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Abstract

Remote Photoplethysmography (rPPG) has been crucial
physiological measurements to be implemented both in clin-
ical and daily scenarios due to its convenience and non-
contact characteristic. However, the nature of rPPG makes
it hard to collect measurement data, resulting in both scarce
and imbalanced data across many datasets. This led to
existing models learning patterns biased towards common
heart rates, resulting in inferior performance on elevated
or abnormal cases: the long-tail cases. In light of this,
we propose a class-imbalanced semi-supervised learning
approach integrating the CoSSL paradigm together with
domain-specific explicit rPPG priors. While the use of
CoSSL inevitably pivots the task into a classification task,
an additional Label Distribution Smoothing (LDS) adds the
reegression-like continuity of rPPG back into classification,
resulting in superior model performances. Experiments on
VIPL-HR, UTKFace, and Yelp Review datasets demonstrate
that our method consistently outperforms state-of-the-art
baselines, validating its effectiveness in addressing both im-
balanced distributions and generalization to diverse sce-
narios.

Index term: rPPG, Class-imbalanced semi-supervised
learning, long-tail

1. Introduction

Physiological measurements, such as heart rate (HR), are
crucial indicators of human emotional state and cardiovas-
cular conditions. Monitoring HR aids in both medical con-
ditions and daily scenarios. ECG is widely used for accurate
physiological measurements; however, as a contact-based
method, it is inconvenient and may cause skin irritation or
other medical conditions with long-term usage [14]. Re-
mote Photoplethysmography (rPPG), on the other hand, an-
alyzes the subtle changes in skin color to estimate blood
volume variations and subsequent physiological activities.

Majority Minority
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s

Figure 1. VIPL [31] dataset ranked on the number of data sam-
ples of each HR reading. The heavily right-skewed distribution
indicates a imbalance in data samples among classes, posing the
long-tail problem. In addition, an example of frames from one
VIPL video clip is shown for reference.

This method provides a non-contact solution for physiolog-
ical measurements. Compared to contact photoplethysmog-
raphy (cPPG) and ECG, rPPG grants a greater range of ap-
plicable scenarios without the necessary constraint of a con-
tacting device.

rPPG uses camera to remotely track the subtle variations
in skin color from the reflection of light beneath the skin, in-
dicating physiological signs. The change in reflection wave-
length ultimately indicates the blood volume pulse in the re-
gion of interest. Existing studies mostly use camera to film
a short clip of subjets’ face in order to retrieve such data.
The video clips are then processed and analyzed through
either conventional signal processing or deep learning ap-
proaches to study the pattern presented within. While some
studies focused on signals in the infrared or near-infrared
spectrum [9, 29, 34, 48], most have focused on natural or
ambient lighting scenarios, using commercial grade web-
cams or phone cameras. The study of rPPG using easily
accessible devices in normal life further adds to its poten-
tial to be implemented in real-world applications.20
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As such, rPPG studies often focus on model abilities to
generalize to more diverse, out-of-lab, and unseen scenar-
ios [28, 40, 53, 62], increasing model robustness through
tackling priors relating to lighting, movements, skin condi-
tions, and so on. However, existing studies have overlooked
the prevalence of the long-tail problem in rPPG datasets.

Data collection has long been a critical issue for rPPG-
related research. A proper data point requires subjects to
both film their face and wear a contact device for ground-
truth measurements. This raises the difficulty of collecting
as well as ethical concerns behind it, which results in many
datasets having no more than 50 subjects. In addition to
the small datasets, the long-tail problem refers to the lack
of enough samples representing large ranges of HR values
on the two sides of the data distribution in current datasets.
The lack of elevated or abnormal HR that are lower than
normal in most datasets [1] leads to an imbalanced distri-
bution (Fig. 1) of data points overly centered in the settled
HR range. According to [8], model performances may be
severely hampered due to the lack of proper representations
of HR that appear on the two tails of the distribution. This
may decrease model robustness when encountering unseen
variations due to disease or exercise – scenarios that lead to
higher or lower than average HR readings. As a result, re-
solving the long-tail problem in rPPG is one of the crucial
stepping stones in which to achieve robust generalization in
real-world applications.

In light of this. We address the long-tail problem through
the use of an imbalanced semi-supervised learning (SSL)
paradigm. In sum, we implement the CoSSL paradigm [15]
for imbalanced SSL while also maintaining the rPPG priors
necessary to strengthen task-specific model ability. To fully
utilize the CoSSL paradigm, we treat rPPG as a classifica-
tion task with each integer HR value as a class. In CoSSL,
Fan et al. implement a decoupled training process, separat-
ing representation learning and classifier learning without
gradient exchange. In doing so, the training of the two sec-
tions is completely independent of each other. For represen-
tation learning, decoupling helps the feature encoder learn
a class-agnostic feature space that aims to better capture the
overall data pattern; for classifier learning, decoupling pre-
vents the classifier head from learning data biased to the
popular class. The co-learning framework provided here
boosts the model’s ability in learning features independent
from the class imbalance, proven empirically to be success-
ful [19]. We also integrate the Tail-class Feature Enhance-
ment (TFE) module from CoSSL to further support the clas-
sifier learning process. Specifically, TFE provides a greater
diversity of tail-classes’ samples through augmenting unla-
beled data which the feature encoder deems similar to the
feature of that tail class in interest. As a result, TFE emu-
lates a class-balanced data distribution for classifier training
that prevents the influence of an imbalanced data distribu-

tion. In addition, we used Label Distribution Smoothing
(LDS) [55] to regulate the probability of applying TFE on
every batch of data, so that we fully exploit the continuity
nature of the rPPG task as a regression. LDS applies a con-
volution on the original data distribution to portray a more
reasonable representation of how each class is weighted in
a dataset, adjusting to a more accurate probability for the
application of TFE during classifier training.

In addition, we also utilize necessary rPPG priors for the
CoSSL paradigm to full adapt to the rPPG task specifically.
According to [39, 62], prior knowledge of physiological
signals independent of frame rates, brightness, motion, time
sequences, etc. is implemented during data augmentation
and image processing. Taken as important preset principles,
these priors are used to further increase the model’s gener-
alization ability to different apparatus domains, increasing
the feature encoder’s ability to withstand different noises
and influences.
Our contributions are threefold:
• We highlight the long-tail distribution problem in rPPG

datasets, showing its critical impact on model generaliza-
tion to abnormal or elevated HRs.

• We propose a class-imbalanced semi-supervised learn-
ing framework tailored for rPPG, integrating the CoSSL
paradigm with domain-specific rPPG priors. This design
effectively decouples representation learning and clas-
sifier learning, while enhancing tail-class representation
through TFE.

• We apply Label Distribution Smoothing (LDS) to restore
the regression-like continuity of HR estimation within
the classification setting, leading to superior robustness
and performance across diverse benchmarks (VIPL-HR,
UTKFace, Yelp Review).

2. Related Works

2.1. Remote Physiological Measurements

Traditional rPPG methods manually observe physiolog-
ical patterns in regard to the reflection of skin color.
GREEN [49] finds that the green channel in comparison to
red and blue channels creates a higher signal-to-noise ra-
tio (SNR) and thus builds the initial groundwork for the
remote PPG task. Blind source separation (BSS) meth-
ods such as ICA [35] and PCA [24] are dimensionality
reduction techniques implemented on RGB temporal sig-
nals for identifying desired physiological signals through
noises. CHROM [13] and POS [50] are handcrafted meth-
ods that involve the projection of signals on to orthogo-
nal planes in order to adapt to skin tone and illumination
variations. As deep learning becomes increasingly preva-
lent, studies also implement end-to-end neural networks
for more robust means of extracting physiological patterns.
Early examples include DeepPhys [7], a landmark applica-20
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tion of CNN on different frames to retrieve variations. Af-
terward, TS-CAN [25] extends on DeepPhys by implement-
ing an attention module while predicting pulse and respira-
tion jointly. As studies progress, more studies have focused
on the ability of models to capture spatial-temporal varia-
tions. RhythmNet [31] achieves this by creating a spatial-
temporal map (STMap) that uses pixel values as a general-
ization of regions of interest for every designated span of
frames. PhysNet [56] and rPPGNet [57] further enhance on
models’ ability to capture spatial-temporal representations.
BVPNet [12] is focused on the prediction of blood volume
pulses (BVP) waveform sequences. In addition to 2D-CNN
and 3D-CNN methods, others such as Dual-GAN [27] har-
ness the unique model architecture of generative adversarial
network to study and reduce noise within the video. Phys-
Former [59] and others [42, 58] use transformer architecture
to increase the attention span to capture longer time-ranged
dependencies. NEST [28] further uses domain adaptation
techniques to increase model robustness in few-shot and
zero-shot scenarios.

2.2. Semi-supervised Learning

Given the case where data labeling is particularly expen-
sive or demands professional expertise, while a large field
of unlabeled data is easy to get, SSL becomes a potent
method to use in order to increase model generalization
ability. Existing methods for SSL largely consist of con-
sistency regularization and pseudo-labeling. Consistency
regularization refers to the overarching idea that the model
should pertain the same output despite receiving inputs sub-
ject different augmentation methods in vision tasks. Exam-
ples of consistency regularization include [2, 36, 37]. Ap-
plying this method allows the model to adapt to different
noises that disturb the relevant feature of the task, increasing
the model’s ability to generalize to unseen cases. Pseudo-
labeling utilizes the knowledge of the model trained with
scare labeled data to generate fake artificial for unlabeled
data in order to bootstrap training data with confident un-
labeled data [22]. Proceeding studies combine these two
techniques and formulate stronger methods to exploit unla-
beled data for model training [3, 4, 11, 41, 60]. [21] uses
a temporal ensemble framework to achieve a consistency
between epochs. [46] improves on the former by imple-
menting exponential moving average on weights instead of
label predictions, further strengthening it at low data sce-
nario. [10] is one of the first to apply contrastive concepts
in unlabeled data to be used in deep regression. [17] takes
on a similar idea and adapts the deep regression as a ranking
classification. However, methods above assume a balanced
class distribution; that is, each class has similar number of
data, which is not the typical case in real-world applica-
tions. [18] identifies such problem as class-imbalanced
semi-supervised learning (CISSL) and proposed a novel

suppressed consistency loss that reduces the effect of con-
sistency regularization on edge cases with few data. [16]
uses an adaptive thresholding for the confidence of pseudo-
labels in order to inhibit its effect on minority cases. [20]
uses an algorithm called distribution aligning refinery of
pseudo-labels to optimize pseudo-labeling process. [23]
proposes an additional classifier layer called auxiliary bal-
anced classifier to train the model in a class-balanced man-
ner.

2.3. semi-supervised learning in rPPG
Because of the regression nature of the rPPG task, very
limited studies have used SSL paradigm for model train-
ing despite the scare labeled data. Consistency Regular-
ization and pseudo-labeling are built on the foundation of
innately distinctive categories and labels, making it incom-
patible to regression. Existing studies that aim to utilize un-
labeled data mainly focus on self-supervised learning and
contrastive learning techniques that explore rPPG-specific
priors [26, 38, 39, 44, 45, 62]. [54] uses curriculum
pseudo-labeling as an adaptation to rPPG using SSL; how-
ever, few studies have discussed the imbalanced nature of
rPPG datasets and how CISSL should be implemented.

3. Methodology

In this study, we combined the CoSSL [15] paradigm,
which is the co-learning of representation and classifier in
CISSL, with rPPG explicit priors. The method combines
the benefit of SSL in using unlabeled data when at a small
data size while also retaining crucial task-specific context
for applying to the rPPG measurement task. In addition,
we adapt the rPPG problem to a classification task in order
to adapt to SSL techniques; meanwhile, we implement the
label distribution smoothing (LDS) [55] technique to take
advantage of the continuity found in regression.

3.1. Co-learning Paradigm
In order for rPPG measurement task to regarded as a CISSL,
let X = {(xn, yn); n ∈ (1, . . . , N)} and U = {(um); m ∈
(1, . . . ,M)} be the labeled and the unlabeled data, respec-
tively, where Ni and Mi denote the number of labeled and
unlabeled data points for class i, respectively, in a total of
k classes. Here, (xn,un) ∈ RW×H×C are spatial-temporal
maps (STMaps) using RGB channel [31, 53], and yn is
the HR ground truth for each xn labeled STMap. The end
goal of CoSSL is to train a feature encoder gf (·) and a fi-
nal classifier hCL(·) independently without sharing gradi-
ent parameters at the same time; meanwhile, the encoder
gf (·) and hCL(·) can also be connected together and uti-
lized when creating pseudo-labels. To that end, each mod-
ule could prevent biased inputs from another while also har-
nessing one others’ strength.20
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Figure 2. Our methods integrate CoSSL paradigm (in light blue) along with domain-specific explicit priors of rPPG (in light green).
Subsequent implementation of LDS module for the probability of Pk pertains the continuity nature of the rPPG task. Part of the pipeline
illustration referenced from CoSSL [15]. images for LDS taken from [55].

The training process begins with initializing both the
encoder and classifier modules. The encoder module is
first initialized through a regular round of SSL training us-
ing gf and a randomly initialized auxiliary classifier hf .
Here, CoSSL allows a flexible room for the specific SSL
framework implemented. Examples of viable frameworks
include MixMatch [4], ReMixMatch [3], FixMatch [41],
FlexMatch [60], and so on. For the sake of consistency
and simplicity, we implement FixMatch as our baseline SSL
method and perform the initial representation learning. As
a result, gf learns a generalizable feature encoder without
the influence of hCL and is thus free from class-imbalanced
bias. An exponential moving average (EMA) decay is im-
plemented on the encoder and is passed to classifier module
for later use. The classifier module is initialized through a
round of Tail-Class Feature Enhancement (TFE), proposed
by CoSSL. In order to increase the diversity and the count
of data samples for classes that originally contain little ex-
isting labeled data, TFE is introduced. It uses logits from
other unlabeled samples of a similar pseudo-label class as
additional noise to be added onto labeled samples that are
known to belong to the class in interest.

z̃ = λξ(xl) + (1− λ)ξ(uj) (1)

where xl is a labeled STMap in class l, uj is an unlabeled

STMap predicted to have a high logits for the same class l,
λ is a fusion factor created using beta distribution, ξ is the
passed down EMA encoder from the encoder module, and z̃
is the resulting newly augmented features based on features
of xl and uj , which is ξ(xl) and ξ(uj) respectively. Such
TFE is used to only at a probability value during the training
epochs; for initialization, new feature maps are created so
that each class contains the same number of feature maps as
the class containing most labeled data points. In both cases,
TFE helps the classifier training remain a class-balanced
training, independent of the influence of a imbalanced class
distribution, since TFE bootstraps classes with fewer data
samples. After initialization, the model enters the formal
training epochs, as shown in Figure 2. The encoder module
is first trained using labeled and unlabeled data under Fix-
Match formality. The EMA encoder is then passed down
to the classifier module and trains it along with TFE. The
resulting bias-free classifier is then passed together with the
EMA encoder to the pseudo-labeling stage, where artificial
labels are generated using generalizable features and bias-
free classifiers. The pseudo-labels are then passed back to
the encoder module as labels for the unlabeled section of
the data and complete the whole epoch of training. In this
way, the CoSSL paradigm leverages both the benefit of de-
coupling the two modules and the connectivity between the20
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two when using to produce pseudo-labels.
Note that due to the large span of possible HR values

for physiological measurements, there exist a large number
of classes k, typically more than 100 classes for capturing
HR values in extreme scenarios, which strongly hinders the
pseudo-labeling process in FixMatch. The large amount of
classes k makes the supplementary classifier hf and end
product classifier hCL difficult to produce a confident clas-
sification with logits of one class reaching the preset thresh-
old τ . To that end, we implement an additional sharpening
technique from MixMatch [4] that boost the differences be-
tween logits of different classes

fshar(pi, T ) = p
1
T
i /

k∑
j=1

p
1
T
j (2)

where p is the predicted logits for each class, T is a hy-
perparameter. The resulting psharpen = fshar(p, T ) is
then used to determine whether the pseudo-label is confi-
dent enough. This significantly help both classifier heads to
perform properly in getting pseudo-labels despite the large
k.

3.2. Label Distribution Smoothing
While CoSSL paradigm mostly captures the advantage of
the model trained as a classification task, we also incorpo-
rate the utility of the unique characteristics of regression
tasks: continuity. This is based on the assumption that the
physiological signal and pattern for a certain HR should be
similar to other measurements that are close to such HR
value (e.g. a HR measurement of 100 should exhibit similar
physiological patterns in comparison to another HR mea-
surement of 101). That is to say, the class of a certain HR
should resemble some connection to other classes in a few
HRs away, and there should not be hard boundaries distin-
guishing two adjacent classes. In addition to this, we find
that current datasets severely lack data samples with HRs
that are either elevated or abnormally low. This, combined
with the lack of continuity representation, often leads to un-
reasonable probabilities when tackling class balancing is-
sues. As previously stated in section 3.1, the TFE takes a
class-based probability to be enacted during training. Ide-
ally, the more data samples a class has; the less it requires to
perform TFE to sustain data diversity. As such, the CoSSL
paradigm defines such probability as

Pi =
Nmax − Ni

Nmax
(3)

where Nmax is the largest number of data samples per class
among all k classes, Ni is the number of data samples for
class i, and Pi is the probability for feature maps belonging
to class i to enact TFE. Such method, due to the two draw-
backs stated, does not fit perfectly for rPPG-specific task.

As a result, we implement the LDS [55] to remedy this.
LDS offers a smoothing for the data distribution. This is
done through a convolution using a symmetric kernel such
as a gaussian or a Laplacian kernel. Here, we use gaussian
kernel.

Ñ(y′) ≜
∫
Y
k(y, y′)N(y)dy (4)

and

Pi =
Nmax − Ñ(i)

Nmax
(5)

where N(y) is the count of label y in the train dataset and
Ñ(y′) is the effective density of label y′. This convolution
process subsidizes classes with little data by averaging data
counts from few neighboring classes on both sides of the
distribution. This process, as later shown in ablation, proves
significant.

3.3. Explicit Priors
In addition to that, we assume some explicit priors related to
rPPG context for better model generalization ability accord-
ing to [39, 62]. Given that ST is the raw STMap from [31].
Camera prior assumes that the same subject should give the
same HR readings despite measuring on different camera
setups. Since videos normally have gamma correction to
offset camera illuminance difference to real world illumina-
tion, undoing such correction by a random power γ simu-
lates the noise of using different camera.

STγ = (ST )γ , γ ∈ [0.8, 2.2] (6)

The gamma range is referenced from [6, 62]. The skin and
light prior assumes that skin tone and illumination setting
may change skin appearance for similar HR values. This
noise is emulated by taking dot product of RGB channels
with a random matrix.

STl =

Rl

Gl

Bl

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

RG
B

 (7)

where {a11, ..., a33} ∈ [−0.5, 0.5]. The motion prior rules
out the effect of head movements on physiological patterns.
Such noise is arbitrarily added by shuffling the Regions of
Interest of a frame, which is the height of the STMap.

STm = Shuffle(R1, R2, ..., R25) (8)

where Shuffle() is the random permutation of ROIs.
Frame rate prior rules out the effect of different camera
frame rates on physiological patterns. This noise is created
through down sampling the frames and then cubic interpo-
lating it.

STf = Cubic(Down(Si,j)), i ∈ {0, 1, ...,W}, j ∈ {0, 1, ..., C}
(9)20
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where W is the number of ROIs and C is the number of
color channels. These priors altogether are implemented
in the data augmentation process, where the SSL frame-
works such as FixMatch require strongly augmented data
for the training to apply consistency regularization along
with weakly augmented data. Applying these priors effec-
tively minimizes the loss the model may have due to these
four factors.

4. Experiments
4.1. Dataset

Figure 3. An illustration of spatial-temporal map generation from
a face video (adapted from [31]). Faces are aligned and trans-
formed to YUV space, divided into n ROI blocks, and per-channel
average color values are computed to form sequential signals con-
catenated into a spatial-temporal map.

VIPL is a large-scale multi-model HR dataset that has
been dedicated to emulate complex situations and less con-
strained settings through variations in subjects, head move-
ments, illumination status, and camera types [30]. To be
specific, VIPL contains a total of 2,379 color videos and 752
near-infrared videos from 107 participants ranging from 22
to 41 years of age. It contains 9 different illumination se-
tups and 3 different filming devices. Comparatively, VIPL
has been known for its variation in settings, thus raising dif-
ficulty for models to generalize and discard noise. Mean-
while, VIPL presents a typical long-tail data distribution
with both sides lacking enough data points. As a result,
VIPL is a perfect dataset for us to test our model’s ability to
both learn physiological patterns through class-imbalanced
situation while also generalizing well to a diverse setting
range.

In addition to VIPL-HR, we further employ two auxil-
iary datasets to strengthen our evaluation. UTKFace [61] is
a large-scale facial dataset covering individuals aged from 0
to 116 years, annotated with age, gender, and ethnicity. Its
inherently long-tailed age distribution makes it a suitable
proxy to examine our method’s ability to handle class im-
balance in visual representations. Yelp Review [52], on the
other hand, is a widely used benchmark for sentiment anal-
ysis, consisting of millions of user reviews with imbalanced
rating labels. While not directly related to physiological
signals, it allows us to validate whether our semi-supervised
learning framework generalizes well across heterogeneous
modalities and label distributions. Together, these datasets

complement VIPL-HR by offering diverse yet challenging
scenarios for testing robustness and generalization.

4.2. Implementation details
For all the testings in VIPL, we use two labeled regime:
2,500 labels and 20,000 labels out of a net 370,000 la-
beled spatial-temporal maps (STMaps), generated from
face videos, all taken from VIPL dataset at random. The
STMap is constructed following the procedure illustrated in
Fig. 3, where aligned facial regions are divided into ROI
blocks, per-channel average color values are extracted over
time, and concatenated into a 2D spatial-temporal represen-
tation. For the whole task, we use Unet as the baseline
model for training. Since this study focuses only on HR
instead of a holistic pack of all physiological signals includ-
ing BVP, SpO2, etc, the up path of Unet is deprecated and
only the down path encoders and the classifier head are pre-
served. The number of classes k is kept at 133, ranging from
47 to 179 HR. The pseudo-labeling threshold τ is set to 0.9,
and the sharpening factor T is set to 0.5. The learning rate
for all stages is 0.001. For the beginning encoder warm-up
with FixMatch, we run 300 epochs each with 5,000 itera-
tions, each iteration being one batch of labeled and unla-
beled data. For the classifier warm-up with TFE, we run 10
epochs of 5000 iterations. Note that only classifier has gra-
dient turned on at this stage. For the combined training, we
run another 300 epochs with 5000 iterations. Note that the
gradient are still decoupled at this stage.

For UTKFace, we adopt four different labeled sample
regimes with 30, 50, 250, and 2000 labeled images, while
the remaining samples are treated as unlabeled. This design
allows us to examine the performance of our method un-
der extreme scarcity (30, 50 labels), moderate supervision
(250 labels), and relatively sufficient supervision (2000 la-
bels). For Yelp Review, we follow a similar setup with two
regimes, using 250 and 2000 labeled samples, respectively.
This configuration enables us to investigate how the pro-
posed method scales across different magnitudes of avail-
able labeled data. For UTKFace, we adopt Wide ResNet-
28-2 as the backbone for age estimation, training from
scratch to assess its semi-supervised learning capability un-
der imbalanced and limited labels. For Yelp Review, we
use BERT-Small initialized with pretrained weights, focus-
ing on evaluating how our framework adapts to textual data
in sentiment classification.

4.3. Results on VIPL
Table 1 (left) presents the results on VIPL under two la-
beled regimes (2,500 and 20,000). Our method consistently
surpasses all representative semi-supervised baselines, in-
cluding Π-Model [21], Mean Teacher [46], CLSS [10],
UCVME [11], MixMatch [4], and RankUp [17], demon-
strating clear improvements in both accuracy and correla-20
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Table 1. Results on VIPL and Yelp Review under varying label regimes.

Method VIPL (Video Remote Physiological Measurement) Yelp Review (NLP Opinion Mining)

Labels = 2500 Labels = 20000 Labels = 250 Labels = 2000

MAE↓ RMSE↓ r ↑ MAE↓ RMSE↓ r ↑ MAE↓ R2↑ SRCC↑ MAE↓ R2↑ SRCC↑
Supervised 9.717±0.424 13.937±0.635 0.407±0.019 7.751±0.307 11.676±0.559 0.571±0.023 0.723±0.023 0.566±0.019 0.769±0.010 0.581±0.021 0.704±0.016 0.840±0.009

Π-Model 9.425±0.376 13.537±0.608 0.408±0.014 7.559±0.310 11.449±0.563 0.583±0.016 0.730±0.024 0.565±0.019 0.769±0.009 0.580±0.019 0.705±0.013 0.841±0.009

Mean Teacher 9.382±0.392 13.440±0.617 0.444±0.025 7.583±0.294 11.526±0.538 0.577±0.020 0.730±0.024 0.565±0.019 0.769±0.009 0.581±0.021 0.704±0.015 0.840±0.010

CLSS 9.634±0.408 13.577±0.630 0.393±0.023 7.508±0.286 11.371±0.530 0.589±0.016 0.721±0.010 0.543±0.011 0.748±0.002 0.602±0.024 0.639±0.016 0.797±0.011

UCVME 8.819±0.355 12.935±0.614 0.459±0.011 7.249±0.262 10.954±0.517 0.609±0.012 0.775±0.006 0.540±0.005 0.763±0.005 0.593±0.015 0.695±0.009 0.836±0.006

MixMatch 8.567±0.339 12.471±0.583 0.486±0.014 7.141±0.283 10.684±0.499 0.626±0.012 0.886±0.004 0.381±0.008 0.660±0.004 0.774±0.015 0.522±0.008 0.740±0.004

RankUp 8.135±0.314 11.985±0.574 0.518±0.011 6.819±0.270 10.231±0.466 0.634±0.011 0.661±0.018 0.645±0.013 0.829±0.002 0.562±0.020 0.735±0.015 0.859±0.009

Ours 7.266±0.301 9.892±0.472 0.563±0.011 6.084±0.233 8.957±0.391 0.685±0.009 0.629±0.010 0.696±0.009 0.849±0.002 0.501±0.014 0.754±0.008 0.873±0.006

Fully-Supervised 5.248±0.103 8.136±0.214 0.773±0.007 5.248±0.103 8.136±0.214 0.773±0.007 0.418±0.003 0.799±0.002 0.896±0.001 0.418±0.003 0.799±0.002 0.896±0.001

Table 2. Comparison of our method and other methods on UTKFace across varying numbers of labeled samples (30, 50, 250, and 2000).
The dataset contains 18,964 training images; the rest of the samples are unlabeled.

UTKFace (Image Age Estimation)

Labels = 30 Labels = 50 Labels = 250 Labels = 2000

Method MAE↓ R2↑ SRCC↑ MAE↓ R2↑ SRCC↑ MAE↓ R2↑ SRCC↑ MAE↓ R2↑ SRCC↑
Supervised 15.02±0.80 0.043±0.025 0.265±0.114 14.13±0.56 0.090±0.092 0.371±0.071 9.42±0.16 0.540±0.014 0.712±0.010 6.28±0.06 0.794±0.004 0.862±0.001

Π-Model 14.26±1.02 0.093±0.050 0.288±0.223 13.82±1.02 0.100±0.086 0.387±0.092 9.45±0.30 0.534±0.030 0.706±0.015 6.31±0.10 0.790±0.006 0.860±0.003

Mean Teacher 14.47±1.23 0.068±0.015 0.307±0.146 13.92±0.20 0.127±0.037 0.423±0.023 8.85±0.25 0.586±0.020 0.745±0.013 6.29±0.03 0.793±0.004 0.862±0.001

CLSS 14.57±0.49 0.047±0.012 0.282±0.113 13.61±0.92 0.138±0.101 0.447±0.074 9.10±0.15 0.586±0.016 0.737±0.014 6.29±0.01 0.794±0.003 0.862±0.001

UCVME 13.76±0.83 0.115±0.078 0.372±0.124 13.49±0.95 0.157±0.110 0.412±0.127 8.63±0.17 0.626±0.006 0.767±0.007 5.90±0.07 0.821±0.007 0.877±0.002

MixMatch 12.50±0.53 0.290±0.026 0.616±0.046 11.44±0.45 0.401±0.028 0.674±0.035 7.95±0.15 0.692±0.013 0.832±0.008 6.03±0.07 0.824±0.004 0.883±0.002

RankUp 11.58±0.55 0.359±0.015 0.606±0.022 9.96±0.62 0.514±0.043 0.703±0.019 7.06±0.11 0.751±0.011 0.835±0.008 5.61±0.07 0.838±0.003 0.887±0.003

Ours 10.74±0.43 0.512±0.011 0.728± 0.033 7.90±0.45 0.598±0.023 0.753±0.017 5.81±0.12 0.815±0.008 0.879±0.007 5.22±0.03 0.861±0.002 0.902±0.001

Fully-Supervised 4.85±0.01 0.875±0.000 0.910±0.001 4.85±0.01 0.875±0.000 0.910±0.001 4.85±0.01 0.875±0.000 0.910±0.001 4.85±0.01 0.875±0.000 0.910±0.001

tion. At 2,500 labels, our method achieves MAE = 7.266,
RMSE = 9.892, and r = 0.563, outperforming the strongest
baseline RankUp (MAE = 8.135, r = 0.518) by nearly 11%
in error reduction and 0.045 in correlation gain. This in-
dicates that our framework more effectively leverages un-
labeled data under limited supervision, where model gen-
eralization is often most challenging. With 20,000 labels,
our method still delivers the best results (MAE = 6.084,
RMSE = 8.957, r = 0.685), maintaining a clear advantage
even though the performance gaps among baselines typi-
cally narrow. Importantly, our approach closes much of
the distance to the fully-supervised upper bound (MAE =
5.248, RMSE = 8.136, r = 0.773), suggesting that explic-
itly addressing imbalance can substantially reduce the need
for large-scale labeled data. These consistent improvements
stem from three complementary components: (1) the de-
coupled co-learning strategy, which yields class-agnostic
representations less biased toward frequent HR ranges; (2)
the Tail-class Feature Enhancement (TFE), which enriches
underrepresented HR cases and prevents classifier overfit-
ting to the head; and (3) Label Distribution Smoothing
(LDS), which restores the regression-like continuity of HR
estimation and stabilizes the training process. Together,
these mechanisms enable the model to capture both cen-
tral and rare HR patterns, yielding robustness across label-
scarce and label-abundant settings, and directly addressing
the long-tail imbalance that has long hindered rPPG-based

heart rate estimation in real-world scenarios.

4.4. Results on UTKFace and Yelp Review

Table 1 (right) and Table 2 further evaluate our method
on Yelp Review (text-based sentiment analysis) and UTK-
Face (image-based age estimation), two datasets that, de-
spite differing in modality, share challenges with rPPG
such as long-tailed distributions and limited labeled sam-
ples. On UTKFace, our method shows clear improvements
in extremely low-label regimes (30 and 50 labels), where
competing methods suffer from majority-class dominance
and degraded performance, while our framework achieves
consistently better MAE and correlation metrics by pre-
serving minority-class signals and mitigating imbalance-
induced bias. As the number of labeled samples increases
(250 and 2000), our method maintains its lead, confirming
that the proposed approach scales effectively across differ-
ent supervision levels. On Yelp Review, our method sur-
passes all baselines under both 250 and 2000 labels, demon-
strating that the framework generalizes beyond visual phys-
iological tasks to heterogeneous textual data. It is still worth
noting that the improvements presented in Yelp Review and
UTKFace are not as significant as what is shown in VIPL.
This is largely attributed to the lack of VIPL-specific con-
text utilized at data augmentation, losing a particular advan-
tage task-wise. Nevertheless, The consistent improvements
across both datasets highlight that integrating CoSSL with20
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TFE and LDS provides a principled and domain-agnostic
solution for CISSL, achieving robust gains across physio-
logical, visual, and textual modalities.

4.5. Comparison with Fully-Supervised Methods on
VIPL

As shown in Table 3, we directly compare our semi-
supervised framework, which relies only on a limited
portion of labeled data, against fully-supervised state-of-
the-art (SOTA) methods trained with the entire labeled
dataset. Compared with traditional signal decomposition
approaches such as SAMC, POS, and CHROM, our method
clearly achieves superior results, reducing MAE and RMSE
by a large margin and yielding substantially higher corre-
lation scores. When compared with modern deep learning-
based methods such as BVPNet, CVD, Physformer, Dual-
GAN, NEST, and DOHA, our semi-supervised framework
inevitably shows a performance gap due to using fewer an-
notations, while these fully-supervised approaches exploit
the entire dataset. Nevertheless, this gap has been consid-
erably narrowed to within 1.32 in terms of MAE and 0.15
in terms of r, demonstrating that our method approaches
state-of-the-art performance despite relying on significantly
fewer annotations. This advantage primarily stems from
our design that explicitly addresses the long-tail problem in
heart rate distribution: by emphasizing tail-class represen-
tation and leveraging unlabeled samples through the semi-
supervised paradigm, our framework improves robustness
in handling elevated and abnormal HR cases that are often
underrepresented in training data even for fully-supervised
SOTA methods.

Table 3. Comparison of HR estimation results on the VIPL-HR
database against fully-supervised state-of-the-art methods using
the full labeled dataset. Bold denotes the best performance. Sym-
bols: ↑ indicates higher is better, ↓ indicates lower is better.

Method MAE↓ RMSE↓ r↑

Baseline [32] 5.25 8.14 0.77
SAMC [47] 15.9 21.0 0.11
POS [51] 11.5 17.2 0.30
CHROM [13] 11.4 16.9 0.28
I3D [5] 12.0 15.9 0.07
DeepPhy [7] 11.0 13.8 0.11
BVPNet [12] 5.34 7.85 0.70
CVD [33] 5.02 7.97 0.79
Physformer [59] 4.97 7.79 0.78
Dual-GAN [27] 4.93 7.68 0.81
NEST [28] 4.76 7.51 0.84
DOHA [43] 4.95 7.73 0.80

Ours (Semi-Supervised) 6.08 8.96 0.69

Table 4. Ablation study of TFE and LDS.

Method MAE↓ R2↑ SRCC↑
Ours (w/o TFE) 6.452±0.229 9.203±0.403 0.655±0.009

Ours (w/o LDS) 6.410±0.242 9.196±0.413 0.667±0.009

Ours 6.084±0.233 8.957±0.391 0.685±0.009

4.6. Ablation
We further conduct an ablation study to examine the con-
tribution of Tail-class Feature Enhancement (TFE) and La-
bel Distribution Smoothing (LDS) within our framework,
as shown in Table 4. Removing either component leads to
a clear degradation in performance: without TFE or with-
out LDS, the model shows higher error and weaker correla-
tion compared to the full design. These results highlight the
complementary roles of the two modules. TFE directly ad-
dresses class imbalance by augmenting samples associated
with rare HR ranges, thereby improving the classifier’s abil-
ity to handle long-tail distributions. LDS, on the other hand,
smooths the label distribution to restore the regression-like
continuity of HR estimation, mitigating discontinuities in-
troduced by the classification formulation. The combination
of TFE and LDS thus provides both better balance across
classes and a more faithful modeling of HR continuity, lead-
ing to consistent improvements across all metrics. This con-
firms that tackling both imbalance and continuity is essen-
tial for robust semi-supervised rPPG estimation, and vali-
dates the effectiveness of our design choices.

5. Conclusion
In this paper, we propose an integration of CoSSL decou-
pled co-learning with domain-specific explicit priors tack-
ling camera, frame rate, skin, illumination, and motion dif-
ferences. Through the use of co-learning framework to-
gether with TFE, the model are prevented to learn biased
feature and classification toward centered range of HR and
instead are generalizable to all HR across the big range, in-
cluding elevated and abnormal cases. The use of LDS fur-
ther effectively refines the probability of TFE to be used by
tackling the continuity problem not represented in CoSSL
as a classification task. Overall, the model achieves signif-
icant improvement in VIPL dataset, proving the systematic
improvement in rPPG and addressing class-imbalanced dis-
tribution and generalization problem. Meanwhile, the suc-
cess of our method in Yelp Review and UTKFace further
proves the feasibility of the integration of CoSSL with TFE
and LDS in CISSL problem. In future, more ablation stud-
ies are needed to closely examine the function and advan-
tage of TFE and LDS in CISSL, and more rigorous empiri-
cal experimentations are needed to fully test on the purpose
each particular parts of the paradigm served.20
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