

2) End-to-End Modeling in the Complex Domain: We achieved a systematic.extension of the
TranAD model to the complex domain for the first time, proposing the C-TranAD model:
By preserving and utilizing the amplitude-phase coupling relationship: end-to<end, the
model can more accurately identify defects under multi-frequency conditions, avoiding the
information loss and feature fragmentation inherent in real-valued methods. This
significantly enhances the modeling and detection capabilities for complex eddy current
signals.

3) Learnable Complex Activation Functions and Hierarchical Classification Mechanism: We
proposed an improved Cardioid activation function, introducing learnable frequency and
phase offset parameters to its phase-sensitive basé: This allows.the network to adaptively
adjust its non-linear response and output range, enhancing its sensitivity to subtle phase
perturbations and complex defect patterns. Additionally, we designed a hierarchical
complex classification head that fuses the' results from .different activation function
branches, achieving a hierarchical representation and/defect discrimination across multiple
frequency channels. This mechanism not only aligns with. the physical principles of eddy
current inspection and offers robustness but” also further improves the model's
discriminative ability in complex operating conditions.

4) Complex-Domain Anomaly Measure Design: We introduced an amplitude-phase joint
complex distance metric, extending the reconstruction error from a real-valued norm to a
complex-domain consistency measure: This design considers both amplitude deviation and
phase drift, is robust to.rotation and-scaling, better conforms to the physical characteristics
of eddy current signals, and significantly enhances detection stability.

2 Related Work
2.1 Eddy Current Signal Analysis

Eddy current testing (ECT) is an important non-destructive testing technique. Its signals naturally
take a complex-valued form (amplitude and phase). In ECT signal analysis, traditional methods
largely rely on manual feature extraction and interpretation of complex impedance signals. Early
studies typically extracted geometric features from the impedance plane (Impedance Plane Plot,
i.e., amplitude—phase Lissajous patterns) [22], such as loop size and angle, and used them as inputs
to classifiers. These approaches depend heavily on manually designed features, suffer from limited
information utilization, and struggle to adapt to complex operating conditions.

With' the ‘development of machine learning and deep learning, researchers have gradually
attempted-to transform eddy current signals into alternative representations [17] and then apply
intelligent algorithms for defect identification. For example, some works convert time-domain or
frequency-domain signals into time—frequency images, which are then fed into convolutional
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neural networks (CNNs) or attention-based models for classification [23, 24]. Miao et al.
transformed eddy current weld defect signals into time—frequency images and input them to a VGG
network to achieve defect type recognition [25]. Gao et al. compared ResNet, DenseNet, and
spatiotemporal self-attention networks on eddy current image data, finding that incorporating
attention mechanisms can significantly improve recognition accuracy [26].

Overall, deep learning methods have gradually been applied to ECT signal processing. However,
most existing studies still rely on signal transformation and feature engineering; i.e., converting
raw signals into images or hand-crafted features before modeling. This ‘not:only introduces
additional preprocessing complexity but may also cause information loss and.noise amplification,
limiting the model’s ability to exploit intrinsic signal characteristics. In-eontrast, end-to-end deep
learning directly based on raw complex-valued eddy current. signals remains relatively
underexplored. Existing methods often represent complex impedance by separating the real and
imaginary parts for independent modeling [27], which breaks the intrinsic.coupling of the signals
and fails to fully leverage phase information—a key characteristic.

2.2 Time-Series Anomaly Detection

ECT signals are inherently time-series data, making-it pessible to-draw on advances in time-series
anomaly detection. A large body of research has emerged in this domain. Traditional approaches
include statistical thresholding, Isolation Forest, One-Class Support Vector Machines (One-Class
SVM), and autoencoder (AE)-based methods; relying ‘on reconstruction errors [28-31]. These
approaches have achieved certain success in.anomaly.detection for various sensor data, but they
generally depend on manual features and perform pootly on high-dimensional multivariate time-
series data.

In recent years, the rapid progress of deep learning has driven significant advances in time-series
anomaly detection. Recurrent‘neural networks (RNNs) and their variants such as LSTMs have
been widely used to model temporal dependencies [32]. Variational Autoencoders (VAEs) and
Generative Adversarial-Networks' (GANs) have also been introduced into generative anomaly
detection frameworks:

With the rise of Transformer: architectures, their powerful attention mechanisms enable
simultaneous modeling of both long- and short-term dependencies, offering new opportunities for
anomaly detection [33].~Among these, TranAD is a representative method [21, 34]. It leverages
multi-head attention to. capture global patterns in time series and incorporates self-conditioning
training and advetsarial training to improve generalization. Furthermore, it employs model-
agnostic meta-learning’(MAML) to enhance adaptability in few-shot scenarios. Experimental
results demonstrate that TranAD significantly outperforms state-of-the-art methods of its time on
multiple public datasets [21, 34, 35], while also achieving substantial improvements in training
efficiency. These findings highlight the great potential of Transformer-based deep models in time-
series anomaly detection.
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2.3 Complex-Valued Neural Networks

Since ECT signals are inherently complex-valued, complex-valued neural networks (CVNN5)
have become a promising research direction. Research on CVNNSs dates back several decades and
has been explored in fields such as communication signal processing, radar imaging, and magnetic
resonance imaging (MRI) [36, 37]. The core challenge lies in designing appropriate complex
operations and activation functions that allow the network to effectively model amplitude—phase
coupling in complex data.

Existing complex activation functions can be broadly divided into two categories: one separates
the real and imaginary parts for independent operations [38] (e.g., applying.sigmoid or tanh
separately), while the other performs unified amplitude—phase mappings [39].. Among these, the
Cardioid activation function has attracted wide attention due'to lits unique. phase-sensitive
properties [40]. It preserves the phase of the input while modulating the.output'amplitude: inputs
with phases near the negative real axis are strongly suppressed, while those near the positive real
axis are passed almost unchanged, thereby achieving a_ReLU-like nonlinear selectivity. This
property makes it particularly effective for modeling phase information in complex signals.

Nevertheless, most studies on CVNNSs have focused on' signal reconstruction and classification,
while systematic exploration in time-series anomaly detection remains scarce. At the same time,
multi-scale modeling has proven effective.in' computer vision and time-series analysis: multi-
branch architectures can capture information-at different spatial scales in vision tasks, while in
time-series tasks, capturing features across.different.temporal windows or frequency bands is
critical for identifying diverse anomaly patterns [41]./This provides new research directions for
complex-domain time-series anomaly detection.

2.4 Summary

In summary, the complex nature of ECT signals makes joint modeling of amplitude and phase
essential for defect identification, However, existing methods either rely on hand-crafted features
and signal transformation, with limited information utilization, or employ deep learning in the real
domain, which.disrupts amplitude—phase coupling. Meanwhile, recent advances in time-series
anomaly detection—particularly Transformer-based approaches—demonstrate strong modeling
capabilities’but have not been tailored to complex-valued signals. CVNNs show great potential for
modeling complex data, yet the design of activation functions and multi-scale mechanisms for
anomaly detection tasks'temains underexplored. Therefore, there is an urgent need for an end-to-
end.time-series anomaly detection approach in the complex domain, one that fully exploits both
amplitude and phase information while incorporating multi-scale and hierarchical mechanisms to
meet-the practical demands of industrial scenarios such as ECT.
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3. Methodology
3.1 Dataset and Preprocessing

The dataset used in this study was sourced from eddy current inspections of steam generator heat
transfer tubes conducted during a scheduled refueling outage at a nuclear power plant in China.
This scenario has significant engineering relevance: various defects can occur dutring the service
life of heat transfer tubes, with external wall wear (Wear, WER) being one of the most.common
and high-risk types. WER signals are often complex, potentially causing both amplitude spikes
and phase shifts, thus imposing high demands on the robustness and sensitivity of-anomaly
detection algorithms.

The data was collected using the C-Eddy eddy current inspection system, which includes a heat
transfer tube positioning robot, a probe pusher/puller, an ‘eddy currént instrument, and data
acquisition software. The collection process is as follows: the eddy currentinstrument generates
alternating currents at 5 different frequencies, which are time-division multiplexed and applied to
the probe coil as it moves at a constant speed inside the tube. When the‘tube is intact, the probe's
impedance remains stable. If a defect or structural change is present, the impedance will be
perturbed. The eddy current instrument converts.these impedance changes into digital signals via
an analog-to-digital converter and transmits them to a host computer for storage via the TIP-IP
protocol. Each heat transfer tube (approximately.20-25 meters long) corresponds to one data file,
containing 5 detection frequencies and 10 independent channels, plus 3 software-generated
differential channels, for a total of 13 channels. Each channel contains about 60,000 to 100,000
complex sample points (real and imaginary parts), recording the impedance changes throughout
the inspection process.

To ensure the comparability oftsignals. collected under different conditions, we developed a
dedicated data conversion and preprocessing. module to systematically standardize and calibrate
the raw signals:

1) Signal Centering: The signal segment from a defect-free section is shifted to the virtual
coordinate origin to eliminate DC offset caused by equipment configuration.

2) Phase Adjustment: As'the phase angle is random across different acquisitions, a known
defect (e.g., an artificial through-hole) is used for uniform calibration. For example, the
differential channel is-adjusted to 40° to ensure consistency between channels.

3) Amplitude Adjustment: The raw signal amplitude is a relative value, not a physical voltage.
Therefore, a reference defect (e.g., a through-hole or support plate signal) is used for
amplitude normalization, setting it to a standard value.

In_the subsequent data preparation stage, we performed mean normalization on the real and
imaginary parts of the complex signal separately to eliminate deviations caused by workpiece
differences and probe conditions. A light band-pass filter was applied to remove low-frequency
drift and high-frequency noise. Finally, a sliding time window was used to segment the long
sequence into fixed-length segments to maintain temporal and complex feature consistency. The
final SGT-ECT-13CS5F dataset includes several hundred labeled actual defects (mainly WER) and
a large number of normal samples. The training set consists of defect-free segments for learning
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the normal pattern, while the test set contains various types of defective segments, covering
everything from minor perturbations to significant defects. Although this dataset is not publicly
available, it is highly representative and engineering-realistic, providing a solid foundation for the
end-to-end learning and validation of the proposed C-TranAD model in the complex domain.

3.2 C-TranAD

3.2.1 C-TranAD overall model architecture

The C-TranAD model is based on the Transformer encoder-decoder framework of TranAD but
has been systematically modified for complex data types and operators.in its overall

implementation. The model input is a complex time series of length. T, (Z1;Z2,Z3...Z1) where
Zy=x + iy, (1)

In Equation 1, x; and y, represent the real and imaginary parts of the signal, respectively. The input
can be equivalently represented as a two-channel real-valued sequence’(real-imaginary), ensuring
that the model can fully preserve the geometric integrity ofthe complex signal from the initial
stage. Subsequently, the input signal undergoes feature modeling and reconstruction learning
through several stacked complex Transformer encoder-decoder layers. Unlike traditional real-
valued networks, every layer's parameters; weights, and operations in C-TranAD are implemented
in the complex domain. This allows the model to directly capture the unique amplitude-phase
coupling patterns of complex signals:«Particularly in the design of the non-linear units, we
introduced complex activation functions to ensure. the.effective preservation and modulation of
phase information during forward propagation and feature transformation, significantly enhancing
the model's sensitivity to subtle:phase perturbations caused by defects.

In the output layer, C-TranAD employs-a complex classification head to perform anomaly
determination at each time point. Specifically, we designed a multi-scale parallel branch structure.
The classification head consists of several parallel branches, each using a complex cosine
activation function initialized with different parameters to selectively respond to different
frequency components and phase shifts of the input features. This design allows the classifier to
simultaneously focus on global trends and local perturbations at multiple scales, thereby more
comprehensively. distinguishing different types of defect patterns. The features extracted by each
branch are further combined with a residual mechanism during the fusion stage and enhanced by
amplitude-phase decomposition to increase feature diversity. Finally, an anomaly score or class
label is output./The entire model is trained end-to-end. In an unsupervised setting, the complex
reconstruction error serves as the training objective. To ensure the loss definition is consistent with
the signal's physical mechanism, we introduced a complex-domain anomaly measure in the model,
extending the. traditional real-valued norm to a complex geometric distance that simultaneously
considers amplitude and phase differences, thereby guiding parameter updates more accurately
during backpropagation.

In" “summary, the C-TranAD method consists of three core components:
(1) Complex Transformer Sequence Modeler: Learns the temporal dependencies of eddy current
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signals and  the complex  feature  representations of  normal  patterns.
(2) Complex Multi-Scale Classification Head: Fuses feature representations at different
frequencies and phase offsets to output an anomaly score or class “label.
(3) Complex Anomaly Measure: A complex geometric distance defined by the joint error of
amplitude and phase, used to guide reconstruction and classification optimization.

Through this design, C-TranAD integrates the strengths of reconstruction-based anomaly detection
and discriminative classification. It possesses the ability to learn normal patterns in an
unsupervised manner to discover anomalies, while also using a multi-scale discriminative
mechanism to achieve direct classification of defects.

C-TranAD
complex focus score

Complex window encoder

CF

= = N Complex
FFN (LC)

Src
MS-
CCH(LC)

Figure 4. C-TranAD: Complex window encoder (Complex LN — Complex MHA —
Complex LN — Complex FFN (L'C)) - dual decoders: Decoder1(LC) — O1;
Decoder2(LC)+CF — 02; MS-CCH (L.C) produces anomaly score. Abbr.: LC=learnable
Cardioid activation; CE=complex focus score; MS-CCH=Multi-Scale Complex(-Valued)
Classification Head

3.2.2 Learnable multiple activation functions

In a complex neural network, the activation function not only performs non-linear transformation
but also determines whether the model can effectively utilize the coupled amplitude and phase
characteristics of complex signals. For eddy current inspection tasks, defects often manifest as
phase shifts or flips. If the model relies solely on real-valued functions (like ReLU, Tanh), phase
information will'be weakened or even lost during propagation, making it difficult to capture
significant defect features. Therefore, we chose to start with the Cardioid activation function and
extend and‘improve it.

The Cardioid activation function was originally proposed with the goal of directly utilizing the
phase information of the input in non-linear mapping. Its definition is:

1 0
fcardioid(z): eo8 T Z (2)
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Figure 5. Graph of the Cardioid activation function

As shown in Function 2, the output preserves the input phase 6 while its magnitude is scaled by a
factor. Its effect is similar to the non-negative clipping of ReLLU in the real domain. Cardioid allows
the network to automatically emphasize components in the direction’of the positive real axis (near
phase 0) while suppressing components with phase deviation. This mechanism is particularly well-
suited to the physical properties of eddy current signals: defects often cause phase shifts in the
signal, and the Cardioid activation can naturally respond to these phase shifts, thereby enhancing
the network's sensitivity to defect features. Although the-Cardioid activation function emphasizes
the importance of phase, its functional shapes fixed, leading to the following shortcomings:

1) Monotonic Phase Response: 1t always centers.on the positive real axis, making it unable to
adapt to tasks that require focusing on otherphase regions.

2) Lack of Flexibility: It applies the same phase sensitivity pattern to all neurons, limiting the
model's expressive power.

3) Poor Adaptability to Complex Defect Patterns: In actual eddy current signals, anomalies
can manifest as large phase jumps, magnitude reductions, or composite perturbations. A
fixed Cardioid« function' struggles to handle all these cases simultaneously.
Therefore, directly using the original Cardioid is insufficient for high-precision anomaly
detection.

To enhance flexibility, we propose an improved complex cosine activation function. Based on
Cardioid,we introduce a-learnable frequency factor ® and a phase offset ¢. f; denotes the Swish
function, and [} is a trainable parameter, allowing the f}¢armable cardioid t0 have adaptive non-linear
strength adjustment:

14+cos (wB+¢) . (3)

fLearnable cardioid (Z) = 5

X
B0 = e
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Here, o determines the function's sensitivity to phase changes. When o > 1, the function oscillates
more frequently within [O,g] , making it more sensitive to subtle phase perturbations. When 0’ <@
< 1, the curve is smoother, suitable for modeling overall trends. ¢ shifts the function along the
phase axis, allowing different neurons to focus on different phase regions, thus.creating
differentiated response patterns. After forward propagation, the total classification ertor E-is given
by the difference between the network output and the labels. Assuming the partial derivative of
the classification error E with respect to the output a of f} carnable cardioid 1S

0F __OE . 0E
da ~ oR@) "’ 93(a)

Then, according to the complex chain rule and Equation (2), the partial derivative of E with respect
to the input zof fLearnable cardioid is:

0F  0E  oF
2 ~ome) T30
0E  0F 0R(a)\._0F  03(a)
IR~ oR(a) 0R(z) - 93(4) aR(2)
0E 0R(a) OE .y o 0 3(2)
R TR = T @ OB R@)eeso + 35 o
0E 03(a). " OF 3(2)
03(a).0R(2) 03(a) "2 (_fs |z|?
OB~ “9E R E 93(a)
337 IR@ 3@ T 93@) 3%
OE" 9%(a) \OE 1 K@)

(@) 95(2) - @ 2 SAREIs o

0E 03(a)  OE gL R
33(a) 33(2) ~ 33(a )(_fs (S8(2) +5 fs(J(Z))COS —5((@)sin BE

Where |z| represents.the amplitude of the input complex number and f;' is the derivative of f;.

xp
+
1+eBx 14+e B

f'(x) = (1- )

1+ e Bx

It can be‘observed that the composite structure of fj ¢arnable cardioid 18 fully differentiable, and this
differentiability ensures seamless integration into the standard backpropagation framework. The
steepness of the Swish activation curve is controlled by the learnable real-valued parameter 3, and
its gradient is expressed as:
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Based on the above equations, the systematic adjustment of. the  parameter " enables
comprehensive optimization of the activation module, thereby enhancing its-performance. By
making o and ¢ learnable parameters, they are updated along with thenetwork's weights and biases
during training. This allows the network to form a rich combination of nen-linear responses in the
complex plane, achieving a transition from "fixed phase sensitivity" to "adaptive phase
selectivity." It is important to note that after introducing, learnable parameters, the activation
function is no longer Holomorphic. However, we train.the network by separately calculating the
derivatives with respect to the real and imaginary parts, which has.proven to be stable in practice.
Similar approaches have been explored in previous research [42], but with the limited effect of
simple biases. In contrast, our @ and ¢ provide a larger adjustment space, enabling the activation
function to model complex features in a more flexible manner. This improvement is crucial for
enhancing C-TranAD's ability to fit complex patterns.

3.2.3 Multi-scale complex classification head

In anomaly detection tasks, different types of anomalies often exhibit significant differences in
time scales and signal patterns. Some+anomalies are short-lived and bursty, appearing as high-
frequency, small-scale features (e.g., transient pulses or spikes). Others are cumulative and slow-
developing, appearing «as ‘low-frequency, large-scale changes (e.g., gradual signal drift).
Furthermore, in the context of complex signals, an anomaly can manifest as a fluctuation in
amplitude, a shift in phase, or both simultaneously. A single-structured output layer often struggles
to concurrently address anomalies of different scales and feature dimensions.

To tackle this problems-this paper proposes a multi-scale complex classification head, MS-CCH
(Multi-Scale “Complex. Classification Head). This module employs a multi-branch parallel
architecture, where different branches use parameterized complex activation functions to achieve
differential responses in the phase-amplitude space. This allows them to focus separately on high-
frequency transient anomalies, low-frequency gradual anomalies, or amplitude/phase-dominant
anomaly features. Ultimately, the outputs of the various branches are complementarily enhanced
during a fusion stage to achieve unified discrimination of multiple anomaly types. This design
equips the model with multi-scale and multi-modal discriminative capabilities, significantly
improving its robustness and sensitivity in detecting complex anomaly patterns.
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Figure 6. Classification head process

As shown in Figure 6, the classification head first receives the output feature H from the
Transformer decoder and enhances its feature dimensionality through a complex linear projection
layer to obtain a richer representation. Then, thefeatures are fed in parallel into three branch sub-
networks, each designed to model a different feature scale or frequency range. Specifically, each
branch consists of a complex fully connected layer, a learnable complex activation function, and
a complex batch normalization layer. It is“impertant to emphasize that while the activation
functions in the different branches have the same form, their parameters ® and ¢ are set differently.
Although the activation form is the-same, the differential settings of frequency scaling and phase
offset create complementary. selective responses to phase/frequency components. This is
equivalent to implementing three distinct band-pass filters in the complex frequency domain (e.g.,
branch 1 focuses on low-frequency/global trends, branch 2 on mid-frequency structures, and
branch 3 on high-frequency/transient’ perturbations or acts as a linear control to prevent over-
fitting). This mechanism,_ allows/each branch to be sensitive to different phase patterns and
frequency components, thereby<achieving an effect similar to multi-band filtering on the whole.
Additionally, each branch incorporates a complex residual connection after activation, adding the
input feature directly back to the output. This not only helps mitigate the vanishing gradient
problem that can occur(in deep complex networks and improves training stability but also
establishes connections between features at different scales. This design ensures that if a certain
type of anomaly is not prominent in one branch, it is likely to be captured in another, more suitable
branch.

After_processing through the three branches, we obtain three sets of feature representations at
different scales, each containing real and imaginary parts. To get the final anomaly discrimination
result, we employ a strategy that combines feature-level and decision-level fusion. For feature-
level fusion, we concatenate the hidden feature vectors from the second-to-last layer (i.e., before
the'final classification layer) of each branch to form a comprehensive representation. To further
enhance discriminative power, we explicitly add the magnitude and phase of the complex features
during the concatenation process. For instance, for a complex feature, in addition to its real and
imaginary parts, we append its magnitude and phase as additional dimensions. This preserves the
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geometric structure of the complex numbers while providing the classifier with intuitive physical
semantics. For decision-level fusion, we concatenate the real parts and imaginary parts of the three
feature sets separately to obtain the fused complex feature H'. Then, a complex ‘linear
transformation and our Learnable Cardioid activation are applied to the concatenated result for
non-linear refinement and normalization, achieving deep fusion of information across.branches.
This fused feature synthesizes discriminative information from different scales and frequencies;
which can be viewed as a multi-perspective characterization of the original anomaly pattern.
Finally, we concatenate the feature-level and decision-level fusion results againto form a multi-
modal composite feature vector containing real, imaginary, amplitude, and phase components.
This vector is fed into the final classifier to perform a binary classification, outputting the
probability or label of a defect's presence.

The multi-scale complex classification head achieves comprehensive capture of complex anomaly
patterns through its parallel branches and fusion mechanism. On.the one hand, in the time
dimension, branches with different depths or convolutional receptive fields can focus on short-
term bursty anomalies and long-term gradual anomali¢s, ensuring the model has multi-level
sensitivity in the time domain. On the other hand, in terms.of signal properties, the learnable
complex activation functions with different parameter configurations‘allow each branch to form a
differentiated response to magnitude perturbations or phase-shifts, achieving fine-grained
modeling of the multi-dimensional features of complex signals. Based on this, the fusion step
integrates the features extracted by the different branches; ensuring that the final decision is based
on multi-source information and avoiding the omission Of any potential anomaly patterns. It is
worth emphasizing that this structure, with-a negligible increase in computational complexity, can
respond to anomalies regardless of their manifestation (e.g., short pulses, slow drifts, magnitude
spikes, or phase shifts) in the corresponding branches. Furthermore, the multi-branch structure
enhances the system's redundancy and robustness: even if one branch fails or performs poorly in
a specific scenario, the other branches canprovide compensation, thereby improving the stability
of the overall discrimination.

The proposed multi-scale ‘complex classification head significantly enhances C-TranAD's ability
to capture weak anomalies in complex backgrounds—both short-term and long-term anomalies
are addressed in the'time’ dimension;.and both amplitude and phase anomalies are effectively
characterized in_the signal property dimension. From an innovation perspective, our fusion
mechanism for hierarchical activation in the complex domain organically combines learnable
activation functions with a multi-scale structure, opening up a new path for the hierarchical
utilization of complex features. This provides universal reference value and promotional
significance for deep-anemaly detection methods for complex signals.

3.2.4 Design of complex domain anomaly metrics

In traditional.anomaly detection methods, the reconstruction error is typically measured using a
real-valued norm, such as calculating the difference between the predicted signal and the original
signal in a real-valued space. However, for the complex signals obtained from eddy current testing,
this real-valued norm only measures the difference in amplitude, ignoring phase information, and
thus cannot fully reflect the feature shifts caused by anomalies. Considering that defects often
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cause both amplitude attenuation and phase drift, using only a real-valued error can lead o
insufficient discriminative power.

To address this, this paper proposes an amplitude-phase joint complex anomaly measure,
which extends the reconstruction error from a real-valued norm to a complex-domain
consistency measure. Specifically, for a true signal z and a reconstructed signal z, we define:

D(z,2)=a-(1-cos(@—0)) +(1—a) =L @)

r+7+e

Here, r and T represent the amplitudes of the true and reconstructed signals;. respectively; 8 and
B represent their phases; o is a weighting parameter; and € is a small constant to prevent division
by zero. This metric has three notable characteristics. First, it achieves-an amplitude-phase joint
measurement. When calculating the reconstruction error, it simultaneously. considers both
amplitude deviation and phase drift, preventing the omission of-anomaly patterns that a single
metric might miss. Second, it is robust to rotation and scaling. Since the'measure is based on the
relative phase difference and a normalized amplitude difference, it iS insensitive to global signal
rotation or scaling, which better aligns with the physical principles.of eddy current signals. Third,
it embodies physical consistency. Phase differences correspond to the location and nature of a
defect, while amplitude differences reflect the severity of the ‘defect. Combining the two allows
for a more realistic characterization of the signal anomaly. Experimental results show that this
complex anomaly measure effectively improves the stability ‘and robustness of the detection,
especially in high-noise environments, where-it can still accurately distinguish between normal
and abnormal signals, providing a more physically. consistent optimization target for the C-
TranAD model.

3.3 Training Strategies

Constructing an effective complex deep‘model requires not only innovative architectural design
but also appropriate training strategies-and numerical stability handling. C-TranAD employs a
two-stage training process and includes meticulous optimizations for potential numerical issues in
complex computations.

Phase 1: Complex-Domain Adversarial Training (Unsupervised Representation Learning). In the
first phase, . we do not use defect labels. Instead, we learn the complex feature representation of
normal data through an adversarial mechanism. Specifically, we feed the time-series data X from
the training set (primarily normal samples) into the model, and the encoder-decoder outputs the
reconstruction X. The training objective is, on the one hand, to minimize the reconstruction error,
making X as close as possible to the original X. On the other hand, we introduce an adversarial
loss to-enhance the model's sensitivity to abnormal patterns. This is achieved through a focus score
mechanism:.we define a focus score F in the complex domain that considers both the phase and
amplitude differences between the reconstructed and true sequences. The focus score F can be
understood as a geometric distance loss: it takes values in [0,1], and a larger value indicates a more
significant difference between the reconstruction and the original in either phase or amplitude,
suggesting a possible anomaly. We use this focus score for the model's self-regulation and
adversarial training. The approach is to make the model pay more attention to the time points with
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high focus scores (potential anomalies) during training, improving its reconstruction capability for
these points. Simultaneously, an auxiliary discriminator (which can be seen as an internal
adversarial module of the model) tries to identify the abnormal positions in the original sequence
based on the focus score. Even if there are anomalies in the original sequence, the model's
reconstruction should try not to reveal traces of these anomalies, making the focus score difficult
to distinguish. This adversarial training style encourages the model to learn a more robust
representation, preventing it from ignoring anomalies due to local minima in the reconstruction
error. In short, the first training phase equips C-TranAD with the ability to reconstruct normal
patterns in the complex domain. Through the focus score mechanism, it extends adversarial
training to the complex geometric space, teaching the model to simultaneously consider both
amplitude and phase consistency, thus more keenly capturing abnormal-signals.

Phase 2: Classifier Training (Supervised Discriminative Fine-tuning). . After sufficient
unsupervised training, the encoder and decoder of C-TranAD have.learned to effectively model
normal eddy current signals. We then proceed to the second training phase: using labeled data to
train the classification head to output a clear defect detection result: In this phase, we freeze or
partially freeze the parameters of the main model and only-optimize the parameters related to the
classification head (including the branches in the aforementioned multi-scale fusion module and
the final classifier). The training data consists of time-series segments with defect labels, where
we assign a binary label to each input sequence (0=normal, 1=abnormal). The classification head,
based on the feature representation learned in the first phase, outputs a predicted label after multi-
scale extraction and fusion. We use cross-entropy-loss to‘train it. It is worth noting that since the
input features to the classification head come from the‘already-trained complex encoder/decoder
network, they naturally contain comprehensive information about phase and amplitude, as well as
a memory of the normal pattern. Therefore, even with-a small number of labels, the classification
training can converge quickly and further enhance the model's sensitivity to anomalies, achieving
end-to-end defect detection. .The “two-stage. training strategy combines the advantages of
unsupervised representation learning and-supervised fine-tuning: the first stage provides a reliable
feature extraction foundation, while the second stage optimizes for the specific detection task,
greatly improving the final.discriminative performance.

4. Experimental results and comparison

4.1 Experimental setup

We conducted evaluations.using our self-built multi-frequency, multi-channel eddy current testing
dataset from nuclear power plant steam generator tubes (SGT-ECT-13C5F). The data was
collected during ECT inspections of steam generator tubes during a shutdown and maintenance
period: It is recorded as complex impedance time-series (real/imaginary parts) with corresponding
defect annotations. The dataset includes both actual in-service damage and simulated defects
introduced through manufacturing processes. The signals cover multiple frequencies and channels.
Normal regions present as smooth, closed-loop trajectories on the complex plane, while passing
through a defect results in sudden amplitude changes or phase jumps. To ensure sample
consistency, the long raw sequences were normalized and lightly denoised, then segmented into
fixed-length sub-sequences using a sliding window with moderate overlap. The window
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boundaries were aligned with file/label boundaries to avoid context mixing. The training set
consists solely of defect-free windows to learn the normal pattern, while the test set contains both
defect windows and their labels for evaluation.

The compared methods are consistent with the figures and tables, covering the traditional rule-
based method Rule-ECT, the unsupervised machine learning method One-Class ‘SVM, the
complex-domain deep learning models CV-FCNN and CV-CNN, the original TranAD model-in
the real domain (TranAD-Real), and the proposed C-TranAD (complex domain). Except for the
explicitly labeled supervised baselines, all methods were trained in an unsupervised manner, with
the anomaly score threshold selected on a validation set. For models that/directly output a defect
probability, a fixed threshold was used for binarization. The experiments:were conducted on a
single machine with dual NVIDIA RTX 4090 GPUs (24 GB x 2), unified under PyTorch+CUDA
for acceleration. The AdamW optimizer was used, along with a simple step-wise. learning rate
decay and early stopping strategy. The window length was fixed (e.g.; 10);.and the batch size was
matched to the model complexity (larger for Transformer series; moderate for CNN/RNN models).
Other training details were kept consistent to ensure fair comparison.

For evaluation, we uniformly used four metrics: Precision, Recall; F1-Score, and AUC, with
abnormal samples treated as the positive class. All results were reported as mean + standard
deviation over multiple random seeds. The setup described above, along with the subsequent tables
and visualizations, is strictly followed without introducing any additional post-processing or
threshold tuning.

4.2 Experimental Result Analysis

4.2.1 Comparative Analysis

The C-TranAD model is trained.on-a proprietary multi-frequency eddy current defect detection
dataset, SGT-ECT-13CS5F, using 5-fold eross-validation. The training process involves end-to-end
complex-domain modeling, which preserves the amplitude-phase coupled features of the eddy
current signals, and incorporates learnable complex activation functions and a hierarchical
classification mechanism. As shown .in Figure 7, to evaluate the model's performance in
multivariable time-series anoemaly. detection, a range of metrics were computed, including
classification boundaries, data distribution, ROC curves, classification score distributions, F1
score analysis, performance metric summaries, confusion matrices, and feature importance.
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Figure 7. Performance of the model

To validate the performance of our model, we conducted a comparative experiment between the
proposed C-TranAD and several baseline methods. These baselines include the traditional method
Rule-ECT based on manual rules, the unsupervised machine learning method One-Class SVM, the
complex-domain deep learning models CV-FCNN and CV-CNN, the original TranAD model in

the real domain (TranAD-Real), and our proposed complex-domain model C-TranAD. Table 1
summarizes the average performance metrics of each model on the simulated dataset.

Tablel The comparison results of the compared approaches on our dataset
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Method Precision(%) Recall(%) F1(%) AUC(%)
Rule-ECT(rules, in-

use) 84.561+523 85.24+235 84.90+383 N/A

One-Class SVM 79.23 4264 81.35+3.24 80.28+279  84.0212118
CV-FCNN 89.73+3.62 85.76+2.41 87.70+296 88511272
CV-CNN 91.65+2.3 87.44 1233 89.50+237+,.90.92+42 16
TranAD-Real 96.11+221 72.5614.24 82.69:320 84.584+3.69
C-TranAD(ours) 92.86+1.26 96.74+221 94761165 94.65:+1.97

As seen in Table 1, the performance of traditional and real-domain-models is significantly lower
than that of complex-domain deep learning models. C-TranAD demonstrates the best overall
performance across all metrics, highlighting the superiority of the proposed method. Particularly
in terms of the balance between Precision and Recall; C-TranAD-achieves an F1-Score 0of 94.76%,
which is about 5 percentage points higher than the next best, CV-CNN. At the same time, its recall
rate reaches 96.74%, significantly outperforming other methods.

This indicates that C-TranAD can detect almost all defects (extremely low missed detection rate)
while maintaining a very low false alarmtate. In contrast, although TranAD-Real has the highest
precision (Precision=96.11%), its_recall rate’is only 72.56%. This suggests that the original
TranAD architecture suffers from a severe missed detection problem when using only real-valued
features, failing to generalize to detect diverse defect patterns.

Furthermore, traditional methods like One-Class SVM perform the worst on all metrics (F1 approx.
80%, AUC approx. 84:02%), reflecting the limited capability of such models to capture the
complex characteristics of eddy current'signals, resulting in high rates of both missed and false
detections. In comparison, complex-domain deep neural networks like CV-FCNN and CV-CNN,
by incorporating both amplitude and phase information, achieve better performance than real-
domain models (F1 scotes of*87.70% and 89.50%, respectively). It is noteworthy that the
performance of “CV-CNN s already close to that of TranAD-Real, indicating that using
convolutional'models on complex signals can, to some extent, compensate for the deficiencies of
the Transformer architecture. However, C-TranAD builds upon this and further significantly
improves ‘both precision and recall, demonstrating that combining the Transformer architecture
with full complex-domain modeling can more thoroughly exploit signal features, thus achieving
optimal defect detection performance.

In conclusion; C-TranAD exhibits excellent generalization ability and robustness. Whether it is

thestable detection of various types of defects or the small performance variance across different
experimental runs, it demonstrates significant advantages over other methods.

22/31



4.2.2 Ablation Study Analysis

We designed an ablation study around the key components of C-TranAD to evaluate the impact-of
each module—the activation function, classification head, and distance metric—on the model's
performance. Specifically, we tested the following four model variants: C-TranAD-SepLReLU,
C-TranAD-Cardioid, C-TranAD-MLP, and C-TranAD-MSE. The results for Precision, Recall, F 1,
and AUC are summarized in Table 2.

Table2 The results of Ablation Experiments on C-TranAD Components

Method Precision(%) Recall(%) E1(%) AUC(%)
C-TranAD-

Sepi?{leLU 92.78+1.69 77.67+3.94 84.56+2050 85.81+1.22
C-TranAD-

Caré’j‘; q 91.65+226 81.86:1.58 8784421 | 88.141265
C-TranAD-MLP 93.65+2.11 82.32 1104 87.62+138 88.37+32
C-TranAD-MSE 92.3610.88 85.1115466 89.0513.21 89.53¢2_86
C-TranAD(ours) 92.86+1.26 96.744221 94. 761165 94.65+1.97

The results from the ablation study in Table 2 show that removing any of the modifications leads
to a performance drop to varying deégrees, indicating that each component's design plays a key role
in enhancing the model's final performance. Specifically, the C-TranAD-SepLReLU variant,
which uses separate activation functions’ for the real and imaginary parts, fails to capture the
coupling between them, causing the model's recall to plummet to 77.67% and the F1 score to only
84.56%. This demonstrates. that removing the complex-domain Cardioid activation function
severely weakens the.model's ability to detect subtle phase anomalies. The C-TranAD-Cardioid
variant, which uses a/ fixed-parameter Cardioid activation, shows a slight improvement over
SepLReLU, butdue to the lack of adaptive parameter tuning, its F1 score is still about 7 percentage
points lower than the original model. Replacing the classification head with a single-branch MLP
in the C-TranAD-MLP variant also results in a significant performance drop (F1 drops to 87.62%)
due to the lack of hierarchical discriminative capability for amplitude and phase information.
Finally, the C-TranAD-MSE variant, which uses the traditional MSE distance as the anomaly
criterion, achieves.an F1 of 89.05%, but this is still about 5 percentage points lower than the
original model;.indicating that the complex-domain anomaly metric designed in this paper is
effective in improving detection accuracy and robustness.

As shown in Figure 8, the original C-TranAD (Fig 8(a)) clearly separates normal and abnormal
samples in the feature space, with the decision boundary almost perfectly dividing the two classes.
Correspondingly, in the score distribution histogram, the score ranges for normal and abnormal
samples have almost no overlap (mean score for normal samples is approx. 0.148, while for
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abnormal samples it is 0.797), indicating that the model has extremely high confidence in its defz tb

detection results, with almost no missed or false detections. @
In contrast, C-TranAD-SepLReLU (Fig 8(b)), which uses separate real/imaginary ion
functions, shows some overlap between normal and abnormal samples in the t-SN . 0r9/

—
abnormal points are mixed in with the normal sample cluster, forcing the mod ecisioA
boundary to compromise between the two classes, leading to an increase in missed.detections: This \

is also reflected in the score distribution: the predicted scores for abnormal samples

sufficiently concentrated (mean is only 0.718), with some abnormal samples having scor &t

fall into the range of normal samples, ultimately causing a significant dro@ call.
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For C-TranAD-Cardioid (Fig 8(c)) using a fixed Cardioid activation, the problem of abnormal
samples being too close to normal ones is also observed..However, compated to SepLReLU, the
Cardioid activation retains some phase sensitivity, so the separation between the abnormal and
normal clusters is slightly better, although a few abnormal samples (purple triangles) are still near
the decision boundary. The fixed activation function cannot adaptively adjust based on data
features, leading to insufficient discriminative, ability” for /samples near the boundary, which
ultimately results in a certain degree of performance loss.

For the final variant, C-TranAD-MSE (Fig'8(d)), the visualization shows that the normal and
abnormal samples are generally well-separated, with most abnormal points correctly classified
outside the decision boundary. However, a few abnormal samples (purple triangles) are still close
to the normal sample cluster and are not.identified by the model. This is consistent with its score
distribution: although the average score for abnormal samples is high at 0.816, and for normal
samples is only 0.069, the distribution_of abnormal scores shows a certain degree of spread,
indicating that the model lacks confidence'in discriminating a few anomalies. Overall, the model
using the MSE distance metric can provide high anomaly scores for easily detectable significant
anomalies, comparable to the original model, but it is less sensitive to subtle anomalies near the
boundary, leading to a lower recall.rate compared to the original model.

This visual comparison clearly shows that each of the proposed improvement modules (learnable
complex activation functions, ‘hierarchical classification head, and complex-domain anomaly
measure)-is. indispensable for/enhancing the model's discriminative ability and robustness. Only
the complete C-TranAD model can form a clear and reliable separation between normal and
abnormal‘'samples in the feature space, ultimately achieving optimal defect detection performance.

5. Analysis and Discussion

The core of this work lies in fully exploiting the joint amplitude-phase features of eddy current
signals and enhancing defect detection performance through complex-domain modeling. Both
experimental and theoretical analyses show that the complex-domain method has the following
significant advantages over traditional real-domain methods.
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First, in terms of geometric modeling capability, the response of normal samples in eddy current
inspection typically forms a stable, closed trajectory in the complex plane, while defects cause
distortions or shifts in this trajectory. Traditional real-valued methods often project the signal onto
a single amplitude or phase channel, making it difficult to preserve the complete trajectory shape.
In contrast, complex networks can directly represent and identify the geometric changes of the
trajectory in the two-dimensional complex plane, thus avoiding the loss of detailed informations
The C-TranAD proposed in this paper further uses the phase angle as a modulating signal, making
the network more sensitive to changes in the trajectory's direction. Thus, even if'some defects
primarily manifest as phase shifts with minor amplitude changes, the model ‘cansstill amplify and
identify them through phase-cosine modulation. For defects dominated by amplitude spikes, the
activation function dynamically scales the output during rapid phase-changes, achieving sharp
detection in the amplitude channel. It is evident that the cooperative sensing mechanism of
amplitude and phase gives C-TranAD excellent adaptability to various:typesof defects, which is
difficult for real-valued models to achieve.

Second, in terms of multi-scale feature representation.and ‘interpretability, the hierarchical
activation and classification fusion mechanism proposed-inthis paper endows the model with
frequency-division and hierarchical capabilities. This. design can'be analogized to the manual
analysis of eddy current signals: engineers typically. examine-both amplitude and phase curves
simultaneously and make judgments based on information from different filter scales. Our multi-
branch structure and multi-modal fusion automatically achieve this process: the learnable complex
Cardioid activation functions with different parameters act'as frequency selectors, with each
branch focusing on a specific spectral pattern. Residual connections and feature fusion ensure a
balance between global and local information. Explicitly separating amplitude and phase features
at the classification head stage makes the decision process closer to physical intuition. It is
noteworthy that this mechanism also improves the model's interpretability: for example, for crack-
like defects mainly characterized by-phase.perturbations, the model primarily relies on the high
response of the phase branch fordetection; for deep-hole defects causing a sharp drop in amplitude,
it relies more on the amplitude branch. These phenomena fully validate the effectiveness of the
complex-domain hierarchical mechanism.

Finally, from the. perspective ‘of the synergistic action of the activation function and the
classification head, its significant effect can be understood on two levels: at a micro level, the
learnable complex Cardioid activation function makes each neuron sensitive to phase changes,
enhancing ~the quality of the low-level representation; at a macro level, the multi-scale
classification head organizes 'and integrates these phase-sensitive representations, enabling the
model to perform joint'discrimination from different scales and modalities. The combination of
these two achieves a bottom-up progressive optimization: low-level features progressively refine
discriminative'phase characteristics, and high-level multi-scale fusion forms a robust decision.
This design philosophy enables C-TranAD to simultaneously capture local detail anomalies and
global pattern shifts in complex eddy current backgrounds, and the experimental results have
proven' the significant advantages and universal potential of this complex-domain hierarchical
activationand classification fusion.
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6. Conclusion

In the research, we propose C-TranAD, a complex-domain deep anomaly detection model for eddy
current non-destructive testing. Based on the existing TranAD framework, this method is the first
to systematically extend it to the complex domain, achieving end-to-end modeling of amplitude-
phase information and avoiding the information loss and complex manual feature extraction of
traditional methods. To further enhance the model's expressive power, this paper innovatively
introduces a parameter-learnable complex Cardioid activation function, endowing the.network
with a phase-driven adaptive non-linear mapping capability. It also designs'a multi-scale.complex
classification head (V2), which, through parallel branches and a fusion mechanism,achieves a
hierarchical characterization of amplitude and phase anomalies, constructing a-novel complex-
domain hierarchical activation-classification fusion mechanism.

Experiments on actual eddy current inspection data show that C-TranAD significantly outperforms
the real-domain TranAD and various baseline methods in terms_of detection accuracy and
robustness. It maintains stable performance even in_complex -backgrounds and high-noise
conditions. For challenging micro-defects, the model achieves near-zero missed detections while
significantly reducing the false alarm rate, demonstrating outstanding  engineering application
value. Thanks to its lightweight design with only afew Transformerlayers, C-TranAD's inference
speed meets the real-time detection needs of industrial sites; effectively reducing the burden of
manual review. From a theoretical perspective, C-TranAD organically combines the physical
characteristics of complex signals (amplitude and phase). with deep learning architectures,
providing a universal paradigm for complex-domain’deep anomaly detection and a feasible path
for the efficient utilization of phase information. In'terms of engineering value, this method offers
a practical solution for high-precision, low-false-alarm defect identification in eddy current NDT.

Future work can be extended in the following directions: First, expand the application scenarios
by promoting the method to other typical complex signal anomaly detection tasks such as acoustic
ultrasound, radar, and seismic explotation to verify its universality. Second, improve model
efficiency by exploring.more lightweight complex network structures or model compression
strategies to meet the deployment requirements of resource-constrained devices. Third, deepen the
theoretical research by systematically analyzing the mechanism of complex activation functions,
studying the influence of parameters on the model's spectral response, and the convergence of
complex adversarial training. Fourth, integrate physical priors by attempting to incorporate
physical models‘of eddy-current inspection or finite element simulation results into the network
design and loss function to further enhance the model's interpretability and reliability.

In/summary, the work in this paper not only achieves a breakthrough in the methodology of
complex-domain-end-to-end anomaly detection but also verifies its excellent performance and
engineering practicality through experiments, marking a key step forward for the application of
complex deep learning in non-destructive testing and the broader field of signal processing.
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