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Abstract

To reduce the reserve and frequency-regulation costs triggered by high=penetration. photoyoltaics, this paper
proposes a variable reliability market design framework that doesmot rely“on high accuracy forecasting. First,
minute resolution output series are used to construct an availability:curye, and a discrete Tamping cost metric
is introduced with units commensurate with capacity pricing.. The availability curve, separates daylight from
nighttime segments and highlights the operational contrast between clear 'sky ‘and cloudy regimes at medium to
high output levels. The ramping metric compresses short tun volatility into a“settlement ready, auditable quantity
that is dimensionally unified with capacity terms, allowing variability charges to be added to, or translated into,
capacity based charges without altering existing market products or settlement plumbing. On this measurement
foundation, we formulate three integration cost models (full information, partial information, and no information)
and derive closed form indicators for grid (integration cost and a subsidy rate that captures the extent to which
variability costs are socialized. The models make transparent how incremental improvements in forecast quality
map into reduced balancing needs and clearer price signals for producers and consumers.

In the broader policy context of decarbonization and the renewable buildout, the contract layer we advocate,
which brings variability forward and prices it'with dimensionally unified minute scale metrics, fits squarely within
the mainstream framing of the green transition. Consistent with the UNEP’s widely cited formulation, a green
economy is one that improves human well being and social equity while significantly reducing environmental
risks and ecological scarcities, typically characterized as low carbon, resource efficient and socially inclusive. By
making variability explicit and priced with dimensionally unified minute scale metrics, our variable reliability
design provides a settlement ready and auditable pathway that is aligned with the green economy transition.

Building on these /measurements and cost characterizations, we design a variable reliability family of tiered
capacity and pricing:contracts, implemented through a transparent priority rule that guarantees feasibility in
every realizeds state: total served load never exceeds realized PV output, and scarcity is resolved through
orderly curtailment consistent with the contracted reliability tier. Prices can be supported either by shadow
value interpretations or by cost based markups, making the mechanism auditable and compatible with prevailing
energy. and ancillary service arrangements while keeping ex ante terms and ex post verification straightforward.
The contract layer therefore internalizes stochastic risk before real time and lets consumers voluntarily choose
reliability and price bundles, aligning incentives without indiscriminate expansion of system side reserves.

We assess the framework using representative minute scale day profiles from two meteorologically distinct
regions: Lanzhou (clear sky, relatively stable) and Guangzhou (cloud driven and rampy). Guangzhou’s more
frequent minute scale ramps are associated with markedly higher integration costs and subsidy rates than in
Lanzhou, validating the sensitivity of the approach to regional heterogeneity and showing that exposing variability

at the contract layer reduces rigid reserve requirements, lowers socialized costs, and improves the clarity and



credibility of economic signals for both producers and consumers. Regional availability patterns naturally map
into contract menus and markup factors, yielding a location aware design that respects local conditions without
sacrificing market coherence.

On implementation, emphasis is placed on the discrete ramping cost metric. A threshold and event window,
are calibrated from local historical data using the sampling step and a canonical event duration; whenever a one
step change exceeds the threshold, the entire step is counted under a whole step charging rule. With only a few
tunable parameters, this construction turns high frequency fluctuations into a compact, noise tolerant, reproducible
settlement variable that auditors can recompute directly from telemetry. Because it is dimensionally unified
with capacity charges, the metric can be added to capacity payments or expressed as a capacity equivalentfor
benchmarking across regions and seasons, enabling phased pilots that scale as data quality and 'market familiarity
grow. By revealing the price of balancing difficulty before real time, the design also strengthens.interactions with
storage and flexible loads, encouraging investment and improving utilization of existing assets.

Sensitivity analyses indicate that policy conclusions are robust to alternative event window definitions,
threshold choices, and moderate data gaps; the ordering of contract options and‘the magnitude’ of regional
cost differentials remain qualitatively unchanged. Limitations, such as possible-nonstationarity under extreme
weather regimes and the need for transparent governance when reliability menus evolve; are‘mitigated by periodic
recalibration of availability profiles and ramp parameters and by publishing versioned inputs and audit trails.
Overall, moving the price signal for balancing difficulty upstream into the-contract’layer, while centering a
discrete, auditable, capacity commensurate ramping metric, offersia practical, scalable pathway to integrate large
shares of PV without dependence on high accuracy forecasting, reduce socialized integration costs, and improve

allocative efficiency across the system.

Index Terms

photovoltaics; minute-resolution variability; availability curve; discrete ramping-cost metric; dimensionally

unified settlement; variable reliability; tiered capacity and pricing; integration costs
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I. INTRODUCTION

In recent years, the value of “reliability” has been explicitly priced and written into contracts, with differing
approaches across jurisdictions. In California, for example, CAISO’s Resource Adequacy (RA) framework
requires load-serving entities to pre-arrange available capacity and introduces a Flexible Ramping Product
(FRP) that effectively pays upfront to reserve upward and downward ramping capability to cover the uncertainty
band of net load. On the regulatory side, the CPUC specifies which capacity must be procured locally versus
system-wide and, in some cases, procures centrally—unbundling “adequacy” and “flexibility” and pricing.them
separately [1]-[4]. Intuitively, this is a “system-buys-first” path that makes volatility risk explicit through capacity
and short-term flexibility products, with costs largely socialized on the demand side via compliance obligations.

By contrast, the EU emphasizes long-term capacity contracts. Under the Internal Market in Electricity Regu-
lation (EU 2019/943), capacity remuneration mechanisms (CRMs) may be activated only when asupply shortfall
is demonstrated, and they must be compatible with the energy market and allow cross-border participation [5],
[6]. Many countries adopt Reliability Options (ROs): generators receive a capacity ‘payment via centralized
auctions and commit to availability during scarcity; when prices spike, they rebate revenues above the strike
price—thus writing extreme-period price risk into the contract!/ Typical cases include Ireland’s FSEM, which
places ROs at the core of its CRM design, and Italy’s Terna-run capacity market, which uses a one-sided
CfD/RO-style structure with detailed performance rules' [7]=[9]. In/short, /the EU path is to “sign long-term
capacity contracts first and internalize scarcity risk in settlement.”

China’s “dual-carbon” targets and the 2030 ‘renewable build-out plan have driven rapid PV and wind de-
ployment under the twin engines of quota_mandates and fiscal subsidies. However, the “non-dispatchable,
intermittent, and variable” nature of renewables imposes new implicit costs on the grid: system operators must
procure additional ramping and frequency-regulation aeserves to maintain balance [10]-[13]. Assessments in
some provinces indicate that as.renewable penetration.rises from 20% to above 30%, maximum upward reserve
requirements can double, and minute-scale power fluctuations can reach 20% of nameplate capacity [14]. Such
reserves are often provided.by fast-start gas turbines, whose fuel use and emissions offset part of the green
benefits [15]. If the “100% reliability” supply standard is retained, operators must maintain large quantities of
reserve and frequency-control resources; the capital and operating costs grow nonlinearly and are indirectly
embedded in. tariffs as an implicit subsidy, becoming a key drag on market efficiency.

Here, “social subsidy”/refers to the implicit support whereby the additional costs of reserves, grid reinforce-
ment, and dispatch incurred by integrating intermittent renewables are shifted from project developers to all
electricity consumers or to public finance. Social subsidy dilutes the technology’s own uncertainty costs across
all consumers, relieving generators from fully internalizing their variability. Its absolute value is denoted by CI,
equal to grid-integration cost (see ( 14)), and its relative value by the subsidy rate o (see (15)); together they
measure the system-wide burden arising from variability.Framed in policy terms, the above “social subsidy”
phenomenon is a classic externality problem of the energy transition. Academic and policy uses of the term
“green economy” are broadly consistent: UNEP defines it as an economy that improves human well-being
and social equity while reducing environmental risks and ecological scarcities, often summarized as low-

carbon, resource-efficient and socially inclusive. Within this framing, our variable-reliability market design



operationalizes the green-economy agenda for high-PV systems by internalizing variability through minute-
scale availability profiling and a discrete ramping-cost metric that is dimensionally unified with capacity charges,
thereby converting externalities into contractible and auditable settlement items.

Early approaches to quantifying variability costs relied heavily on system simulations and reserve account-
ing [10]-[13]. In parallel, the electricity-economics literature proposed reliability-differentiated pricing, treating
supply reliability as a tradable attribute so that consumers voluntarily assume part of the balancing obligation
via menus; it further showed that if, at every node and time, the electricity price equals the marginal cost
of one more unit of generation, the system endogenously minimizes total cost [16], [17]. Subsequent Priority
Service / Demand Subscription frameworks bundle reliability for sale, enabling self-selection between price and
reliability [18]-[20], and gave rise to instruments such as interruption insurance [21] and real-time-pricing [22],
[23], among others [24]-[26]. Recent work extends this logic to variable renewables by selling random/energy or
reliability-tiered contracts, thereby making variability costs explicit and internally. settled [27], [28]./Nonetheless,
three gaps remain: (i) most studies use hourly data and miss minute-scale-ramps from cloud transients, causing
a unit mismatch between capacity payments (/M) and regulation charges (/MW tmin) [10], [11]; (ii) many
models assume highly accurate forecasts or ample storage, underestimating integration costs under information
frictions [12], [13]; and (iii) price—reliability coefficients are often set heuristically, lacking direct linkage to
meteorological statistics, which limits engineering adoption[29].

Relative to these international practices, this paper takes a ‘‘contract-layer, minute-scale” route. Unlike
California’s system-level advance procurement (of capacity and flexible ramping (RA/FRP) [1]-[4], and unlike
the EU’s approach of ensuring adequacy via long-term capacity.contracts / ROs once a shortfall is identified [5]-
[9], we price the “deliverability probability™ directly in contracts: from minute-resolution PV series we construct
an availability curve, and we propose an indicator-function aggregation formula for ramping charges that
naturally converts /MW -min into_ capacity-commensurate /MW, placing variability cost on the same scale.
We then derive closed-form expressions for integration cost and the subsidy rate under full-, partial-, and
no-information scenarios to _quantify the marginal value of forecast accuracy; and, using clear-sky Lanzhou
and cloudy Guangzhou minute-series, we obtain closed-form capacity—price solutions that reveal how contract
structures and cost-allocations differ across meteorological regimes. In essence, we move the price signal of
“balancing difficulty” upstream from.the system level into buyer—seller contracts—complementing RA/FRP and
CRM/RO _without altering existing energy and ancillary-service frameworks—and show that this can materially
reduce the social integration:cost CI and subsidy rate o. These results echo the predictions of responsive-pricing

theory [18], [23]s [24] and offer a practical market-based pathway for integrating high-penetration PV.

II. MODELING PHOTOVOLTAIC VARIABILITY
A. Factors Affecting Photovoltaic Output

Photovoltaic (PV) power output is significantly shaped by three classes of environmental drivers: (i) the
diurnal cycle, (ii) synoptic weather conditions, and (iii) cloud motion.
(1) Diurnal Cycle : The diurnal cycle is the most fundamental periodic driver of PV output. Under ideal

clear-sky conditions, PV power exhibits a single-peaked profile. A simple single-factor model can be written



as
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Xaay (1) = M - cos( I
ay
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where Iy, is the effective daylight duration (hours) and M is the plant nameplate capacity. The model implies

a peak near local noon (¢ ~ 12) with output approaching zero at sunrise and sunset.

Xday(1) = Mcos [”(t[d_ﬂy] 2)] (6-18 h)
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Fig. 1: Effect of the diurnal cycleion PV output.

As illustrated in Fig. 1, the horizontal axis is time (typically from 06:00 to"18:00), and the vertical axis is actual
PV output in MW. With M = 100 MW, the profilefises from near zero at sunrise, reaches its maximum around
noon, and then declines toward zero by sunset. This baseline provides a reference for subsequent analysis under
non-ideal conditions (e.g., clouds), where deviations from. the single-peak curve can be attributed to additional
weather-driven factors.

(2) Weather Conditions : Weather effects can be grouped into three typical regimes. In clear-sky conditions,
irradiance is strong and stable, with energy’ yields at about 85%-100% of nameplate and minute-to-minute
variability typically below 2% (e.g., < 2MW. per minute when M = 100 MW); the power trace is smooth.
In partly cloudy conditions, intermittent shading lowers average output to roughly 50%-85% of nameplate and
introduces flicker<like variations; minute-scale fluctuations can reach +10%, producing frequent ramp events.

Under overcast/rain conditions, output may drop to 10%-30% of nameplate; variability is slower but the overall

level remains, persistently low.

Impact of Weather Types on PV Output
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Fig. 2: PV output profiles under different weather regimes.



As shown in Fig. 2, the horizontal axis is time over a 24-hour day and the vertical axis is output. The
clear-sky curve resembles the single-peaked baseline in Fig. 1; the partly cloudy curve exhibits reduced average
output (about 50%—-85% of nameplate) with pronounced jagged fluctuations; and the overcast/rain curve remains
smooth but depressed (about 10%-30% of nameplate).

(3) Cloud Motion and Minute-Scale Ramps :

L to

Cloud-shadow advection is a primary driver of PV variability. When cloud fields translate ‘at*10ms™
15ms~?, geographically proximate PV plants can fluctuate synchronously. The instantaneous ramp rate scales
with cloud speed and the spatial gradient of irradiance:

dX
g X Veloud V Lsolars (2)

where X is instantaneous PV output (power or a normalized index), vjouq 1S the horizontal cloud-motion velocity

(ms™1), and VI, is the spatial gradient of irradiance (with I, in W m=?, hence Vi iin Wm™?). The

dot product captures how advection across irradiance inhomogeneity induces-rapid changes in PV output.
This mechanism can produce 10 % min~" to 20 % min~' ramps. The sample below ¢ontrasts short-horizon

fluctuations with and without pronounced cloud motion. As shown.in.Fig. 3;the horizontal axis is minutes and

Short-term PV output under cloud motion (1-hour.window)
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Fig. 3: Short-horizon/PV fluctuations under cloud advection (zoomed view).

the vertical axis is output, highlighting minute-scale variabilityover a one-hour window at 1-min resolution the
trace with cloud motion exhibits minute-scale dips and rebounds, whereas the baseline without cloud motion
remains near 85 MW to, 92 MW with only small minute-to-minute variation.In practice, ramping cost accounts
for.only a small share of total integration cost, yet it is non-negligible and should be made explicit in market

design and settlement.

B: PV Availability Curve

The availability curve is defined by
n

(X(i) > z) > p} : 3)

3=

G(z) = max{p :

=1

where X (i) is realized output at time ¢ and 1(-) is the indicator (1 if X () > x, O otherwise). Equivalently,

G(z) = Pr(Xoutput > 'T)a @



i.e., the probability that output meets or exceeds threshold .

Availability Curves G(x): Day vs Night
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Fig. 4: Day vs. night availability G(x).

As shown in Fig. 4, the daytime availability curve starts at G(0) =<1 and decays monotonically with the
threshold z, whereas the nighttime curve collapses to G(x) = 0 for.any x > 0/(ajump at z = 0), highlighting
that PV alone cannot meet nocturnal demand. At night, G(x) =0 for = > 0-because X (i) =~ 0; during the day,

G(zx) decreases monotonically with z, quantifying the need for storage or.backup to meet nocturnal demand.

Availability Curves G(x): Sunny vs Cloudy
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Fig..5: Clear vs. cloudy availability G(z).

As shown'in Fig. 5, both clear and cloudy cases satisfy G(0) = 1. For small positive thresholds = > 0,
G(z) in both cases is close to 0.5, reflecting roughly 12 hours of daylight versus 12 hours of night. As x
increases, G(x) declines monotonically; the clear-sky curve remains uniformly above the cloudy one and falls

more slowly with, 2, indicating higher availability and lower intermittency at medium-high power levels (e.g.,

z > 60 MW).



C. Ramping-Cost Model

For a realized series {X;}Y ;, define

N
Cramp = ¢, ) UAX; > AXp) AX,, (5)
=1
AX; = |X; — X, (6)
At
AXy =6M 7
th Afeven‘c7 ( )

where ¢, is the unit charge, M is nameplate capacity, At is the sampling interval (1 min); and Atqyeneis-a
representative event duration (10 min). The threshold triggers charging but does not clip the step:'whenever
AX; > AXp, the entire AX; is charged at rate ¢,.. If At or Ateyent changes, only' A X3y, needs‘rescaling; the

form of (5) is unchanged.

D. Dimensional Consistency

We map minute-scale “steep-ramp” regulation difficulty onto«the same scale as the capacity term so that
ramping costs can be combined with the integration cost CI under.commensurate units (measured against
MW). Within a threshold—event-window framework, a “ramp rate” over.a canonical event duration Afeyent 1S
integrated into an equivalent power increment, so charges are assessed.by magnitude rather than by rate. Let
the sampling step be At, the nameplate/contract capacity be M and the allowed ramp rate be ¢ (fraction of

capacity per minute). Define

AXun = 6 M o207 A% S X — X,

Ateve]ﬂt

and write the ramping cost per unit capacity as

AX,
M b

N

- C.,

Crampm oGS (A, > A%
i=1

i ®)

where ¢, prices the magnitude of the step'so that the units of ¢, cancel those of AX;/M, making aamp

per MW. Here Ateyent (set to=10min) converts a rate into a quantity over the event window, and At (set to
1 min) is the sampling interval. For an approximately monotone ramp lasting 7 with average rate r = AX; /At
that satisfies r > M/ Atoyentsthe condition AX; > A Xy, holds for all steps within the event and > AX; =

— Xt,,...|]- The event cost is then ¢, 77 = ¢, |AXevent|, showing insensitivity to the sampling

rT = ‘Xtend

granularity At and that integrating “rate” over Ateyent naturally yields a “quantity.”

Define the capacity-equivalent

Mg = Crome ©)

c )
which putsramping on the same MW scale as the capacity price ¢ (/MW). The integration cost can then be

written as
M
Cl(a) =c ?(I—H(a))—l—Meq , (10)

where the first term is the capacity-equivalent cost induced by reliability layering (decreasing with the accuracy
function H(«)), and the second term is the capacity-equivalent consumption due to minute-scale ramps. The

two terms share the same dimension and can be added directly for contract settlement or sensitivity analysis.



Compared with existing approaches, this dimensional reconciliation is essential. “Mileage/trajectory integral”
methods charge all tracking motion via )_,|AX;| or ﬂX | dt, typically settled at prices per MW-min; these
units are not directly comparable to capacity price and the metric is sensitive to measurement noise and high-
frequency jitter. “Ramp-rate penalties” of the form ). (JAX;|/At) still charge a rate and thus depend on time
resolution and filtering choices. System-side flexible ramping products procure capability (MW) day-ahead/real-
time, which concerns available capacity rather than realized event magnitudes.

By using a threshold—event-window construction, we move the physical condition “exceeding the dispatchable
ramp rate” up to the contract layer and, once the threshold is crossed, charge by the full magnitude of the step
rather than only the excess. This concentrates price signals on the minutes that actually pull reserves. The explicit
Atevent converts “rate” into an equivalent power increment so that ¢, immediately yields'monetary. cost-on the
MW scale; through My = Cramp/c it aligns seamlessly with the capacity term. The design remains numerically
robust under changes of At or the event window by rescaling A Xy, and’it naturally filters out’ fine-grained

tracking and noise—offering advantages in unit consistency, comparability,'and contractual implementability.

III. CoST MODELS
To quantify PV integration costs and the associated subsidy needs, we develop three scenarios distinguished

by the producer’s forecast accuracy. For each scenario we compute the PV producer’s profit, the additional cost

required for grid integration (the social subsidy), and ’how these costs depend on information quality.

A. Full-Information Forecast

(1) Cost Formulation : Under full information, the producer-can perfectly predict future output (e.g., knowing
in advance the output at each hour+of ‘tomorrow)..The.producer sells A/ MW of “100% firm” power at unit
price ¢ and procures just enough reserves to cover shortfalls. Let ¢; and co denote the unit prices (per MW) of

reserve capacity and reserve energy; respectively. Inthe full-information case, the producer procures (M — x) 1

MW of reserves, where x is therealized outputand (z)+ = max{z,0}.

X(i) vs\ M
100

80 -
60

40

Power X(i) (MW)

20 +

0 T T T T T
5 10 15 20 25

Sample index i

Fig. 6: Profit accounting under full information.

As shown in Fig. 6, a stylized realization X (i) is plotted against the contracted firm level M (purple dashed

line). Green markers indicate periods with surplus (X (i) > M). Red markers and the vertical red segments



indicate shortfalls; the length of each segment is exactly (M — X (7)), i.e., the reserve that must be procured in
that minute. Summing these red segments over time approximates the discrete shortfall Y _,(M — X (i), whose
expectation equals the integral term in (11). Thus the figure makes clear that the second term in (11) is the
expected cost of covering all shortfalls (capacity plus energy), while ¢ M is the revenue and Clapmyp accounts for
minute-scale ramping cost (not drawn). Let G(z) = Pr(X > z) be the availability curve and F(z) = T=G(x)

the cdf of output X. Write —G, = —{LG(x) = F'(z) for the density. The expected profit is
M

3
T = max{cM —(e1 + cz)/ (M —2)y (-Gp)dx — Cramp}, (11)
0

where Cramyp i8 the total ramping cost defined earlier. The first-order condition with respect to M yields

C

F(M) = , F(z)=1-G(z). 12
() = . F)=1-0l) (12)
Assuming X ~ Unif[0, M], we obtain
2
— c c
= M = Y ammp 13
1+ ¢y ’ 1 B) 1 + ¢ p (13)

(2) Numerical Illustration : We set ¢; = 10/MW, ¢; = 60/MW;.c = 55/MW, and ¢, = 0.80/MW for a

c
c1+c2

— 95
M = M =~ 0.785 M.
10 4- 60 0785

concrete calculation. From M = M we obtain

If no reserves were required, the producer would.simply 'sell all PV, energy and earn the benchmark expected
profit %CM .

For ramping costs, assume three effective ramp events per day. Each event has a magnitude A Xeyen = 0.2M,
and every one-minute step within the event,exceeds.the threshold AXy,. With sampling At = 1min and
Atevene = 10min, take AXy = 0.0LM. Thenteach event contributes 10 threshold-exceeding steps of size
0.02M, so

Cramp = 0.8 0:02M x 3 x 10 = 0.48M,

and the same ramp-cost-assumption is adopted in subsequent calculations.

The grid-integration cost'C'I; and its'normalized share o, are

cM cM
L= —m = —(1- ASM 14
Cl 9 ™1 9 < Cl+02>+0 8 y ( )
Cl

c

Expression (14)'shows that C'I; has two components: (i) %[1 — ate

], the expected cost of procuring reserve
capacity and energy to ensure delivery of the firm commitment; and (ii) the added ramping cost 0.48M, which
accounts for minute-scale variability drawing on system balancing resources. Normalizing by the nominal
capacity term %CM via (15) yields o7 = 23.2%, indicating that, under these parameters, variability raises the

social-cost'by nearly one quarter.



B. No-Information Forecast

(1) Cost Formulation : With no information, the producer cannot forecast beyond knowing the output
distribution. To avoid default on the firm commitment, it must pre-procure reserve capacity equal to the
committed level. Thus the producer sells M/ MW at unit price c, purchases M MW of reserve capacity at

price ¢, and, when realized output is x, buys real-time reserve energy (M — x) at price cz. The expected

profit is
—_ —_ M —
Ty = max{cM —aqM —02/ (M —2); (—G,)dx — Cramp}, (16)
M 0
where G(z) = Pr(X > z), F(z) = 1— G(x), and -G, = C%F(a:) is the density.. The first-ordetr condition
gives
F(M) = —=, (17
C2
M= (18)
Co
Under X ~ Unif[0, M], the maximum profit is
2
my=1 le=e)” O (19)

(2) Numerical Illustration : Using ¢; = 10/MW, ‘eg' =60/ MW, ¢ .=/55/MW, and the same ramp-cost

assumption Cramp = 0.48 M as before, we obtain

o= S = P0G s
C2 60
The grid-integration cost and its normalized share are
M ~cp)?
Dl X [1 \ M} 10.48 M, (20)
2 cCo
Cl,
= =40.4%. 21
2T ’ @b

Here C'I, combines the expected cost of capacity and energy reserves implied by the no-information commitment

with the minute-scale ramping cost; oy.expresses the total as a share of the nominal capacity term %CM .

C. Fartial-Information Forecast

In practice, producers neither have perfect foresight nor face complete ignorance; partial information (e.g.,
from_weather forecasts) is_ available. The producer chooses reserve purchases based on the committed firm
quantity M and the predicted output Tpred. Forecast errors cause either excess capacity (waste) or emergency

purchases; we parameterize the resulting penalty by a deviation-cost coefficient . The profit maximization is
3 = mﬁaX{CM - {Cl E[(M - xpred)ﬁ»} + 2 E[(M - xreal)Jr] + 'YE[ |xreal - xpred| ” - Cramp}v (22)

where [E[-]-denotes expectation, Tpred 18 the forecast, and T, is the realized output. The first two expectations
represent the capacity reserved ex ante (based on the forecast) and the shortfall energy needed ex post (based
on the realization). The deviation term E[ |2eal — Zprea| | captures the mismatch between purchased and required

reserves. The ramping cost Cyamp does not depend on forecast accuracy and follows the earlier definition.



Because 73 depends on forecast quality, a closed form in terms of a specific distribution for Zpeq is not

imposed. Instead, we interpolate between the full- and no-information benchmarks and model the grid-integration

cost as
cM
Cl(a) = - [1— H(a)] + Cramp, 23)
where « € [0, 1] indexes forecast quality and H («) is anchored at the two limits and interpolated.by a‘concave
power law:
H(a) = Ho + (Hy — Ho) &, 0<B<1, (24)
)2
Hy = w7 H, = ¢ . (25)
cca c1+co
Hence,
cM
Cl(o) = —- [1— Ho — (Hy — Ho)o"] + Cramp: (26)
Taking derivatives gives
dCTI cM
= —— (H, - H, At 27
=~y (H — Hy) BaT<N, @7)
d?CcI M
—— = — (H, - Hy) B(1—B) P2 2
= S (M= Ho) pL= B)a” 2, 28)

so CI(«) is decreasing in v with diminishing returns (steeper gaing at low accuracy, flattening at high accuracy).

Boundary values satisfy CI(0) = L[l — Ho] 4+ Cramp and"CI(1) = L1 — ——] + Cramp. To ensure

cites

H(a) € [0,1] and monotonicity from Hy to Hi, take the feasible price domain ¢ < ¢; + ¢p and Hy > Hy,
the latter equivalent to c2co > (1 + c2) (e ¢1)? (or co> % when 2¢ > ¢1), together with Hy <1 (i.e.,
cy > @). Within this domain the semi-information results satisfy 01 < 03 < 09 and CI; < Cl5 < Cls.
The choice of the concave interpolant. 1= o/ reflects that marginal forecast improvements decline: in practice,
low-cost signals (basic meteorology) yield large initial error reductions, whereas near 90% accuracy, additional
data and modeling (satellite imagery, radar, deep learning) mainly contend with irreducible noise and yield
smaller gains.

A visualization_of overall profit under:the semi-information model can be produced based on (23)—(26).

Cl(«) curve (8 = 0.5)

1100 ¢ CI(0)=¥1110.5
Fy
< 1000
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c
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£
700+
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0.0 0.2 0.4 0.6 0.8 1.0

Forecast accuracy a

Fig. 7: Integration cost C'I(«) vs. forecast accuracy a (8 = 0.5).



As shown in Fig. 7, the horizontal axis is forecast accuracy « and the vertical axis is the grid-integration
cost. At & = 0 (no information), CI ~ 1110.50; at a = 1 (full information), CI =~ 637.20. Both endpoints

are consistent with (26) and the scenario definitions.

Subsidy rate o(a) curve (B =0.5)
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Fig. 8: Subsidy rate o(«) vs. forecast accuracy a(8:= 0.5).

Similarly, Fig. 8 shows the subsidy rate. The endpoint values at.&v = (_and/e./= 1 correspond to the no-
information and full-information cases, respectively (cf. ooand o1, computed earlier as 40.4% and 23.2%).

Both visualizations use the concave power-law interpolation.with 8 = 0.5 in (24).

IV. VARIABLE-RELIABILITY PV-MARKET DESIGN

If stochastic PV energy is fully forced to be “firm,” the required reserves rise sharply and costs escalate.
To share uncertainty more efficiently, we design a market mechanism in which PV producers sell energy at
differentiated reliability levels to consumers who voluntarily accept supply risk in exchange for lower prices.
The key idea is that uncertainty is absorbed by the contracts rather than by system-side reserve procurement:
PV output is presold in day-ahead:tiers by delivery. probability {px}, and a priority allocation rule R, (t) is

fixed ex ante so that, for every realized state w,

/ 1 d(t) Ry(t)dt < S(w), (29)
0

where d(t) is the contracted quantity (MW) for consumer ¢, R, (t) € {0,1} indicates service in state w, and
S(w) is therealized PV supply (MW). Thus the total served load never exceeds realized output. When supply
is insufficient, low-reliability contracts are curtailed according to the pre-specified order, without compensation;
the shortfall is borne by the consumers who opted for lower p, rather than by system-wide reserves.

Prices make'risk explicit: lower p carries a lower energy price, while higher p approaches the cost of firm
supply. Because every random state is already partitioned by the contract structure, physical shortfalls are
transformed into. contractually acceptable curtailments, eliminating the need for additional socialized reserves

to backstop PV stochasticity.

A. Mechanism and Contract Structure

In the day-ahead market, the producer offers a menu of reliability-differentiated contracts. Each tier is denoted

(P, pr), where py € (0,1] is the delivery probability and py, is the corresponding price; higher p;, commands



a higher price. Consumers ¢ € [0, 1] choose a pair (p(t),d(t)), meaning they purchase d(t) at reliability p(t).
In real time, given realized PV S(w), allocations follow a fixed priority rule in favor of higher reliability.
Formally, let R, (t) € {0,1} indicate whether consumer ¢ is served in state w. Feasibility and reliability are

enforced by

P(R,(t) =1) = p(t), /0 d(t) R,(t)dt < S(w), (30)

i.e., the expected service probability matches the contracted reliability, and the total service in each state does
not exceed realized supply. A monotone priority rule (higher p weakly dominates lower p in every state)

implements these constraints while aligning prices with the accepted risk.

B. Utility and Social Welfare Maximization

Let U(d) denote a consumer’s utility from receiving quantity d and L(d) the loss”if ‘curtailed. Assume
U(0) = L(0) = 0 and U, L are increasing and convex. Because delivery is.probabilistic, a contract (d, p) yields
expected net utility

Ui(d,p) = pU(d) — (1 =p) L(d). 3D
Aggregating over a continuum of consumers ¢ € [0, 1], social welfare is

1
w :/0 [p(t) U(d(t)—( = p(t)) L(d(t))] dt, (32)

to be maximized subject to the feasibility and reliability constraints in (30) under a discrete set of output states
{s1 < -+- < s,} with probabilities {my,..., 7}, Yor; =L

We implement n contract tiers. Tier ¢ offers reliability’ p; with price p;, ordered so that p; > pa2 > -+ > p,,.
Consumers ¢ € [t;—1,t;) choose tier« and purchase(d;. In'state s;, only tiers with index j < ¢ (higher reliability)

are served. Formally,
0'< sy <so. <o <sn, > m=1 (33)
i=1

Priority order is welfare-improving!s, Consider two contracts A(pa,da) and B(pp,dp) with p4 > pp.

For a small reallocation 0 > 0 of’service, their marginal welfare gains are
AWA = pAU/(dA) 6 — (1 - pA)L/(dA) 57 (34)
AWB = pBU/(dB) o — (1 — pB)L/(dB) 0. (35)

Sinece U’, L’ > Osand p4 > pp, reallocating § from B to A raises welfare. Repeating eliminates all “reverse-

order” allocations and yields a monotone priority rule

1, te€[0,tf], S(w) = s,
R:(t) = (36)

0, otherwise,

with induced reliabilities

p; = PiS(w) >si] = Zﬂj. 37



Cumulative feasibility implies

Z t—tiy), s = Zd t1), (38)

hence
8; — 8i—1 = d; (t: - t?—l)a (39)

which links the size of tier-i’s customer set to its per-customer allocation. Therefore

dF = S — Si—1

i = (40)
tz’ - ti—l

Shadow pricing and individual optimality.: Introduce a shadow price ;1 > 0 for the reliability-filtered

resource. A representative consumer’s Hamiltonian (surplus) is
H(d, p,p) = pU(d) — (1 —p)L(d) — 4d. (41)
An optimal contract (p*, d*) satisfies
H(d", p*,p) = H;ixH(d,p,u) = H", (42)

together with feasibility and complementary slackness (market clearing).“The first-order condition for d; (given

p; and p) is
U'(d}) =(T'wpi) L'(d]) =, 43)

i.e., marginal social benefit equals the marginal resource_cost.

Tier-wise optimal contracts.: There exist 0 = tj < t7°< --- < tf = 1 with k < n such that for any
te [tf 1at:)

dj = argmaxc{ piU(d)— (1 - p])L(d) —pid }, (44)

Si —Si=1
di = —<, (45)

b — iy
p; =T, (46)

=
1, tE[O,tﬂ, S(w):si,

R = @7

0, otherwise.

Given a target consumer surplus H*, (44) and (45) jointly determine each tier’s purchase d; and the measure
of consumers .assigned to that tier, while satisfying the supply constraints and implementing reliability through
the priority rule.

a) Producer revenue and welfare decomposition.: The producer’s expected revenue is

n

1
m = /0 p(t)d(t)dt = Zpl d dt = sz it — sz S; — Si— 1 (4’8)

i=1 Jti-
where, under the optimal priority allocation, tier ¢ serves consumers ¢ € [t;_1,t;) with per-customer quantity

d — Sizsi=1
v ti—ti—1’



The producer’s (gross) profit under the optimal allocation is therefore
n
maxm = Zpi (si — Si—1)- (49)
i=1

Social welfare—producer surplus plus consumer surplus—equals

n

W= "(tr —t;,) [p;U(dy) — (1 — p;)L(d})] (50)
=1

=> (t; —t;) [pid; + H;] (51)
1=1

= pi(si—sic1) + Y (i —t1) H, (52)
1=1 1=1

producer revenue consumer surplus
where
H} = max {pjU(d) = (1 = pj)L(d) = p;d} = p;U(d} )= (L_Ip}) L(d}) = pid;’,
is the (per-consumer) optimal surplus for tier ¢, cf. the Hamiltonian in.(42). At the' efficiency optimum, the

resource shadow price 1 equals the tier price p;, by complementary-slackness and marketclearing; thus (51)—(52)

express the standard identity “producer revenue + consumer surplus = social welfare.”

V. CASE STUDIES AND REGIONAL COMPARISON

To verify the applicability and flexibility of the propoesed variable-reliability market under different regional
conditions, we examine two representative Chinese cCities: Ianzhou “in the northwest and Guangzhou on the
southern coast. The former has abundant sunshine and relatively stable weather, representing a high-predictability
PV environment; the latter is cloudier/and rainier/with, stronger variability, representing a more challenging

meteorological setting.

A. Parameter Settings and Output Modeling

According to national meteorological statistics, Lanzhou’s average effective daylight duration is about 6.7
hours/day with a clear-sky share of roughly 65%, while Guangzhou’s counterparts are 4.8 hours/day and 35%,
respectively. Based on the diurnal baseline model in this paper, we simulate hourly PV output for a typical clear
day in Lanzhou and a typical cloudy day in Guangzhou. We apply a weather attenuation factor 7)(¢) of 100% and
80%, respectively, and=superimpose a cloud-induced disturbance term (author-specified for illustration rather
than-measured data). Minute-level series are used later to evaluate ramping cost. The resulting representative

day profiles, X anshou(t) and Xguangzhou(t), are shown in Fig. 9.

B! Availability G(x) Comparison

From the output sequences we compute the availability functions G () for both locations. As shown in Fig. 10,
Lanzhou’s availability dominates Guangzhou’s across all thresholds, especially in the high-power region (e.g.,
z > 80 MW), where Lanzhou still has a significant chance of meeting the target while Guangzhou’s probability

is near zero. This indicates greater stability and reliability for Lanzhou’s PV output.
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Fig. 9: Theoretical PV output profiles: Lanzhou (clear) vs. Guangzhou (cloudy):
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Fig. 10: Theoretical availability curves G(z): Lanzhou (clear) vs. Guangzhou (cloudy).

For illustration, a high-reliability.contract at # = 200MW in Lanzhou achieves an empirical delivery rate close
to 40%, aligned with its availability curve;/a medium-reliability contract at the same = in Guangzhou delivers
about 30%, reflecting higher,meteorological uncertainty. The cross-regional differences in contract structures

are direct mappings of the underlying availability curves and weather stability.

C. Ramping.and Integration Cost Calculations

Using minute-level samples of the two representative-day profiles, we compute ramping cost via (5) in
conjunction with figs. 9 and 10, and then evaluate the full-information and no-information integration costs

via (I1) and (16). The results are summarized in TABLE 1.

TABLE I: Ramping and integration costs: Lanzhou vs. Guangzhou

Region Camp ® CI1 (¥ o1 Cla (¥ 02

Lanzhou 62.68 65197 23.71%  1125.18 40.92%
Guangzhou 1426.58  2015.87 73.30%  2489.08 90.51%




D. Contract Design

We now present a tiered contract design based on variable reliability. The core idea is to map the PV
availability G(x) and discrete output states {s;, 7, } into a set of reliability tiers {p}, partition consumers by
reliability preference, and then determine each tier’s capacity dj and price factor ay.

a) Step 1: Determine reliability tiers py.: Discretize intra-day output into n states
n
0<s1 <8<+ < sp, ijzl.
j=1
Select K < n tiers ordered by reliability. Define
n
pr=P[S > s = > k=1,...,K. (53)
j=Fk

Alternatively, choose output thresholds x; on G(z) and set pr, = G(xzy).

b) Step 2: Partition consumers by preference.: Split t € [0, 1] into K groups:
O=thr<t1 < ---<tg=1,

where (tx—1,1) is the set of consumers choosing tier k, with share

K
O =th —ti1,  YoOr=1,
k=1

c) Step 3: Determine tier capacities di.: In state s;, only contracts-with reliability at least p; are served.

The supply constraint )
/ d(t)R,(t) dt <5(w)
0

implies a monotone allocation. For any %

$in= Y di(tp—t; 1), (54)
j=1
hence
S; — Si—
s;— Si—1 =di' (t; —ti—1), d; = t—itll (55)

d) Step 4: Pricing (two common approaches).:

1) Cost-based: Given a base capacity price ¢y (¥/MW per period), introduce tier multipliers ay:
Pk = Q Co, ] > Qg > > QK-

Multipliers can reflect marginal social cost, reserve/ramping allocation, or calibrated coefficients.

2) Shadow-price: With shadow price p for the reliability-filtered resource, a consumer’s surplus

H(d, p, p) = pU(d) = (1 = p)L(d) — pd
implies at the optimum
prU'(d}) — (1 — px) L' (d}) = 1o = pr,
$0.pg' increases with pg.
For the Lanzhou/Guangzhou cases we use the first approach with ¢y = ¢, i.e., pr = aic. One may set
ar =1+7(pk — p)

(linear or piecewise fits; y; a tuning parameter).



e) Step 5: Tiered examples.: Using the computed G(x) and variability features, we list five illustrative

tiers for each region: parameters (py, Oy, di, o) with prices py = agc. See TABLE II (with M = 100 MW).

TABLE II: Illustrative tiered contracts: Lanzhou vs. Guangzhou

Region Tier Pk (% di, (MW) ag Pr = aicC

Lanzhou 1 095 15% 1333 1.30 71.5
2 0.80 35% 57.1 1.10 60.5
3 0.50  30% 83.3 1.00 55.0
4 015 15% 1333 0.90 49.5
5 0.00 5% 0.0 0.70 38.5

Guangzhou 1 095 5% 400.0 1.40 77.0
2 0.80 15% 1333 1.20 66.0
3 0.50 25% 80.0 1.00 55.0
4 020 35% 57.1 0.85 46.8
5 0.00 20% 0.0 0.60. 33.0

Here pj, is sampled from G(x), 6. is an assigned consumer share, dj, follows (55), and «y, respects (1).

f) Discussion.: TABLE Il reflects the regional differences in (G(x) and'cost structure. Lanzhou’s availability
is higher/flatter, allowing high-reliability tiers (e.g., p = 0.8) to cover a‘larger fraction of users with more
balanced capacities. Guangzhou’s high-power availability is much lower, so high-reliability products are scarce
with larger markups, while mid/low tiers host more users and volume. Together with the previously computed
Cramp, CI1, CIs, and 01,09, the results show. that forcing' PV into a single “firm” product would raise social
subsidies—whereas the variable-reliability. mechanism-lets'users with lower reliability needs voluntarily absorb
quantity risk, reducing reserve requirements and balancing stress and improving price signals and total welfare.
The case study demonstrates adaptation to, different.meteorology and regional features, achieving efficient

allocation under heterogeneity.

b o Contract capacity stacking (example)

1)

Contract capacity share (3

Guangzhou

Lanzhou

Fig. 11: Contract capacity stacking (example). Each bar shows the fraction of capacity allocated to reliability tiers {px} in
a region (normalized to >, = 1). Colors follow the order in TABLE II (high to low p). Lanzhou exhibits a more balanced
mix, consistent with a higher, flatter G(x); Guangzhou concentrates in mid/low tiers, indicating scarcity and higher markups

for high-reliability products. This pattern aligns with regional differences in Cramp, CI1, Cl2, and o1, 02.



As shown in Fig. 11, we visualize the outcome by stacking the normalized contract capacities by reliability
tier in each region. For region 7, the height of tier k£ equals 6dy / > j 0;d;, so each bar sums to 1 and the
composition—not the absolute level— is comparable across regions. Lanzhou exhibits a more balanced mix
with substantial mass in high-p tiers, whereas Guangzhou concentrates in mid/low-p tiers and has only a thin

high-p slice, reflecting the scarcity (and higher markups) of high-reliability products.

VI. CONCLUSION

Using minute resolution PV series, we first construct the availability curve G(z) and propose an indicator
aggregation ramping metric that converts traditional ¥/ MW -min charges into capacity commensurate ¥/MW,
resolving the unit mismatch between regulation and capacity. We then derive closed form integration costs
and subsidy rates under full, no, and partial information scenarios, quantifying 'the marginal-value of forecast
accuracy. Combining reliability stratification with a capacity price joint design, random output risk is endoge-
nized within contracts, avoiding additional system wide reserves while maintaining real time balance. Finally,
a Lanzhou (clear) vs. Guangzhou (cloudy) comparison illustrates, regional adaptability: under highly variable
minute scale conditions in Guangzhou, the social subsidy rate declines from about"90% under the traditional
specification to below 70% with variable reliability, while Lanzhou remains around 25%. These results highlight
the potential of variable reliability markets to reduce reserve needs, improve price signals, and enhance system
economics for high penetration PV integration. Viewed through the.lens of the green economy, our approach
brings environmental and system variability externalities into ‘contracts and settlement ex ante, delivering joint
gains in efficiency and equity: dimensionally unified ramping metrics and availability profiling reduce reliance
on rigid reserves and lower socialized integration costs,<while. reliability price menus and a priority rule align
incentives via voluntary choice. This maps directly onto the UNEP emphasis on well being, equity, and lower
environmental risk, and is consistent.with the OECD/World Bank green growth focus on resource efficiency

and resilience without sacrificing growth.
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