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武汉爱莎⽂华⾼级中学 

Finder.liao26@isawuhan.com 

摘要 

涡流检测是较为常用的工业结构健康检测方法，传统上依赖人工分析检测信号以判定

缺陷位置与类型。然而，该方法不仅过程复杂、准确率有限，而且结果高度依赖专家经验。

近年来，深度学习方法被引入涡流信号分析，显著提升了检测的自动化水平。但涡流信号

本质上为复数形式，包含幅值与相位双重信息，而现有大多数深度学习模型仍基于实数域

建模，仅利用幅值或经手工提取的特征，难以充分利用多频率涡流信号中的信息。针对上

述问题，本文提出了一种新型复数域时序异常检测网络—C-TranAD（Complex-valued 
Transformer-based Anomaly Detection）。该方法全面扩展至复数域，能够端到端地处理多
频率涡流信号，避免了特征丢失与信息冗余，其主要创新包括： 

1. 构建高质量涡流缺陷检测数据集：构建专有涡流缺陷检测数据集 SGT-ECT-13C5F，保
留复数幅相特征并涵盖典型缺陷模式，为模型训练与评估提供可靠基准。 

2. 复数域端到端建模：首次将 TranAD 系统性扩展至复数域，实现对涡流信号的端到端
表征，完整保留幅值—相位耦合特征，并在多频率场景下提升缺陷模式刻画能力。 

3. 可学习复数激活函数与分层分类机制：提出可学习的复数激活函数与分层分类机制，
通过自适应非线性调节与多分支层次化表征，既保证了度量方式符合涡流物理机理并

具备鲁棒性，又显著提升了模型对细微相位扰动与复杂缺陷模式的敏感性。 

本文在自建多频率涡流缺陷数据集上进行了系统实验，结果表明 C-TranAD 准确率高
达 96%，在检测准确率、召回率及鲁棒性方面均显著优于实数域 TranAD 及其他主流方法。
该研究为复数域深度学习在涡流检测中的应用提供了新的思路，并为多频率信号下的缺陷

识别奠定了方法学基础。 

关键词：TranAD，复数神经网络，涡流缺陷检测，复数域激活函数 
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Abstract 

Eddy current testing (ECT) is a widely used method for industrial structural health monitoring. 
Traditionally, it relies on manual interpretation of detection signals to identify the location and 
type of defects. However, this process is complex, has limited accuracy, and heavily depends on 
expert experience. In recent years, deep learning has been applied to ECT signal analysis, greatly 
improving the level of automation. Nevertheless, ECT signals are inherently complex-valued, 
containing both amplitude and phase information. Most existing deep learning models are real-
valued, exploiting only amplitudes or hand-crafted features, which limits their ability to fully 
utilize the rich information in multi-frequency ECT signals. 
To address this challenge, we propose C-TranAD (Complex-valued Transformer-based Anomaly 
Detection), a novel time-series anomaly detection network in the complex domain. C-TranAD 
enables end-to-end processing of multi-frequency ECT signals, avoiding feature loss and 
information redundancy. Its main contributions are as follows: 

1. High-quality ECT defect dataset: We construct a proprietary dataset, SGT-ECT-13C5F, 
that preserves complex amplitude–phase features and covers typical defect patterns, 
providing a reliable benchmark for model training and evaluation. 

2. End-to-end complex-domain modeling: We extend TranAD into the complex domain for 
the first time, achieving end-to-end representation of ECT signals. This design fully 
preserves coupled amplitude–phase features and improves the characterization of defect 
patterns in multi-frequency scenarios. 

3. Learnable complex activation and hierarchical classification: We introduce learnable 
complex activation functions and a hierarchical classification mechanism. Through 
adaptive nonlinearity and multi-branch hierarchical representations, this approach ensures 
physical consistency with ECT principles, enhances robustness, and improves sensitivity 
to subtle phase variations and complex defect patterns. 

Extensive experiments on our multi-frequency ECT dataset demonstrate that C-TranAD achieves 
an accuracy of up to 96%, significantly outperforming real-valued TranAD and other mainstream 
methods in terms of detection accuracy, recall, and robustness. This work provides new insights 
into the application of complex-valued deep learning to ECT and establishes a methodological 
foundation for defect identification in multi-frequency settings. 

Keywords: TranAD, Complex-valued Neural Network, Eddy Current Testing, complex domain 
activation function 20
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1. Introduction 
Nuclear energy serves as a highly efficient and clean energy source, holding a significant position 
in the global energy structure [1]. As shown in Figure 1, the heat transfer tube bundle within a 
steam generator acts as a critical barrier between the primary and secondary circuits of a reactor. 
Its structural integrity is directly related to the containment of radioactive materials, the operational 
safety of the power plant, and the efficiency of energy conversion [2]. However, under long-term 
exposure to complex conditions such as high temperature, high pressure, fluid erosion, and 
corrosion, the heat transfer tubes are highly susceptible to defects like cracks and thinning [3]. 
Once a defect destabilizes and propagates, it can lead to severe radioactive leakage incidents with 
catastrophic consequences. Therefore, conducting regular, efficient, and precise in-service 
inspections to promptly identify and evaluate heat transfer tube defects is an essential measure to 
ensure the safe and reliable operation of nuclear power plants [4]. 

 

Figure 1. Typical heat exchanger: nuclear power plant steam generator 

In this process, complex signal processing plays a crucial role. As a key direction in modern signal 
and information processing, complex-domain methods are widely applied in fields such as 
communications, energy, medical imaging, and structural health monitoring. Their core value lies 
in the ability to simultaneously represent both amplitude and phase, thereby more completely 
characterizing the dynamic properties of a physical system. For the eddy current inspection of 
steam generator heat transfer tubes, the impedance signal naturally exists in a complex form, where 
the coupled changes in amplitude and phase directly reflect the material's internal structural state 
and potential defects. Among the various non-destructive testing (NDT) techniques, Eddy Current 
Testing (ECT) has become the preferred method for in-service inspection of steam generators and 
various heat exchangers due to its high sensitivity, high detection speed, and non-contact nature 
[5, 6]. This technique works by inducing an eddy current in a conductive tube using a probe coil 
and then identifying defects by measuring changes in the complex impedance of the probe coil 
caused by these defects. The resulting complex signal contains rich amplitude and phase 
information, which is a critical basis for assessing the integrity of the tube wall [7,8,9]. Therefore, 
eddy current testing has become the most practical and scientifically significant inspection method 
for steam generator tubes in nuclear power plants, and improvements in its signal analysis and 
processing methods are of great importance for enhancing defect identification accuracy and 20
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ensuring the operational safety of nuclear power plants [10]. However, due to the diversity of 
nuclear power plant types in China, different heat exchangers exhibit significant variations in heat 
transfer tube materials, manufacturing processes, and structural features [11]. Coupled with 
complex operating conditions and high-risk inspection environments, the processing and analysis 
of eddy current signals face immense challenges. 

 

Figure 2. Typical multi-channel eddy current signal diagram of a heat exchanger heat transfer tube 

As shown in Figure 2, detection signals are often accompanied by strong field noise [12] and are 
interfered with by structural factors such as tube sheets, support plates, tube expansions, and bends, 
which can mask defect signatures [13, 115]. The current signal interpretation still relies on 
experienced professionals [16], who must manually identify faint defect signals. This method is 
not only inefficient and costly but is also often influenced by subjective factors. Concurrently, with 
the advancement of signal acquisition technology, the rate of data acquisition has increased 
exponentially, but manual analysis can no longer match this in terms of speed and accuracy, failing 
to meet current inspection demands. 

To resolve this contradiction, researchers have begun to explore the introduction of deep learning 
methods to achieve automated analysis of eddy current signals [17, 18]. In recent years, deep 
learning has offered new avenues for the intelligent analysis of eddy current signals. However, 
existing methods still face two main limitations. First, in terms of task modeling, most methods 
simplify eddy current inspection into a supervised classification problem, training models to 
identify "a specific type of defect" versus "no defect"[19]. This approach not only relies on a large 
amount of diverse labeled data but also has poor generalization capabilities for new or rare defects 
not seen during training[20]. Second, regarding signal representation, current methods commonly 
split the complex impedance signal into two independent real-valued channels—real and 
imaginary parts—for processing. This practice disrupts the intrinsic structure of the complex signal, 
particularly neglecting the phase angle feature. Phase information is crucial for distinguishing 
between defects and structural interferences like tube sheets and support plates; its loss severely 
compromises the model's detection accuracy. 20
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Figure 3 C-TranAD model structure 

Based on the issues described, this paper introduces a completely new defect detection paradigm. 
Instead of directly modeling the task as a classification problem, we redefine it as a reconstruction-
based anomaly detection problem. The core idea is to leverage the powerful sequence modeling 
and representation capabilities [21] of a model to learn only the intrinsic patterns of "defect-free" 
normal eddy current signals and use this knowledge to accurately reconstruct them. As illustrated 
in Figure 3, during the training phase, the model is exposed only to normal eddy current signals, 
gradually capturing their coupled amplitude and phase characteristics to form a generator that 
highly fits the normal patterns. During the detection phase, when a new eddy current signal is input, 
the model attempts to reconstruct it based on the learned normal patterns. If the input signal is 
indeed defect-free, the original and reconstructed signals will be highly similar, resulting in a 
minimal reconstruction error. If a defect is present, its amplitude and phase characteristics will 
deviate from the learned patterns, producing a significant reconstruction error. By setting an 
appropriate threshold, we can determine the presence of a defect based on the magnitude of this 
error. Building upon this foundation, the C-TranAD model proposed in this paper further achieves 
end-to-end modeling in the full complex domain, avoiding the structural information loss caused 
by splitting complex signals into real/imaginary channels in traditional methods. Specifically, we 
have incorporated learnable complex activation functions, a complex-domain anomaly measure, 
and a hierarchical classification mechanism into the architecture. This allows the model to 
simultaneously capture and amplify subtle fluctuations in both amplitude and phase during the 
reconstruction process. This design not only preserves the geometric integrity of the eddy current 
signal in the complex plane but also endows the model with stronger hierarchical discrimination 
and anomaly amplification capabilities, enabling it to exhibit higher sensitivity to small phase 
perturbations caused by defects. The method proposed in this paper has achieved excellent results 
in practical engineering applications. In real-world detection tasks, the model can reach an 
accuracy of 96%, significantly enhancing the reliability of defect identification. Furthermore, due 
to its end-to-end automated processing capability, its detection workflow is simple and efficient, 
making it directly applicable and scalable for industrial field use. 

The main contributions of this paper are: 20
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1) Dataset Construction and Validation: We constructed a proprietary eddy current defect 
detection dataset, my_data, which preserves complex amplitude-phase information while 
covering typical defect patterns. This dataset provides a reliable benchmark for model 
training and evaluation. Experiments have validated that C-TranAD is significantly 
superior to real-valued methods and other mainstream models in terms of accuracy, 
robustness, and false alarm rate control. 

2) End-to-End Modeling in the Complex Domain: We achieved a systematic extension of the 
TranAD model to the complex domain for the first time, proposing the C-TranAD model. 
By preserving and utilizing the amplitude-phase coupling relationship end-to-end, the 
model can more accurately identify defects under multi-frequency conditions, avoiding the 
information loss and feature fragmentation inherent in real-valued methods. This 
significantly enhances the modeling and detection capabilities for complex eddy current 
signals. 

3) Learnable Complex Activation Functions and Hierarchical Classification Mechanism: We 
proposed an improved Cardioid activation function, introducing learnable frequency and 
phase offset parameters to its phase-sensitive base. This allows the network to adaptively 
adjust its non-linear response and output range, enhancing its sensitivity to subtle phase 
perturbations and complex defect patterns. Additionally, we designed a hierarchical 
complex classification head that fuses the results from different activation function 
branches, achieving a hierarchical representation and defect discrimination across multiple 
frequency channels. This mechanism not only aligns with the physical principles of eddy 
current inspection and offers robustness but also further improves the model's 
discriminative ability in complex operating conditions. 

4) Complex-Domain Anomaly Measure Design: We introduced an amplitude-phase joint 
complex distance metric, extending the reconstruction error from a real-valued norm to a 
complex-domain consistency measure. This design considers both amplitude deviation and 
phase drift, is robust to rotation and scaling, better conforms to the physical characteristics 
of eddy current signals, and significantly enhances detection stability. 

2 Related Work 

2.1 Eddy Current Signal Analysis 

Eddy current testing (ECT) is an important non-destructive testing technique. Its signals naturally 
take a complex-valued form (amplitude and phase). In ECT signal analysis, traditional methods 
largely rely on manual feature extraction and interpretation of complex impedance signals. Early 
studies typically extracted geometric features from the impedance plane (Impedance Plane Plot, 
i.e., amplitude–phase Lissajous patterns) [22], such as loop size and angle, and used them as inputs 
to classifiers. These approaches depend heavily on manually designed features, suffer from limited 
information utilization, and struggle to adapt to complex operating conditions. 

With the development of machine learning and deep learning, researchers have gradually 
attempted to transform eddy current signals into alternative representations [17] and then apply 
intelligent algorithms for defect identification. For example, some works convert time-domain or 
frequency-domain signals into time–frequency images, which are then fed into convolutional 20
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neural networks (CNNs) or attention-based models for classification [23, 24]. Miao et al. 
transformed eddy current weld defect signals into time–frequency images and input them to a VGG 
network to achieve defect type recognition [25]. Gao et al. compared ResNet, DenseNet, and 
spatiotemporal self-attention networks on eddy current image data, finding that incorporating 
attention mechanisms can significantly improve recognition accuracy [26]. 

Overall, deep learning methods have gradually been applied to ECT signal processing. However, 
most existing studies still rely on signal transformation and feature engineering, i.e., converting 
raw signals into images or hand-crafted features before modeling. This not only introduces 
additional preprocessing complexity but may also cause information loss and noise amplification, 
limiting the model’s ability to exploit intrinsic signal characteristics. In contrast, end-to-end deep 
learning directly based on raw complex-valued eddy current signals remains relatively 
underexplored. Existing methods often represent complex impedance by separating the real and 
imaginary parts for independent modeling [27], which breaks the intrinsic coupling of the signals 
and fails to fully leverage phase information—a key characteristic. 

2.2 Time-Series Anomaly Detection 

ECT signals are inherently time-series data, making it possible to draw on advances in time-series 
anomaly detection. A large body of research has emerged in this domain. Traditional approaches 
include statistical thresholding, Isolation Forest, One-Class Support Vector Machines (One-Class 
SVM), and autoencoder (AE)–based methods relying on reconstruction errors [28-31]. These 
approaches have achieved certain success in anomaly detection for various sensor data, but they 
generally depend on manual features and perform poorly on high-dimensional multivariate time-
series data. 

In recent years, the rapid progress of deep learning has driven significant advances in time-series 
anomaly detection. Recurrent neural networks (RNNs) and their variants such as LSTMs have 
been widely used to model temporal dependencies [32]. Variational Autoencoders (VAEs) and 
Generative Adversarial Networks (GANs) have also been introduced into generative anomaly 
detection frameworks. 

With the rise of Transformer architectures, their powerful attention mechanisms enable 
simultaneous modeling of both long- and short-term dependencies, offering new opportunities for 
anomaly detection [33]. Among these, TranAD is a representative method [21, 34]. It leverages 
multi-head attention to capture global patterns in time series and incorporates self-conditioning 
training and adversarial training to improve generalization. Furthermore, it employs model-
agnostic meta-learning (MAML) to enhance adaptability in few-shot scenarios. Experimental 
results demonstrate that TranAD significantly outperforms state-of-the-art methods of its time on 
multiple public datasets [21, 34, 35], while also achieving substantial improvements in training 
efficiency. These findings highlight the great potential of Transformer-based deep models in time-
series anomaly detection. 

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



 9 / 31 
 

2.3 Complex-Valued Neural Networks 

Since ECT signals are inherently complex-valued, complex-valued neural networks (CVNNs) 
have become a promising research direction. Research on CVNNs dates back several decades and 
has been explored in fields such as communication signal processing, radar imaging, and magnetic 
resonance imaging (MRI) [36, 37]. The core challenge lies in designing appropriate complex 
operations and activation functions that allow the network to effectively model amplitude–phase 
coupling in complex data. 

Existing complex activation functions can be broadly divided into two categories: one separates 
the real and imaginary parts for independent operations [38] (e.g., applying sigmoid or tanh 
separately), while the other performs unified amplitude–phase mappings [39]. Among these, the 
Cardioid activation function has attracted wide attention due to its unique phase-sensitive 
properties [40]. It preserves the phase of the input while modulating the output amplitude: inputs 
with phases near the negative real axis are strongly suppressed, while those near the positive real 
axis are passed almost unchanged, thereby achieving a ReLU-like nonlinear selectivity. This 
property makes it particularly effective for modeling phase information in complex signals. 

Nevertheless, most studies on CVNNs have focused on signal reconstruction and classification, 
while systematic exploration in time-series anomaly detection remains scarce. At the same time, 
multi-scale modeling has proven effective in computer vision and time-series analysis: multi-
branch architectures can capture information at different spatial scales in vision tasks, while in 
time-series tasks, capturing features across different temporal windows or frequency bands is 
critical for identifying diverse anomaly patterns [41]. This provides new research directions for 
complex-domain time-series anomaly detection. 

2.4 Summary 

In summary, the complex nature of ECT signals makes joint modeling of amplitude and phase 
essential for defect identification. However, existing methods either rely on hand-crafted features 
and signal transformation, with limited information utilization, or employ deep learning in the real 
domain, which disrupts amplitude–phase coupling. Meanwhile, recent advances in time-series 
anomaly detection—particularly Transformer-based approaches—demonstrate strong modeling 
capabilities but have not been tailored to complex-valued signals. CVNNs show great potential for 
modeling complex data, yet the design of activation functions and multi-scale mechanisms for 
anomaly detection tasks remains underexplored. Therefore, there is an urgent need for an end-to-
end time-series anomaly detection approach in the complex domain, one that fully exploits both 
amplitude and phase information while incorporating multi-scale and hierarchical mechanisms to 
meet the practical demands of industrial scenarios such as ECT. 
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3. Methodology 

3.1 Dataset and Preprocessing 

The dataset used in this study was sourced from eddy current inspections of steam generator heat 
transfer tubes conducted during a scheduled refueling outage at a nuclear power plant in China. 
This scenario has significant engineering relevance: various defects can occur during the service 
life of heat transfer tubes, with external wall wear (Wear, WER) being one of the most common 
and high-risk types. WER signals are often complex, potentially causing both amplitude spikes 
and phase shifts, thus imposing high demands on the robustness and sensitivity of anomaly 
detection algorithms. 

The data was collected using the C-Eddy eddy current inspection system, which includes a heat 
transfer tube positioning robot, a probe pusher/puller, an eddy current instrument, and data 
acquisition software. The collection process is as follows: the eddy current instrument generates 
alternating currents at 5 different frequencies, which are time-division multiplexed and applied to 
the probe coil as it moves at a constant speed inside the tube. When the tube is intact, the probe's 
impedance remains stable. If a defect or structural change is present, the impedance will be 
perturbed. The eddy current instrument converts these impedance changes into digital signals via 
an analog-to-digital converter and transmits them to a host computer for storage via the TIP-IP 
protocol. Each heat transfer tube (approximately 20-25 meters long) corresponds to one data file, 
containing 5 detection frequencies and 10 independent channels, plus 3 software-generated 
differential channels, for a total of 13 channels. Each channel contains about 60,000 to 100,000 
complex sample points (real and imaginary parts), recording the impedance changes throughout 
the inspection process. 

To ensure the comparability of signals collected under different conditions, we developed a 
dedicated data conversion and preprocessing module to systematically standardize and calibrate 
the raw signals: 

1) Signal Centering: The signal segment from a defect-free section is shifted to the virtual 
coordinate origin to eliminate DC offset caused by equipment configuration. 

2) Phase Adjustment: As the phase angle is random across different acquisitions, a known 
defect (e.g., an artificial through-hole) is used for uniform calibration. For example, the 
differential channel is adjusted to 40° to ensure consistency between channels. 

3) Amplitude Adjustment: The raw signal amplitude is a relative value, not a physical voltage. 
Therefore, a reference defect (e.g., a through-hole or support plate signal) is used for 
amplitude normalization, setting it to a standard value. 

In the subsequent data preparation stage, we performed mean normalization on the real and 
imaginary parts of the complex signal separately to eliminate deviations caused by workpiece 
differences and probe conditions. A light band-pass filter was applied to remove low-frequency 
drift and high-frequency noise. Finally, a sliding time window was used to segment the long 
sequence into fixed-length segments to maintain temporal and complex feature consistency. The 
final SGT-ECT-13C5F dataset includes several hundred labeled actual defects (mainly WER) and 
a large number of normal samples. The training set consists of defect-free segments for learning 20
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the normal pattern, while the test set contains various types of defective segments, covering 
everything from minor perturbations to significant defects. Although this dataset is not publicly 
available, it is highly representative and engineering-realistic, providing a solid foundation for the 
end-to-end learning and validation of the proposed C-TranAD model in the complex domain. 

3.2 C-TranAD 

3.2.1 C-TranAD overall model architecture 

The C-TranAD model is based on the Transformer encoder-decoder framework of TranAD but 
has been systematically modified for complex data types and operators in its overall 
implementation. The model input is a complex time series of length T, (Z1,Z2,Z3...ZT）where  

𝑍! = 𝑥! + 𝑖𝑦! （1） 

In Equation 1, xₜ and yₜ represent the real and imaginary parts of the signal, respectively. The input 
can be equivalently represented as a two-channel real-valued sequence (real-imaginary), ensuring 
that the model can fully preserve the geometric integrity of the complex signal from the initial 
stage. Subsequently, the input signal undergoes feature modeling and reconstruction learning 
through several stacked complex Transformer encoder-decoder layers. Unlike traditional real-
valued networks, every layer's parameters, weights, and operations in C-TranAD are implemented 
in the complex domain. This allows the model to directly capture the unique amplitude-phase 
coupling patterns of complex signals. Particularly in the design of the non-linear units, we 
introduced complex activation functions to ensure the effective preservation and modulation of 
phase information during forward propagation and feature transformation, significantly enhancing 
the model's sensitivity to subtle phase perturbations caused by defects. 

In the output layer, C-TranAD employs a complex classification head to perform anomaly 
determination at each time point. Specifically, we designed a multi-scale parallel branch structure. 
The classification head consists of several parallel branches, each using a complex cosine 
activation function initialized with different parameters to selectively respond to different 
frequency components and phase shifts of the input features. This design allows the classifier to 
simultaneously focus on global trends and local perturbations at multiple scales, thereby more 
comprehensively distinguishing different types of defect patterns. The features extracted by each 
branch are further combined with a residual mechanism during the fusion stage and enhanced by 
amplitude-phase decomposition to increase feature diversity. Finally, an anomaly score or class 
label is output. The entire model is trained end-to-end. In an unsupervised setting, the complex 
reconstruction error serves as the training objective. To ensure the loss definition is consistent with 
the signal's physical mechanism, we introduced a complex-domain anomaly measure in the model, 
extending the traditional real-valued norm to a complex geometric distance that simultaneously 
considers amplitude and phase differences, thereby guiding parameter updates more accurately 
during backpropagation. 

In summary, the C-TranAD method consists of three core components: 
(1) Complex Transformer Sequence Modeler: Learns the temporal dependencies of eddy current 20
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signals and the complex feature representations of normal patterns. 
(2) Complex Multi-Scale Classification Head: Fuses feature representations at different 
frequencies and phase offsets to output an anomaly score or class label. 
(3) Complex Anomaly Measure: A complex geometric distance defined by the joint error of 
amplitude and phase, used to guide reconstruction and classification optimization. 

Through this design, C-TranAD integrates the strengths of reconstruction-based anomaly detection 
and discriminative classification. It possesses the ability to learn normal patterns in an 
unsupervised manner to discover anomalies, while also using a multi-scale discriminative 
mechanism to achieve direct classification of defects. 

 

Figure 4. C-TranAD: Complex window encoder (Complex LN → Complex MHA → 
Complex LN → Complex FFN (LC)) → dual decoders: Decoder1(LC) → O1; 

Decoder2(LC)+CF → Ō2; MS-CCH (LC) produces anomaly score. Abbr.: LC=learnable 
Cardioid activation; CF=complex focus score; MS-CCH=Multi-Scale Complex(-Valued) 

Classification Head 

3.2.2 Learnable multiple activation functions 

In a complex neural network, the activation function not only performs non-linear transformation 
but also determines whether the model can effectively utilize the coupled amplitude and phase 
characteristics of complex signals. For eddy current inspection tasks, defects often manifest as 
phase shifts or flips. If the model relies solely on real-valued functions (like ReLU, Tanh), phase 
information will be weakened or even lost during propagation, making it difficult to capture 
significant defect features. Therefore, we chose to start with the Cardioid activation function and 
extend and improve it. 

The Cardioid activation function was originally proposed with the goal of directly utilizing the 
phase information of the input in non-linear mapping. Its definition is: 

𝑓"#$%&'&%(𝑧) =
()*+,-

.
· 𝑧 （2） 20
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Figure 5. Graph of the Cardioid activation function 

As shown in Function 2, the output preserves the input phase θ while its magnitude is scaled by a 
factor. Its effect is similar to the non-negative clipping of ReLU in the real domain. Cardioid allows 
the network to automatically emphasize components in the direction of the positive real axis (near 
phase 0) while suppressing components with phase deviation. This mechanism is particularly well-
suited to the physical properties of eddy current signals: defects often cause phase shifts in the 
signal, and the Cardioid activation can naturally respond to these phase shifts, thereby enhancing 
the network's sensitivity to defect features. Although the Cardioid activation function emphasizes 
the importance of phase, its functional shape is fixed, leading to the following shortcomings: 

1) Monotonic Phase Response: It always centers on the positive real axis, making it unable to 
adapt to tasks that require focusing on other phase regions. 

2) Lack of Flexibility: It applies the same phase sensitivity pattern to all neurons, limiting the 
model's expressive power. 

3) Poor Adaptability to Complex Defect Patterns: In actual eddy current signals, anomalies 
can manifest as large phase jumps, magnitude reductions, or composite perturbations. A 
fixed Cardioid function struggles to handle all these cases simultaneously. 
Therefore, directly using the original Cardioid is insufficient for high-precision anomaly 
detection. 

To enhance flexibility, we propose an improved complex cosine activation function. Based on 
Cardioid, we introduce a learnable frequency factor ω and a phase offset φ. 𝑓/ denotes the Swish 
function, and β is a trainable parameter, allowing the  f012342561	*2389+98 to have adaptive non-linear 
strength adjustment: 

 

𝑓:;#$<#=>;	"#$%&'&%(𝑧) =
()"'/（?-)@）

.
· 𝑧 （3） 

𝑓/(𝑥) =
𝑥

1 + 𝑒ABC
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Here, ω determines the function's sensitivity to phase changes. When ω > 1, the function oscillates 
more frequently within [0,D

.
] , making it more sensitive to subtle phase perturbations. When 0 < ω 

< 1, the curve is smoother, suitable for modeling overall trends. φ shifts the function along the 
phase axis, allowing different neurons to focus on different phase regions, thus creating 
differentiated response patterns. After forward propagation, the total classification error E is given 
by the difference between the network output and the labels. Assuming the partial derivative of 
the classification error E with respect to the output a of  f012342561	*2389+98 is  

𝜕𝐸
𝜕𝑎 =

𝜕𝐸
𝜕ℜ(𝑎) + 𝑗

𝜕𝐸
𝜕ℑ(𝑎) 

Then, according to the complex chain rule and Equation (2), the partial derivative of E with respect 
to the input z of f012342561	*2389+98 is: 

 
𝜕𝐸
𝜕𝑧 =

𝜕𝐸
𝜕ℜ(𝑧) + 𝑗

𝜕𝐸
𝜕ℑ(𝑧) 

𝜕𝐸
𝜕ℜ(𝑧) =

𝜕𝐸
𝜕ℜ(𝑎)

𝜕ℜ(𝑎)
𝜕ℜ(𝑧) +

𝜕𝐸
𝜕ℑ(𝑎)

𝜕ℑ(𝑎)
𝜕ℜ(𝑧) 

𝜕𝐸
𝜕ℜ(𝑎)

𝜕ℜ(𝑎)
𝜕ℜ(𝑧) =

𝜕𝐸
𝜕ℜ(𝑎) (

1
2 𝑓/′(ℜ(𝑧)) +

1
2𝑓/′(ℜ(𝑧))𝑐𝑜𝑠𝜃 +

1
2𝑓/(ℜ(𝑧))𝑠𝑖𝑛𝜃

ℑ(𝑧)
|𝑧|. ) 

𝜕𝐸
𝜕ℑ(𝑎)

𝜕ℑ(𝑎)
𝜕ℜ(𝑧) =

𝜕𝐸
𝜕ℑ(𝑎) (

1
2 𝑓/(ℑ(𝑧))𝑠𝑖𝑛𝜃

ℑ(𝑧)
|𝑧|. ) 

𝜕𝐸
𝜕ℑ(𝑧) =

𝜕𝐸
𝜕ℜ(𝑎)

𝜕ℜ(𝑎)
𝜕ℑ(𝑧) +

𝜕𝐸
𝜕ℑ(𝑎)

𝜕ℑ(𝑎)
𝜕ℑ(𝑧) 

𝜕𝐸
𝜕ℜ(𝑎)

𝜕ℜ(𝑎)
𝜕ℑ(𝑧) =

𝜕𝐸
𝜕ℜ(𝑎) (−

1
2𝑓/(ℜ(𝑧))𝑠𝑖𝑛𝜃

ℜ(𝑧)
|𝑧|. ) 

𝜕𝐸
𝜕ℑ(𝑎)

𝜕ℑ(𝑎)
𝜕ℑ(𝑧) =

𝜕𝐸
𝜕ℑ(𝑎) (

1
2 𝑓/′(ℑ(𝑧)) +

1
2𝑓/′(ℑ(𝑧))𝑐𝑜𝑠𝜃 −

1
2𝑓/(ℑ(𝑧))𝑠𝑖𝑛𝜃

ℜ(𝑧)
|𝑧|. ) 

Where |z| represents the amplitude of the input complex number and 𝑓/E	is the derivative of 𝑓/. 

𝑓/′(𝑥) =
1

1 + 𝑒ABC
+

𝑥𝛽
1 + 𝑒ABC

(1 −
1

1 + 𝑒ABC
) 

It can be observed that the composite structure of f012342561	*2389+98 is fully differentiable, and this 
differentiability ensures seamless integration into the standard backpropagation framework. The 
steepness of the Swish activation curve is controlled by the learnable real-valued parameter β, and 
its gradient is expressed as: 
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𝜕𝐸
𝜕𝛽 =

𝜕𝐸
𝜕ℜ(𝑎)

𝜕ℜ(𝑎)
𝜕𝛽 +

𝜕𝐸
𝜕ℑ(𝑎)

𝜕ℑ(𝑎)
𝜕𝛽  

𝜕𝐸
𝜕ℜ(𝑎)

𝜕ℜ(𝑎)
𝜕𝛽 =

𝜕𝐸
𝜕ℜ(𝑎) 𝑓/(ℜ(𝑎))ℜ(𝑎)(1 −

1
1 + 𝑒ABℜ(#)

) 

𝜕𝐸
𝜕ℑ(𝑎)

𝜕ℑ(𝑎)
𝜕𝛽 =

𝜕𝐸
𝜕ℑ(𝑎) 𝑓/(ℑ(𝑎))ℑ(𝑎)(1 −

1
1 + 𝑒ABℑ(#)

) 

 

Based on the above equations, the systematic adjustment of the parameter β enables 
comprehensive optimization of the activation module, thereby enhancing its performance. By 
making ω and φ learnable parameters, they are updated along with the network's weights and biases 
during training. This allows the network to form a rich combination of non-linear responses in the 
complex plane, achieving a transition from "fixed phase sensitivity" to "adaptive phase 
selectivity." It is important to note that after introducing learnable parameters, the activation 
function is no longer Holomorphic. However, we train the network by separately calculating the 
derivatives with respect to the real and imaginary parts, which has proven to be stable in practice. 
Similar approaches have been explored in previous research [42], but with the limited effect of 
simple biases. In contrast, our ω and φ provide a larger adjustment space, enabling the activation 
function to model complex features in a more flexible manner. This improvement is crucial for 
enhancing C-TranAD's ability to fit complex patterns. 

3.2.3 Multi-scale complex classification head 

In anomaly detection tasks, different types of anomalies often exhibit significant differences in 
time scales and signal patterns. Some anomalies are short-lived and bursty, appearing as high-
frequency, small-scale features (e.g., transient pulses or spikes). Others are cumulative and slow-
developing, appearing as low-frequency, large-scale changes (e.g., gradual signal drift). 
Furthermore, in the context of complex signals, an anomaly can manifest as a fluctuation in 
amplitude, a shift in phase, or both simultaneously. A single-structured output layer often struggles 
to concurrently address anomalies of different scales and feature dimensions. 

To tackle this problem, this paper proposes a multi-scale complex classification head, MS-CCH 
(Multi-Scale Complex Classification Head). This module employs a multi-branch parallel 
architecture, where different branches use parameterized complex activation functions to achieve 
differential responses in the phase-amplitude space. This allows them to focus separately on high-
frequency transient anomalies, low-frequency gradual anomalies, or amplitude/phase-dominant 
anomaly features. Ultimately, the outputs of the various branches are complementarily enhanced 
during a fusion stage to achieve unified discrimination of multiple anomaly types. This design 
equips the model with multi-scale and multi-modal discriminative capabilities, significantly 
improving its robustness and sensitivity in detecting complex anomaly patterns. 
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Figure 6. Classification head process 

As shown in Figure 6, the classification head first receives the output feature H from the 
Transformer decoder and enhances its feature dimensionality through a complex linear projection 
layer to obtain a richer representation. Then, the features are fed in parallel into three branch sub-
networks, each designed to model a different feature scale or frequency range. Specifically, each 
branch consists of a complex fully connected layer, a learnable complex activation function, and 
a complex batch normalization layer. It is important to emphasize that while the activation 
functions in the different branches have the same form, their parameters ω and φ are set differently. 
Although the activation form is the same, the differential settings of frequency scaling and phase 
offset create complementary selective responses to phase/frequency components. This is 
equivalent to implementing three distinct band-pass filters in the complex frequency domain (e.g., 
branch 1 focuses on low-frequency/global trends, branch 2 on mid-frequency structures, and 
branch 3 on high-frequency/transient perturbations or acts as a linear control to prevent over-
fitting). This mechanism allows each branch to be sensitive to different phase patterns and 
frequency components, thereby achieving an effect similar to multi-band filtering on the whole. 
Additionally, each branch incorporates a complex residual connection after activation, adding the 
input feature directly back to the output. This not only helps mitigate the vanishing gradient 
problem that can occur in deep complex networks and improves training stability but also 
establishes connections between features at different scales. This design ensures that if a certain 
type of anomaly is not prominent in one branch, it is likely to be captured in another, more suitable 
branch. 

After processing through the three branches, we obtain three sets of feature representations at 
different scales, each containing real and imaginary parts. To get the final anomaly discrimination 
result, we employ a strategy that combines feature-level and decision-level fusion. For feature-
level fusion, we concatenate the hidden feature vectors from the second-to-last layer (i.e., before 
the final classification layer) of each branch to form a comprehensive representation. To further 
enhance discriminative power, we explicitly add the magnitude and phase of the complex features 
during the concatenation process. For instance, for a complex feature, in addition to its real and 
imaginary parts, we append its magnitude and phase as additional dimensions. This preserves the 20
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geometric structure of the complex numbers while providing the classifier with intuitive physical 
semantics. For decision-level fusion, we concatenate the real parts and imaginary parts of the three 
feature sets separately to obtain the fused complex feature H'. Then, a complex linear 
transformation and our Learnable Cardioid activation are applied to the concatenated result for 
non-linear refinement and normalization, achieving deep fusion of information across branches. 
This fused feature synthesizes discriminative information from different scales and frequencies, 
which can be viewed as a multi-perspective characterization of the original anomaly pattern. 
Finally, we concatenate the feature-level and decision-level fusion results again to form a multi-
modal composite feature vector containing real, imaginary, amplitude, and phase components. 
This vector is fed into the final classifier to perform a binary classification, outputting the 
probability or label of a defect's presence. 

The multi-scale complex classification head achieves comprehensive capture of complex anomaly 
patterns through its parallel branches and fusion mechanism. On the one hand, in the time 
dimension, branches with different depths or convolutional receptive fields can focus on short-
term bursty anomalies and long-term gradual anomalies, ensuring the model has multi-level 
sensitivity in the time domain. On the other hand, in terms of signal properties, the learnable 
complex activation functions with different parameter configurations allow each branch to form a 
differentiated response to magnitude perturbations or phase shifts, achieving fine-grained 
modeling of the multi-dimensional features of complex signals. Based on this, the fusion step 
integrates the features extracted by the different branches, ensuring that the final decision is based 
on multi-source information and avoiding the omission of any potential anomaly patterns. It is 
worth emphasizing that this structure, with a negligible increase in computational complexity, can 
respond to anomalies regardless of their manifestation (e.g., short pulses, slow drifts, magnitude 
spikes, or phase shifts) in the corresponding branches. Furthermore, the multi-branch structure 
enhances the system's redundancy and robustness: even if one branch fails or performs poorly in 
a specific scenario, the other branches can provide compensation, thereby improving the stability 
of the overall discrimination. 

The proposed multi-scale complex classification head significantly enhances C-TranAD's ability 
to capture weak anomalies in complex backgrounds—both short-term and long-term anomalies 
are addressed in the time dimension, and both amplitude and phase anomalies are effectively 
characterized in the signal property dimension. From an innovation perspective, our fusion 
mechanism for hierarchical activation in the complex domain organically combines learnable 
activation functions with a multi-scale structure, opening up a new path for the hierarchical 
utilization of complex features. This provides universal reference value and promotional 
significance for deep anomaly detection methods for complex signals. 

3.2.4 Design of complex domain anomaly metrics 

In traditional anomaly detection methods, the reconstruction error is typically measured using a 
real-valued norm, such as calculating the difference between the predicted signal and the original 
signal in a real-valued space. However, for the complex signals obtained from eddy current testing, 
this real-valued norm only measures the difference in amplitude, ignoring phase information, and 
thus cannot fully reflect the feature shifts caused by anomalies. Considering that defects often 20
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cause both amplitude attenuation and phase drift, using only a real-valued error can lead to 
insufficient discriminative power. 

To address this, this paper proposes an amplitude-phase joint complex anomaly measure, 
which extends the reconstruction error from a real-valued norm to a complex-domain 

consistency measure. Specifically, for a true signal z and a reconstructed signal ž, we define: 
𝐷(𝑧, 𝑧̂) = 𝛼 · (1 − 𝑐𝑜𝑠(𝜃 − 𝜃D)) + (1 − 𝛼) · |$A$̂|

$)$̂)L
 (4) 

Here, r and rF represent the amplitudes of the true and reconstructed signals, respectively; θ	and 
θD	represent their phases; α is a weighting parameter; and ϵ is a small constant to prevent division 
by zero. This metric has three notable characteristics. First, it achieves an amplitude-phase joint 
measurement. When calculating the reconstruction error, it simultaneously considers both 
amplitude deviation and phase drift, preventing the omission of anomaly patterns that a single 
metric might miss. Second, it is robust to rotation and scaling. Since the measure is based on the 
relative phase difference and a normalized amplitude difference, it is insensitive to global signal 
rotation or scaling, which better aligns with the physical principles of eddy current signals. Third, 
it embodies physical consistency. Phase differences correspond to the location and nature of a 
defect, while amplitude differences reflect the severity of the defect. Combining the two allows 
for a more realistic characterization of the signal anomaly. Experimental results show that this 
complex anomaly measure effectively improves the stability and robustness of the detection, 
especially in high-noise environments, where it can still accurately distinguish between normal 
and abnormal signals, providing a more physically consistent optimization target for the C-
TranAD model. 

3.3 Training Strategies 

Constructing an effective complex deep model requires not only innovative architectural design 
but also appropriate training strategies and numerical stability handling. C-TranAD employs a 
two-stage training process and includes meticulous optimizations for potential numerical issues in 
complex computations. 

Phase 1: Complex-Domain Adversarial Training (Unsupervised Representation Learning). In the 
first phase, we do not use defect labels. Instead, we learn the complex feature representation of 
normal data through an adversarial mechanism. Specifically, we feed the time-series data X from 
the training set (primarily normal samples) into the model, and the encoder-decoder outputs the 
reconstruction XK. The training objective is, on the one hand, to minimize the reconstruction error, 
making XK as close as possible to the original X. On the other hand, we introduce an adversarial 
loss to enhance the model's sensitivity to abnormal patterns. This is achieved through a focus score 
mechanism: we define a focus score F in the complex domain that considers both the phase and 
amplitude differences between the reconstructed and true sequences. The focus score F can be 
understood as a geometric distance loss: it takes values in [0,1], and a larger value indicates a more 
significant difference between the reconstruction and the original in either phase or amplitude, 
suggesting a possible anomaly. We use this focus score for the model's self-regulation and 
adversarial training. The approach is to make the model pay more attention to the time points with 20
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high focus scores (potential anomalies) during training, improving its reconstruction capability for 
these points. Simultaneously, an auxiliary discriminator (which can be seen as an internal 
adversarial module of the model) tries to identify the abnormal positions in the original sequence 
based on the focus score. Even if there are anomalies in the original sequence, the model's 
reconstruction should try not to reveal traces of these anomalies, making the focus score difficult 
to distinguish. This adversarial training style encourages the model to learn a more robust 
representation, preventing it from ignoring anomalies due to local minima in the reconstruction 
error. In short, the first training phase equips C-TranAD with the ability to reconstruct normal 
patterns in the complex domain. Through the focus score mechanism, it extends adversarial 
training to the complex geometric space, teaching the model to simultaneously consider both 
amplitude and phase consistency, thus more keenly capturing abnormal signals. 

Phase 2: Classifier Training (Supervised Discriminative Fine-tuning). After sufficient 
unsupervised training, the encoder and decoder of C-TranAD have learned to effectively model 
normal eddy current signals. We then proceed to the second training phase: using labeled data to 
train the classification head to output a clear defect detection result. In this phase, we freeze or 
partially freeze the parameters of the main model and only optimize the parameters related to the 
classification head (including the branches in the aforementioned multi-scale fusion module and 
the final classifier). The training data consists of time-series segments with defect labels, where 
we assign a binary label to each input sequence (0=normal, 1=abnormal). The classification head, 
based on the feature representation learned in the first phase, outputs a predicted label after multi-
scale extraction and fusion. We use cross-entropy loss to train it. It is worth noting that since the 
input features to the classification head come from the already-trained complex encoder/decoder 
network, they naturally contain comprehensive information about phase and amplitude, as well as 
a memory of the normal pattern. Therefore, even with a small number of labels, the classification 
training can converge quickly and further enhance the model's sensitivity to anomalies, achieving 
end-to-end defect detection. The two-stage training strategy combines the advantages of 
unsupervised representation learning and supervised fine-tuning: the first stage provides a reliable 
feature extraction foundation, while the second stage optimizes for the specific detection task, 
greatly improving the final discriminative performance. 

4. Experimental results and comparison 

4.1 Experimental setup 

We conducted evaluations using our self-built multi-frequency, multi-channel eddy current testing 
dataset from nuclear power plant steam generator tubes (SGT-ECT-13C5F). The data was 
collected during ECT inspections of steam generator tubes during a shutdown and maintenance 
period. It is recorded as complex impedance time-series (real/imaginary parts) with corresponding 
defect annotations. The dataset includes both actual in-service damage and simulated defects 
introduced through manufacturing processes. The signals cover multiple frequencies and channels. 
Normal regions present as smooth, closed-loop trajectories on the complex plane, while passing 
through a defect results in sudden amplitude changes or phase jumps. To ensure sample 
consistency, the long raw sequences were normalized and lightly denoised, then segmented into 
fixed-length sub-sequences using a sliding window with moderate overlap. The window 20
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boundaries were aligned with file/label boundaries to avoid context mixing. The training set 
consists solely of defect-free windows to learn the normal pattern, while the test set contains both 
defect windows and their labels for evaluation. 

The compared methods are consistent with the figures and tables, covering the traditional rule-
based method Rule-ECT, the unsupervised machine learning method One-Class SVM, the 
complex-domain deep learning models CV-FCNN and CV-CNN, the original TranAD model in 
the real domain (TranAD-Real), and the proposed C-TranAD (complex domain). Except for the 
explicitly labeled supervised baselines, all methods were trained in an unsupervised manner, with 
the anomaly score threshold selected on a validation set. For models that directly output a defect 
probability, a fixed threshold was used for binarization. The experiments were conducted on a 
single machine with dual NVIDIA RTX 4090 GPUs (24 GB × 2), unified under PyTorch+CUDA 
for acceleration. The AdamW optimizer was used, along with a simple step-wise learning rate 
decay and early stopping strategy. The window length was fixed (e.g., 10), and the batch size was 
matched to the model complexity (larger for Transformer series, moderate for CNN/RNN models). 
Other training details were kept consistent to ensure fair comparison. 

For evaluation, we uniformly used four metrics: Precision, Recall, F1-Score, and AUC, with 
abnormal samples treated as the positive class. All results were reported as mean ± standard 
deviation over multiple random seeds. The setup described above, along with the subsequent tables 
and visualizations, is strictly followed without introducing any additional post-processing or 
threshold tuning. 

4.2 Experimental Result Analysis 

4.2.1 Comparative Analysis 
The C-TranAD model is trained on a proprietary multi-frequency eddy current defect detection 
dataset, SGT-ECT-13C5F, using 5-fold cross-validation. The training process involves end-to-end 
complex-domain modeling, which preserves the amplitude-phase coupled features of the eddy 
current signals, and incorporates learnable complex activation functions and a hierarchical 
classification mechanism. As shown in Figure 7, to evaluate the model's performance in 
multivariable time-series anomaly detection, a range of metrics were computed, including 
classification boundaries, data distribution, ROC curves, classification score distributions, F1 
score analysis, performance metric summaries, confusion matrices, and feature importance. 
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(a) Confusion matrix 

 
(b) Overall Results 

Figure 7. Performance of the model 

To validate the performance of our model, we conducted a comparative experiment between the 
proposed C-TranAD and several baseline methods. These baselines include the traditional method 
Rule-ECT based on manual rules, the unsupervised machine learning method One-Class SVM, the 
complex-domain deep learning models CV-FCNN and CV-CNN, the original TranAD model in 
the real domain (TranAD-Real), and our proposed complex-domain model C-TranAD. Table 1 
summarizes the average performance metrics of each model on the simulated dataset. 

Table1 The comparison results of the compared approaches on our dataset 20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



 22 / 31 
 

Method Precision(%) Recall(%) F1(%) AUC(%) 

Rule-ECT(rules, in-
use) 84.56±5.23 85.24±2.35 84.90±3.83 N/A 

One-Class SVM 79.23±2.64 81.35±3.24 80.28±2.79 84.02±2.18 

CV-FCNN 89.73±3.62 85.76±2.41 87.70±2.96 88.51±2.72 

CV-CNN 91.65±2.83 87.44±2.33 89.50±2.37 90.92±2.16 

TranAD-Real 96.11±2.21 72.56±4.24 82.69±3.20 84.58±3.69 

C-TranAD(ours) 92.86±1.26 96.74±2.21 94.76±1.65 94.65±1.97 

As seen in Table 1, the performance of traditional and real-domain models is significantly lower 
than that of complex-domain deep learning models. C-TranAD demonstrates the best overall 
performance across all metrics, highlighting the superiority of the proposed method. Particularly 
in terms of the balance between Precision and Recall, C-TranAD achieves an F1-Score of 94.76%, 
which is about 5 percentage points higher than the next best, CV-CNN. At the same time, its recall 
rate reaches 96.74%, significantly outperforming other methods. 

This indicates that C-TranAD can detect almost all defects (extremely low missed detection rate) 
while maintaining a very low false alarm rate. In contrast, although TranAD-Real has the highest 
precision (Precision=96.11%), its recall rate is only 72.56%. This suggests that the original 
TranAD architecture suffers from a severe missed detection problem when using only real-valued 
features, failing to generalize to detect diverse defect patterns. 

Furthermore, traditional methods like One-Class SVM perform the worst on all metrics (F1 approx. 
80%, AUC approx. 84.02%), reflecting the limited capability of such models to capture the 
complex characteristics of eddy current signals, resulting in high rates of both missed and false 
detections. In comparison, complex-domain deep neural networks like CV-FCNN and CV-CNN, 
by incorporating both amplitude and phase information, achieve better performance than real-
domain models (F1 scores of 87.70% and 89.50%, respectively). It is noteworthy that the 
performance of CV-CNN is already close to that of TranAD-Real, indicating that using 
convolutional models on complex signals can, to some extent, compensate for the deficiencies of 
the Transformer architecture. However, C-TranAD builds upon this and further significantly 
improves both precision and recall, demonstrating that combining the Transformer architecture 
with full complex-domain modeling can more thoroughly exploit signal features, thus achieving 
optimal defect detection performance. 

In conclusion, C-TranAD exhibits excellent generalization ability and robustness. Whether it is 
the stable detection of various types of defects or the small performance variance across different 
experimental runs, it demonstrates significant advantages over other methods. 20
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4.2.2 Ablation Study Analysis 

We designed an ablation study around the key components of C-TranAD to evaluate the impact of 
each module—the activation function, classification head, and distance metric—on the model's 
performance. Specifically, we tested the following four model variants: C-TranAD-SepLReLU, 
C-TranAD-Cardioid, C-TranAD-MLP, and C-TranAD-MSE. The results for Precision, Recall, F1, 
and AUC are summarized in Table 2. 

Table2 The results of Ablation Experiments on C-TranAD Components 

Method Precision(%) Recall(%) F1(%) AUC(%) 

C-TranAD-
SepLReLU 92.78±1.69 77.67±3.94 84.56±2.25 85.81±1.22 

C-TranAD-
Cardioid 91.65±2.26 81.86±1.58 87.34±2.11 88.14±2.65 

C-TranAD-MLP 93.65±2.11 82.32±1.24 87.62±1.38 88.37±3.22 

C-TranAD-MSE 92.36±0.88 85.11±5.66 89.05±3.21 89.53±2.86 

C-TranAD(ours) 92.86±1.26 96.74±2.21 94.76±1.65 94.65±1.97 

The results from the ablation study in Table 2 show that removing any of the modifications leads 
to a performance drop to varying degrees, indicating that each component's design plays a key role 
in enhancing the model's final performance. Specifically, the C-TranAD-SepLReLU variant, 
which uses separate activation functions for the real and imaginary parts, fails to capture the 
coupling between them, causing the model's recall to plummet to 77.67% and the F1 score to only 
84.56%. This demonstrates that removing the complex-domain Cardioid activation function 
severely weakens the model's ability to detect subtle phase anomalies. The C-TranAD-Cardioid 
variant, which uses a fixed-parameter Cardioid activation, shows a slight improvement over 
SepLReLU, but due to the lack of adaptive parameter tuning, its F1 score is still about 7 percentage 
points lower than the original model. Replacing the classification head with a single-branch MLP 
in the C-TranAD-MLP variant also results in a significant performance drop (F1 drops to 87.62%) 
due to the lack of hierarchical discriminative capability for amplitude and phase information. 
Finally, the C-TranAD-MSE variant, which uses the traditional MSE distance as the anomaly 
criterion, achieves an F1 of 89.05%, but this is still about 5 percentage points lower than the 
original model, indicating that the complex-domain anomaly metric designed in this paper is 
effective in improving detection accuracy and robustness. 

As shown in Figure 8, the original C-TranAD (Fig 8(a)) clearly separates normal and abnormal 
samples in the feature space, with the decision boundary almost perfectly dividing the two classes. 
Correspondingly, in the score distribution histogram, the score ranges for normal and abnormal 
samples have almost no overlap (mean score for normal samples is approx. 0.148, while for 20
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abnormal samples it is 0.797), indicating that the model has extremely high confidence in its defect 
detection results, with almost no missed or false detections. 

In contrast, C-TranAD-SepLReLU (Fig 8(b)), which uses separate real/imaginary activation 
functions, shows some overlap between normal and abnormal samples in the t-SNE space. Some 
abnormal points are mixed in with the normal sample cluster, forcing the model's decision 
boundary to compromise between the two classes, leading to an increase in missed detections. This 
is also reflected in the score distribution: the predicted scores for abnormal samples are not 
sufficiently concentrated (mean is only 0.718), with some abnormal samples having scores that 
fall into the range of normal samples, ultimately causing a significant drop in recall. 

 

(a) C-TranAD—t-SNE features & scores 

 

(b)C-TranAD-SepLReLU—t-SNE features & scores 

 

(c) C-TranAD-Cardioid—t-SNE features & scores 20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



 25 / 31 
 

 

(d)C-TranAD-MSE— t-SNE features & scores 

Figure 8. t-SNE feature space and score distributions on the EC dataset  

For C-TranAD-Cardioid (Fig 8(c)) using a fixed Cardioid activation, the problem of abnormal 
samples being too close to normal ones is also observed. However, compared to SepLReLU, the 
Cardioid activation retains some phase sensitivity, so the separation between the abnormal and 
normal clusters is slightly better, although a few abnormal samples (purple triangles) are still near 
the decision boundary. The fixed activation function cannot adaptively adjust based on data 
features, leading to insufficient discriminative ability for samples near the boundary, which 
ultimately results in a certain degree of performance loss. 

For the final variant, C-TranAD-MSE (Fig 8(d)), the visualization shows that the normal and 
abnormal samples are generally well-separated, with most abnormal points correctly classified 
outside the decision boundary. However, a few abnormal samples (purple triangles) are still close 
to the normal sample cluster and are not identified by the model. This is consistent with its score 
distribution: although the average score for abnormal samples is high at 0.816, and for normal 
samples is only 0.069, the distribution of abnormal scores shows a certain degree of spread, 
indicating that the model lacks confidence in discriminating a few anomalies. Overall, the model 
using the MSE distance metric can provide high anomaly scores for easily detectable significant 
anomalies, comparable to the original model, but it is less sensitive to subtle anomalies near the 
boundary, leading to a lower recall rate compared to the original model. 

This visual comparison clearly shows that each of the proposed improvement modules (learnable 
complex activation functions, hierarchical classification head, and complex-domain anomaly 
measure) is indispensable for enhancing the model's discriminative ability and robustness. Only 
the complete C-TranAD model can form a clear and reliable separation between normal and 
abnormal samples in the feature space, ultimately achieving optimal defect detection performance. 

5. Analysis and Discussion 

The core of this work lies in fully exploiting the joint amplitude-phase features of eddy current 
signals and enhancing defect detection performance through complex-domain modeling. Both 
experimental and theoretical analyses show that the complex-domain method has the following 
significant advantages over traditional real-domain methods. 20
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First, in terms of geometric modeling capability, the response of normal samples in eddy current 
inspection typically forms a stable, closed trajectory in the complex plane, while defects cause 
distortions or shifts in this trajectory. Traditional real-valued methods often project the signal onto 
a single amplitude or phase channel, making it difficult to preserve the complete trajectory shape. 
In contrast, complex networks can directly represent and identify the geometric changes of the 
trajectory in the two-dimensional complex plane, thus avoiding the loss of detailed information. 
The C-TranAD proposed in this paper further uses the phase angle as a modulating signal, making 
the network more sensitive to changes in the trajectory's direction. Thus, even if some defects 
primarily manifest as phase shifts with minor amplitude changes, the model can still amplify and 
identify them through phase-cosine modulation. For defects dominated by amplitude spikes, the 
activation function dynamically scales the output during rapid phase changes, achieving sharp 
detection in the amplitude channel. It is evident that the cooperative sensing mechanism of 
amplitude and phase gives C-TranAD excellent adaptability to various types of defects, which is 
difficult for real-valued models to achieve. 

Second, in terms of multi-scale feature representation and interpretability, the hierarchical 
activation and classification fusion mechanism proposed in this paper endows the model with 
frequency-division and hierarchical capabilities. This design can be analogized to the manual 
analysis of eddy current signals: engineers typically examine both amplitude and phase curves 
simultaneously and make judgments based on information from different filter scales. Our multi-
branch structure and multi-modal fusion automatically achieve this process: the learnable complex 
Cardioid activation functions with different parameters act as frequency selectors, with each 
branch focusing on a specific spectral pattern. Residual connections and feature fusion ensure a 
balance between global and local information. Explicitly separating amplitude and phase features 
at the classification head stage makes the decision process closer to physical intuition. It is 
noteworthy that this mechanism also improves the model's interpretability: for example, for crack-
like defects mainly characterized by phase perturbations, the model primarily relies on the high 
response of the phase branch for detection; for deep-hole defects causing a sharp drop in amplitude, 
it relies more on the amplitude branch. These phenomena fully validate the effectiveness of the 
complex-domain hierarchical mechanism. 

Finally, from the perspective of the synergistic action of the activation function and the 
classification head, its significant effect can be understood on two levels: at a micro level, the 
learnable complex Cardioid activation function makes each neuron sensitive to phase changes, 
enhancing the quality of the low-level representation; at a macro level, the multi-scale 
classification head organizes and integrates these phase-sensitive representations, enabling the 
model to perform joint discrimination from different scales and modalities. The combination of 
these two achieves a bottom-up progressive optimization: low-level features progressively refine 
discriminative phase characteristics, and high-level multi-scale fusion forms a robust decision. 
This design philosophy enables C-TranAD to simultaneously capture local detail anomalies and 
global pattern shifts in complex eddy current backgrounds, and the experimental results have 
proven the significant advantages and universal potential of this complex-domain hierarchical 
activation and classification fusion. 

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



 27 / 31 
 

6. Conclusion 

In the research, we propose C-TranAD, a complex-domain deep anomaly detection model for eddy 
current non-destructive testing. Based on the existing TranAD framework, this method is the first 
to systematically extend it to the complex domain, achieving end-to-end modeling of amplitude-
phase information and avoiding the information loss and complex manual feature extraction of 
traditional methods. To further enhance the model's expressive power, this paper innovatively 
introduces a parameter-learnable complex Cardioid activation function, endowing the network 
with a phase-driven adaptive non-linear mapping capability. It also designs a multi-scale complex 
classification head (V2), which, through parallel branches and a fusion mechanism, achieves a 
hierarchical characterization of amplitude and phase anomalies, constructing a novel complex-
domain hierarchical activation-classification fusion mechanism. 

Experiments on actual eddy current inspection data show that C-TranAD significantly outperforms 
the real-domain TranAD and various baseline methods in terms of detection accuracy and 
robustness. It maintains stable performance even in complex backgrounds and high-noise 
conditions. For challenging micro-defects, the model achieves near-zero missed detections while 
significantly reducing the false alarm rate, demonstrating outstanding engineering application 
value. Thanks to its lightweight design with only a few Transformer layers, C-TranAD's inference 
speed meets the real-time detection needs of industrial sites, effectively reducing the burden of 
manual review. From a theoretical perspective, C-TranAD organically combines the physical 
characteristics of complex signals (amplitude and phase) with deep learning architectures, 
providing a universal paradigm for complex-domain deep anomaly detection and a feasible path 
for the efficient utilization of phase information. In terms of engineering value, this method offers 
a practical solution for high-precision, low-false-alarm defect identification in eddy current NDT. 

Future work can be extended in the following directions: First, expand the application scenarios 
by promoting the method to other typical complex signal anomaly detection tasks such as acoustic 
ultrasound, radar, and seismic exploration to verify its universality. Second, improve model 
efficiency by exploring more lightweight complex network structures or model compression 
strategies to meet the deployment requirements of resource-constrained devices. Third, deepen the 
theoretical research by systematically analyzing the mechanism of complex activation functions, 
studying the influence of parameters on the model's spectral response, and the convergence of 
complex adversarial training. Fourth, integrate physical priors by attempting to incorporate 
physical models of eddy current inspection or finite element simulation results into the network 
design and loss function to further enhance the model's interpretability and reliability. 

In summary, the work in this paper not only achieves a breakthrough in the methodology of 
complex-domain end-to-end anomaly detection but also verifies its excellent performance and 
engineering practicality through experiments, marking a key step forward for the application of 
complex deep learning in non-destructive testing and the broader field of signal processing.  
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议我深入阅读与时间序列异常检测相关的文献，了解该领域现有的研究成果与技术手段。

在老师的指导下，我查阅了大量基于深度学习的工业时间序列分析论文，认识到

Transformer模型在捕捉序列依赖关系中的广阔应用前景。这不仅帮助我更好地理解了研
究课题的前沿进展，还让我有了更多的信心去探索这一选题，并且从技术上评估其可行

性。在实验阶段遇到的主要困难是模型框架代码的搭建.为了解决这个问题，我通过调研
发现了 TranAD等前沿方法的开源代码仓库，这对我的工作具有非常高的参考价值。通过
分析这些代码的思路和实现，我成功搭建了 C-TranAD的基础框架，为后续的模型调整和
优化打下了重要基础。 
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