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Abstract

To reduce the reserve and frequency-regulation costs triggered by high-penetration photovoltaics, this paper

proposes a variable reliability market design framework that does not rely on high accuracy forecasting. First,

minute resolution output series are used to construct an availability curve, and a discrete ramping cost metric

is introduced with units commensurate with capacity pricing. The availability curve separates daylight from

nighttime segments and highlights the operational contrast between clear sky and cloudy regimes at medium to

high output levels. The ramping metric compresses short run volatility into a settlement ready, auditable quantity

that is dimensionally unified with capacity terms, allowing variability charges to be added to, or translated into,

capacity based charges without altering existing market products or settlement plumbing. On this measurement

foundation, we formulate three integration cost models (full information, partial information, and no information)

and derive closed form indicators for grid integration cost and a subsidy rate that captures the extent to which

variability costs are socialized. The models make transparent how incremental improvements in forecast quality

map into reduced balancing needs and clearer price signals for producers and consumers.

In the broader policy context of decarbonization and the renewable buildout, the contract layer we advocate,

which brings variability forward and prices it with dimensionally unified minute scale metrics, fits squarely within

the mainstream framing of the green transition. Consistent with the UNEP’s widely cited formulation, a green

economy is one that improves human well being and social equity while significantly reducing environmental

risks and ecological scarcities, typically characterized as low carbon, resource efficient and socially inclusive. By

making variability explicit and priced with dimensionally unified minute scale metrics, our variable reliability

design provides a settlement ready and auditable pathway that is aligned with the green economy transition.

Building on these measurements and cost characterizations, we design a variable reliability family of tiered

capacity and pricing contracts, implemented through a transparent priority rule that guarantees feasibility in

every realized state: total served load never exceeds realized PV output, and scarcity is resolved through

orderly curtailment consistent with the contracted reliability tier. Prices can be supported either by shadow

value interpretations or by cost based markups, making the mechanism auditable and compatible with prevailing

energy and ancillary service arrangements while keeping ex ante terms and ex post verification straightforward.

The contract layer therefore internalizes stochastic risk before real time and lets consumers voluntarily choose

reliability and price bundles, aligning incentives without indiscriminate expansion of system side reserves.

We assess the framework using representative minute scale day profiles from two meteorologically distinct

regions: Lanzhou (clear sky, relatively stable) and Guangzhou (cloud driven and rampy). Guangzhou’s more

frequent minute scale ramps are associated with markedly higher integration costs and subsidy rates than in

Lanzhou, validating the sensitivity of the approach to regional heterogeneity and showing that exposing variability

at the contract layer reduces rigid reserve requirements, lowers socialized costs, and improves the clarity and

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



II

credibility of economic signals for both producers and consumers. Regional availability patterns naturally map

into contract menus and markup factors, yielding a location aware design that respects local conditions without

sacrificing market coherence.

On implementation, emphasis is placed on the discrete ramping cost metric. A threshold and event window

are calibrated from local historical data using the sampling step and a canonical event duration; whenever a one

step change exceeds the threshold, the entire step is counted under a whole step charging rule. With only a few

tunable parameters, this construction turns high frequency fluctuations into a compact, noise tolerant, reproducible

settlement variable that auditors can recompute directly from telemetry. Because it is dimensionally unified

with capacity charges, the metric can be added to capacity payments or expressed as a capacity equivalent for

benchmarking across regions and seasons, enabling phased pilots that scale as data quality and market familiarity

grow. By revealing the price of balancing difficulty before real time, the design also strengthens interactions with

storage and flexible loads, encouraging investment and improving utilization of existing assets.

Sensitivity analyses indicate that policy conclusions are robust to alternative event window definitions,

threshold choices, and moderate data gaps; the ordering of contract options and the magnitude of regional

cost differentials remain qualitatively unchanged. Limitations, such as possible nonstationarity under extreme

weather regimes and the need for transparent governance when reliability menus evolve, are mitigated by periodic

recalibration of availability profiles and ramp parameters and by publishing versioned inputs and audit trails.

Overall, moving the price signal for balancing difficulty upstream into the contract layer, while centering a

discrete, auditable, capacity commensurate ramping metric, offers a practical, scalable pathway to integrate large

shares of PV without dependence on high accuracy forecasting, reduce socialized integration costs, and improve

allocative efficiency across the system.

Index Terms

photovoltaics; minute-resolution variability; availability curve; discrete ramping-cost metric; dimensionally

unified settlement; variable reliability; tiered capacity and pricing; integration costs
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I. INTRODUCTION

In recent years, the value of “reliability” has been explicitly priced and written into contracts, with differing

approaches across jurisdictions. In California, for example, CAISO’s Resource Adequacy (RA) framework

requires load-serving entities to pre-arrange available capacity and introduces a Flexible Ramping Product

(FRP) that effectively pays upfront to reserve upward and downward ramping capability to cover the uncertainty

band of net load. On the regulatory side, the CPUC specifies which capacity must be procured locally versus

system-wide and, in some cases, procures centrally—unbundling “adequacy” and “flexibility” and pricing them

separately [1]–[4]. Intuitively, this is a “system-buys-first” path that makes volatility risk explicit through capacity

and short-term flexibility products, with costs largely socialized on the demand side via compliance obligations.

By contrast, the EU emphasizes long-term capacity contracts. Under the Internal Market in Electricity Regu-

lation (EU 2019/943), capacity remuneration mechanisms (CRMs) may be activated only when a supply shortfall

is demonstrated, and they must be compatible with the energy market and allow cross-border participation [5],

[6]. Many countries adopt Reliability Options (ROs): generators receive a capacity payment via centralized

auctions and commit to availability during scarcity; when prices spike, they rebate revenues above the strike

price—thus writing extreme-period price risk into the contract. Typical cases include Ireland’s I-SEM, which

places ROs at the core of its CRM design, and Italy’s Terna-run capacity market, which uses a one-sided

CfD/RO-style structure with detailed performance rules [7]–[9]. In short, the EU path is to “sign long-term

capacity contracts first and internalize scarcity risk in settlement.”

China’s “dual-carbon” targets and the 2030 renewable build-out plan have driven rapid PV and wind de-

ployment under the twin engines of quota mandates and fiscal subsidies. However, the “non-dispatchable,

intermittent, and variable” nature of renewables imposes new implicit costs on the grid: system operators must

procure additional ramping and frequency-regulation reserves to maintain balance [10]–[13]. Assessments in

some provinces indicate that as renewable penetration rises from 20% to above 30%, maximum upward reserve

requirements can double, and minute-scale power fluctuations can reach 20% of nameplate capacity [14]. Such

reserves are often provided by fast-start gas turbines, whose fuel use and emissions offset part of the green

benefits [15]. If the “100% reliability” supply standard is retained, operators must maintain large quantities of

reserve and frequency-control resources; the capital and operating costs grow nonlinearly and are indirectly

embedded in tariffs as an implicit subsidy, becoming a key drag on market efficiency.

Here, “social subsidy” refers to the implicit support whereby the additional costs of reserves, grid reinforce-

ment, and dispatch incurred by integrating intermittent renewables are shifted from project developers to all

electricity consumers or to public finance. Social subsidy dilutes the technology’s own uncertainty costs across

all consumers, relieving generators from fully internalizing their variability. Its absolute value is denoted by CI,

equal to grid-integration cost (see ( 14 )), and its relative value by the subsidy rate σ (see ( 15 )); together they

measure the system-wide burden arising from variability.Framed in policy terms, the above “social subsidy”

phenomenon is a classic externality problem of the energy transition. Academic and policy uses of the term

“green economy” are broadly consistent: UNEP defines it as an economy that improves human well-being

and social equity while reducing environmental risks and ecological scarcities, often summarized as low-

carbon, resource-efficient and socially inclusive. Within this framing, our variable-reliability market design
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operationalizes the green-economy agenda for high-PV systems by internalizing variability through minute-

scale availability profiling and a discrete ramping-cost metric that is dimensionally unified with capacity charges,

thereby converting externalities into contractible and auditable settlement items.

Early approaches to quantifying variability costs relied heavily on system simulations and reserve account-

ing [10]–[13]. In parallel, the electricity-economics literature proposed reliability-differentiated pricing, treating

supply reliability as a tradable attribute so that consumers voluntarily assume part of the balancing obligation

via menus; it further showed that if, at every node and time, the electricity price equals the marginal cost

of one more unit of generation, the system endogenously minimizes total cost [16], [17]. Subsequent Priority

Service / Demand Subscription frameworks bundle reliability for sale, enabling self-selection between price and

reliability [18]–[20], and gave rise to instruments such as interruption insurance [21] and real-time pricing [22],

[23], among others [24]–[26]. Recent work extends this logic to variable renewables by selling random energy or

reliability-tiered contracts, thereby making variability costs explicit and internally settled [27], [28]. Nonetheless,

three gaps remain: (i) most studies use hourly data and miss minute-scale ramps from cloud transients, causing

a unit mismatch between capacity payments (/MW ) and regulation charges (/MW ·min) [10], [11]; (ii) many

models assume highly accurate forecasts or ample storage, underestimating integration costs under information

frictions [12], [13]; and (iii) price–reliability coefficients are often set heuristically, lacking direct linkage to

meteorological statistics, which limits engineering adoption [29].

Relative to these international practices, this paper takes a “contract-layer, minute-scale” route. Unlike

California’s system-level advance procurement of capacity and flexible ramping (RA/FRP) [1]–[4], and unlike

the EU’s approach of ensuring adequacy via long-term capacity contracts / ROs once a shortfall is identified [5]–

[9], we price the “deliverability probability” directly in contracts: from minute-resolution PV series we construct

an availability curve, and we propose an indicator-function aggregation formula for ramping charges that

naturally converts /MW ·min into capacity-commensurate /MW , placing variability cost on the same scale.

We then derive closed-form expressions for integration cost and the subsidy rate under full-, partial-, and

no-information scenarios to quantify the marginal value of forecast accuracy; and, using clear-sky Lanzhou

and cloudy Guangzhou minute-series, we obtain closed-form capacity–price solutions that reveal how contract

structures and cost allocations differ across meteorological regimes. In essence, we move the price signal of

“balancing difficulty” upstream from the system level into buyer–seller contracts—complementing RA/FRP and

CRM/RO without altering existing energy and ancillary-service frameworks—and show that this can materially

reduce the social integration cost CI and subsidy rate σ. These results echo the predictions of responsive-pricing

theory [18], [23], [24] and offer a practical market-based pathway for integrating high-penetration PV.

II. MODELING PHOTOVOLTAIC VARIABILITY

A. Factors Affecting Photovoltaic Output

Photovoltaic (PV) power output is significantly shaped by three classes of environmental drivers: (i) the

diurnal cycle, (ii) synoptic weather conditions, and (iii) cloud motion.

(1) Diurnal Cycle : The diurnal cycle is the most fundamental periodic driver of PV output. Under ideal

clear-sky conditions, PV power exhibits a single-peaked profile. A simple single-factor model can be written
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as

Xday(i) = M · cos
(
π(i− 12)

Iday

)
, i ∈ [6, 18], (1)

where Iday is the effective daylight duration (hours) and M is the plant nameplate capacity. The model implies

a peak near local noon (i ≈ 12) with output approaching zero at sunrise and sunset.

Fig. 1: Effect of the diurnal cycle on PV output.

As illustrated in Fig. 1, the horizontal axis is time (typically from 06:00 to 18:00), and the vertical axis is actual

PV output in MW. With M = 100MW, the profile rises from near zero at sunrise, reaches its maximum around

noon, and then declines toward zero by sunset. This baseline provides a reference for subsequent analysis under

non-ideal conditions (e.g., clouds), where deviations from the single-peak curve can be attributed to additional

weather-driven factors.

(2) Weather Conditions : Weather effects can be grouped into three typical regimes. In clear-sky conditions,

irradiance is strong and stable, with energy yields at about 85%–100% of nameplate and minute-to-minute

variability typically below 2% (e.g., ≤ 2MW per minute when M = 100MW); the power trace is smooth.

In partly cloudy conditions, intermittent shading lowers average output to roughly 50%–85% of nameplate and

introduces flicker-like variations; minute-scale fluctuations can reach ±10%, producing frequent ramp events.

Under overcast/rain conditions, output may drop to 10%–30% of nameplate; variability is slower but the overall

level remains persistently low.

Fig. 2: PV output profiles under different weather regimes.20
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As shown in Fig. 2, the horizontal axis is time over a 24-hour day and the vertical axis is output. The

clear-sky curve resembles the single-peaked baseline in Fig. 1; the partly cloudy curve exhibits reduced average

output (about 50%–85% of nameplate) with pronounced jagged fluctuations; and the overcast/rain curve remains

smooth but depressed (about 10%–30% of nameplate).

(3) Cloud Motion and Minute-Scale Ramps :

Cloud-shadow advection is a primary driver of PV variability. When cloud fields translate at 10m s−1 to

15m s−1, geographically proximate PV plants can fluctuate synchronously. The instantaneous ramp rate scales

with cloud speed and the spatial gradient of irradiance:

dX

dt
∝ vcloud ·∇Isolar, (2)

where X is instantaneous PV output (power or a normalized index), vcloud is the horizontal cloud-motion velocity

(ms−1), and ∇Isolar is the spatial gradient of irradiance (with Isolar in Wm−2, hence ∇Isolar in Wm−3). The

dot product captures how advection across irradiance inhomogeneity induces rapid changes in PV output.

This mechanism can produce 10%min−1 to 20%min−1 ramps. The sample below contrasts short-horizon

fluctuations with and without pronounced cloud motion. As shown in Fig. 3,the horizontal axis is minutes and

Fig. 3: Short-horizon PV fluctuations under cloud advection (zoomed view).

the vertical axis is output, highlighting minute-scale variabilityover a one-hour window at 1-min resolution the

trace with cloud motion exhibits minute-scale dips and rebounds, whereas the baseline without cloud motion

remains near 85MW to 92MW with only small minute-to-minute variation.In practice, ramping cost accounts

for only a small share of total integration cost, yet it is non-negligible and should be made explicit in market

design and settlement.

B. PV Availability Curve

The availability curve is defined by

G(x) = max

{
p :

1

n

n∑
i=1

1
(
X(i) ≥ x

)
≥ p

}
, (3)

where X(i) is realized output at time i and 1(·) is the indicator (1 if X(i) ≥ x, 0 otherwise). Equivalently,

G(x) = Pr
(
Xoutput ≥ x

)
, (4)
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i.e., the probability that output meets or exceeds threshold x.

Fig. 4: Day vs. night availability G(x).

As shown in Fig. 4, the daytime availability curve starts at G(0) = 1 and decays monotonically with the

threshold x, whereas the nighttime curve collapses to G(x) ≈ 0 for any x > 0 (a jump at x = 0), highlighting

that PV alone cannot meet nocturnal demand. At night, G(x) ≈ 0 for x > 0 because X(i) ≈ 0; during the day,

G(x) decreases monotonically with x, quantifying the need for storage or backup to meet nocturnal demand.

Fig. 5: Clear vs. cloudy availability G(x).

As shown in Fig. 5, both clear and cloudy cases satisfy G(0) = 1. For small positive thresholds x > 0,

G(x) in both cases is close to 0.5, reflecting roughly 12 hours of daylight versus 12 hours of night. As x

increases, G(x) declines monotonically; the clear-sky curve remains uniformly above the cloudy one and falls

more slowly with x, indicating higher availability and lower intermittency at medium–high power levels (e.g.,

x ≳ 60MW).
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C. Ramping-Cost Model

For a realized series {Xi}Ni=1, define

Cramp = cr

N∑
i=1

1
(
∆Xi > ∆Xth

)
∆Xi, (5)

∆Xi = |Xi −Xi−1|, (6)

∆Xth = δM
∆t

∆tevent
, (7)

where cr is the unit charge, M is nameplate capacity, ∆t is the sampling interval (1 min), and ∆tevent is a

representative event duration (10 min). The threshold triggers charging but does not clip the step: whenever

∆Xi > ∆Xth, the entire ∆Xi is charged at rate cr. If ∆t or ∆tevent changes, only ∆Xth needs rescaling; the

form of (5) is unchanged.

D. Dimensional Consistency

We map minute-scale “steep-ramp” regulation difficulty onto the same scale as the capacity term so that

ramping costs can be combined with the integration cost CI under commensurate units (measured against

MW). Within a threshold–event-window framework, a “ramp rate” over a canonical event duration ∆tevent is

integrated into an equivalent power increment, so charges are assessed by magnitude rather than by rate. Let

the sampling step be ∆t, the nameplate/contract capacity be M , and the allowed ramp rate be δ (fraction of

capacity per minute). Define

∆Xth = δM · ∆t

∆tevent
, ∆Xi = |Xi −Xi−1|,

and write the ramping cost per unit capacity as

C̃ramp =
Cramp

M
= cr

N∑
i=1

1(∆Xi > ∆Xth)
∆Xi

M
, (8)

where cr prices the magnitude of the step so that the units of cr cancel those of ∆Xi/M , making C̃ramp

per MW. Here ∆tevent (set to 10min) converts a rate into a quantity over the event window, and ∆t (set to

1min) is the sampling interval. For an approximately monotone ramp lasting τ with average rate r = ∆Xi/∆t

that satisfies r > δM/∆tevent, the condition ∆Xi > ∆Xth holds for all steps within the event and
∑

∆Xi =

r τ = |Xtend
− Xtstart |. The event cost is then cr r τ = cr |∆Xevent|, showing insensitivity to the sampling

granularity ∆t and that integrating “rate” over ∆tevent naturally yields a “quantity.”

Define the capacity-equivalent

Meq =
Cramp

c
, (9)

which puts ramping on the same MW scale as the capacity price c (/MW). The integration cost can then be

written as

CI(α) = c

[
M

2

(
1−H(α)

)
+Meq

]
, (10)

where the first term is the capacity-equivalent cost induced by reliability layering (decreasing with the accuracy

function H(α)), and the second term is the capacity-equivalent consumption due to minute-scale ramps. The

two terms share the same dimension and can be added directly for contract settlement or sensitivity analysis.
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Compared with existing approaches, this dimensional reconciliation is essential. “Mileage/trajectory integral”

methods charge all tracking motion via
∑

i|∆Xi| or
∫
|Ẋ| dt, typically settled at prices per MW·min; these

units are not directly comparable to capacity price and the metric is sensitive to measurement noise and high-

frequency jitter. “Ramp-rate penalties” of the form
∑

i(|∆Xi|/∆t) still charge a rate and thus depend on time

resolution and filtering choices. System-side flexible ramping products procure capability (MW) day-ahead/real-

time, which concerns available capacity rather than realized event magnitudes.

By using a threshold–event-window construction, we move the physical condition “exceeding the dispatchable

ramp rate” up to the contract layer and, once the threshold is crossed, charge by the full magnitude of the step

rather than only the excess. This concentrates price signals on the minutes that actually pull reserves. The explicit

∆tevent converts “rate” into an equivalent power increment so that cr immediately yields monetary cost on the

MW scale; through Meq = Cramp/c it aligns seamlessly with the capacity term. The design remains numerically

robust under changes of ∆t or the event window by rescaling ∆Xth, and it naturally filters out fine-grained

tracking and noise—offering advantages in unit consistency, comparability, and contractual implementability.

III. COST MODELS

To quantify PV integration costs and the associated subsidy needs, we develop three scenarios distinguished

by the producer’s forecast accuracy. For each scenario we compute the PV producer’s profit, the additional cost

required for grid integration (the social subsidy), and how these costs depend on information quality.

A. Full-Information Forecast

(1) Cost Formulation : Under full information, the producer can perfectly predict future output (e.g., knowing

in advance the output at each hour of tomorrow). The producer sells M MW of “100% firm” power at unit

price c and procures just enough reserves to cover shortfalls. Let c1 and c2 denote the unit prices (per MW) of

reserve capacity and reserve energy, respectively. In the full-information case, the producer procures (M −x)+

MW of reserves, where x is the realized output and (z)+ = max{z, 0}.

Fig. 6: Profit accounting under full information.

As shown in Fig. 6, a stylized realization X(i) is plotted against the contracted firm level M (purple dashed

line). Green markers indicate periods with surplus (X(i) ≥ M ). Red markers and the vertical red segments
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indicate shortfalls; the length of each segment is exactly (M−X(i))+, i.e., the reserve that must be procured in

that minute. Summing these red segments over time approximates the discrete shortfall
∑

i(M−X(i))+, whose

expectation equals the integral term in (11). Thus the figure makes clear that the second term in (11) is the

expected cost of covering all shortfalls (capacity plus energy), while cM is the revenue and Cramp accounts for

minute-scale ramping cost (not drawn). Let G(x) = Pr(X ≥ x) be the availability curve and F (x) = 1−G(x)

the cdf of output X . Write −Gx ≡ − d
dxG(x) = F ′(x) for the density. The expected profit is

π1 = max
M

{
cM − (c1 + c2)

∫ M

0

(M − x)+ (−Gx) dx − Cramp

}
, (11)

where Cramp is the total ramping cost defined earlier. The first-order condition with respect to M yields

F (M) =
c

c1 + c2
, F (x) = 1−G(x). (12)

Assuming X ∼ Unif[0,M ], we obtain

M =
c

c1 + c2
M, π1 = 1

2

c2

c1 + c2
M − Cramp. (13)

(2) Numerical Illustration : We set c1 = 10/MW, c2 = 60/MW, c = 55/MW, and cr = 0.80/MW for a

concrete calculation. From M = c
c1+c2

M we obtain

M =
55

10 + 60
M ≈ 0.785M.

If no reserves were required, the producer would simply sell all PV energy and earn the benchmark expected

profit 1
2cM .

For ramping costs, assume three effective ramp events per day. Each event has a magnitude ∆Xevent = 0.2M ,

and every one-minute step within the event exceeds the threshold ∆Xth. With sampling ∆t = 1min and

∆tevent = 10min, take ∆Xth = 0.01M . Then each event contributes 10 threshold-exceeding steps of size

0.02M , so

Cramp = 0.8× 0.02M × 3× 10 = 0.48M,

and the same ramp-cost assumption is adopted in subsequent calculations.

The grid-integration cost CI1 and its normalized share σ1 are

CI1 =
cM

2
− π1 =

cM

2

(
1− c

c1 + c2

)
+ 0.48M, (14)

σ1 =
CI1
1
2cM

= 23.2%. (15)

Expression (14) shows that CI1 has two components: (i) cM
2

[
1− c

c1+c2

]
, the expected cost of procuring reserve

capacity and energy to ensure delivery of the firm commitment; and (ii) the added ramping cost 0.48M , which

accounts for minute-scale variability drawing on system balancing resources. Normalizing by the nominal

capacity term 1
2cM via (15) yields σ1 = 23.2%, indicating that, under these parameters, variability raises the

social cost by nearly one quarter.20
25
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B. No-Information Forecast

(1) Cost Formulation : With no information, the producer cannot forecast beyond knowing the output

distribution. To avoid default on the firm commitment, it must pre-procure reserve capacity equal to the

committed level. Thus the producer sells M MW at unit price c, purchases M MW of reserve capacity at

price c1, and, when realized output is x, buys real-time reserve energy (M − x)+ at price c2. The expected

profit is

π2 = max
M

{
cM − c1 M − c2

∫ M

0

(M − x)+ (−Gx) dx − Cramp

}
, (16)

where G(x) = Pr(X ≥ x), F (x) = 1 − G(x), and −Gx = d
dxF (x) is the density. The first-order condition

gives

F (M) =
c− c1
c2

, (17)

M =
c− c1
c2

M. (18)

Under X ∼ Unif[0,M ], the maximum profit is

π2 = 1
2

(c− c1)
2

c2
M − Cramp. (19)

(2) Numerical Illustration : Using c1 = 10/MW, c2 = 60/MW, c = 55/MW, and the same ramp-cost

assumption Cramp = 0.48M as before, we obtain

M =
c− c1
c2

M =
55− 10

60
M = 0.75M.

The grid-integration cost and its normalized share are

CI2 =
cM

2

[
1− (c− c1)

2

c c2

]
+ 0.48M, (20)

σ2 =
CI2
1
2cM

= 40.4%. (21)

Here CI2 combines the expected cost of capacity and energy reserves implied by the no-information commitment

with the minute-scale ramping cost; σ2 expresses the total as a share of the nominal capacity term 1
2cM .

C. Partial-Information Forecast

In practice, producers neither have perfect foresight nor face complete ignorance; partial information (e.g.,

from weather forecasts) is available. The producer chooses reserve purchases based on the committed firm

quantity M and the predicted output xpred. Forecast errors cause either excess capacity (waste) or emergency

purchases; we parameterize the resulting penalty by a deviation-cost coefficient γ. The profit maximization is

π3 = max
M

{
cM −

[
c1 E

[
(M − xpred)+

]
+ c2 E

[
(M − xreal)+

]
+ γ E

[
|xreal − xpred|

]]
− Cramp

}
, (22)

where E[·] denotes expectation, xpred is the forecast, and xreal is the realized output. The first two expectations

represent the capacity reserved ex ante (based on the forecast) and the shortfall energy needed ex post (based

on the realization). The deviation term E[ |xreal −xpred| ] captures the mismatch between purchased and required

reserves. The ramping cost Cramp does not depend on forecast accuracy and follows the earlier definition.
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Because π3 depends on forecast quality, a closed form in terms of a specific distribution for xpred is not

imposed. Instead, we interpolate between the full- and no-information benchmarks and model the grid-integration

cost as

CI(α) =
cM

2

[
1−H(α)

]
+ Cramp, (23)

where α ∈ [0, 1] indexes forecast quality and H(α) is anchored at the two limits and interpolated by a concave

power law:

H(α) = H0 + (H1 −H0)α
β , 0 < β < 1, (24)

H0 =
(c− c1)

2

c c2
, H1 =

c

c1 + c2
. (25)

Hence,

CI(α) =
cM

2

[
1−H0 − (H1 −H0)α

β
]
+ Cramp. (26)

Taking derivatives gives

dCI

dα
= −cM

2
(H1 −H0)β αβ−1 < 0, (27)

d2CI

dα2
=

cM

2
(H1 −H0)β(1− β)αβ−2 > 0, (28)

so CI(α) is decreasing in α with diminishing returns (steeper gains at low accuracy, flattening at high accuracy).

Boundary values satisfy CI(0) = cM
2 [1 − H0] + Cramp and CI(1) = cM

2

[
1 − c

c1+c2

]
+ Cramp. To ensure

H(α) ∈ [0, 1] and monotonicity from H0 to H1, take the feasible price domain c ≤ c1 + c2 and H1 ≥ H0,

the latter equivalent to c2c2 ≥ (c1 + c2)(c− c1)
2 (or c2 ≥ (c−c1)

2

2c−c1
when 2c > c1), together with H0 ≤ 1 (i.e.,

c2 ≥ (c−c1)
2

c ). Within this domain the semi-information results satisfy σ1 < σ3 < σ2 and CI1 < CI3 < CI2.

The choice of the concave interpolant 1−αβ reflects that marginal forecast improvements decline: in practice,

low-cost signals (basic meteorology) yield large initial error reductions, whereas near 90% accuracy, additional

data and modeling (satellite imagery, radar, deep learning) mainly contend with irreducible noise and yield

smaller gains.

A visualization of overall profit under the semi-information model can be produced based on (23)–(26).

Fig. 7: Integration cost CI(α) vs. forecast accuracy α (β = 0.5).20
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As shown in Fig. 7, the horizontal axis is forecast accuracy α and the vertical axis is the grid-integration

cost. At α = 0 (no information), CI ≈ 1110.50; at α = 1 (full information), CI ≈ 637.20. Both endpoints

are consistent with (26) and the scenario definitions.

Fig. 8: Subsidy rate σ(α) vs. forecast accuracy α (β = 0.5).

Similarly, Fig. 8 shows the subsidy rate. The endpoint values at α = 0 and α = 1 correspond to the no-

information and full-information cases, respectively (cf. σ2 and σ1, computed earlier as 40.4% and 23.2%).

Both visualizations use the concave power-law interpolation with β = 0.5 in (24).

IV. VARIABLE-RELIABILITY PV MARKET DESIGN

If stochastic PV energy is fully forced to be “firm,” the required reserves rise sharply and costs escalate.

To share uncertainty more efficiently, we design a market mechanism in which PV producers sell energy at

differentiated reliability levels to consumers who voluntarily accept supply risk in exchange for lower prices.

The key idea is that uncertainty is absorbed by the contracts rather than by system-side reserve procurement:

PV output is presold in day-ahead tiers by delivery probability {ρk}, and a priority allocation rule Rω(t) is

fixed ex ante so that, for every realized state ω,∫ 1

0

d(t)Rω(t) dt ≤ S(ω), (29)

where d(t) is the contracted quantity (MW) for consumer t, Rω(t) ∈ {0, 1} indicates service in state ω, and

S(ω) is the realized PV supply (MW). Thus the total served load never exceeds realized output. When supply

is insufficient, low-reliability contracts are curtailed according to the pre-specified order, without compensation;

the shortfall is borne by the consumers who opted for lower ρ, rather than by system-wide reserves.

Prices make risk explicit: lower ρ carries a lower energy price, while higher ρ approaches the cost of firm

supply. Because every random state is already partitioned by the contract structure, physical shortfalls are

transformed into contractually acceptable curtailments, eliminating the need for additional socialized reserves

to backstop PV stochasticity.

A. Mechanism and Contract Structure

In the day-ahead market, the producer offers a menu of reliability-differentiated contracts. Each tier is denoted

(ρk, pk), where ρk ∈ (0, 1] is the delivery probability and pk is the corresponding price; higher ρk commands
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a higher price. Consumers t ∈ [0, 1] choose a pair (ρ(t), d(t)), meaning they purchase d(t) at reliability ρ(t).

In real time, given realized PV S(ω), allocations follow a fixed priority rule in favor of higher reliability.

Formally, let Rω(t) ∈ {0, 1} indicate whether consumer t is served in state ω. Feasibility and reliability are

enforced by

P
(
Rω(t) = 1

)
= ρ(t),

∫ 1

0

d(t)Rω(t) dt ≤ S(ω), (30)

i.e., the expected service probability matches the contracted reliability, and the total service in each state does

not exceed realized supply. A monotone priority rule (higher ρ weakly dominates lower ρ in every state)

implements these constraints while aligning prices with the accepted risk.

B. Utility and Social Welfare Maximization

Let U(d) denote a consumer’s utility from receiving quantity d and L(d) the loss if curtailed. Assume

U(0) = L(0) = 0 and U,L are increasing and convex. Because delivery is probabilistic, a contract (d, ρ) yields

expected net utility

Ut(d, ρ) = ρU(d) − (1− ρ)L(d). (31)

Aggregating over a continuum of consumers t ∈ [0, 1], social welfare is

W =

∫ 1

0

[
ρ(t)U(d(t))− (1− ρ(t))L(d(t))

]
dt, (32)

to be maximized subject to the feasibility and reliability constraints in (30) under a discrete set of output states

{s1 < · · · < sn} with probabilities {π1, . . . , πn},
∑n

i=1 πi = 1.

We implement n contract tiers. Tier i offers reliability ρi with price pi, ordered so that ρ1 > ρ2 > · · · > ρn.

Consumers t ∈ [ti−1, ti) choose tier i and purchase di. In state si, only tiers with index j ≤ i (higher reliability)

are served. Formally,

0 < s1 < s2 < · · · < sn,

n∑
i=1

πi = 1. (33)

Priority order is welfare-improving.: Consider two contracts A(ρA, dA) and B(ρB , dB) with ρA > ρB .

For a small reallocation δ > 0 of service, their marginal welfare gains are

∆WA = ρAU
′(dA) δ − (1− ρA)L

′(dA) δ, (34)

∆WB = ρBU
′(dB) δ − (1− ρB)L

′(dB) δ. (35)

Since U ′, L′ > 0 and ρA > ρB , reallocating δ from B to A raises welfare. Repeating eliminates all “reverse-

order” allocations and yields a monotone priority rule

R∗
ω(t) =


1, t ∈ [0, t∗i ], S(ω) = si,

0, otherwise,
(36)

with induced reliabilities

ρ∗i = Pr
[
S(ω) ≥ si

]
=

n∑
j=i

πj . (37)20
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Cumulative feasibility implies

si =

i∑
j=1

dj (t
∗
j − t∗j−1), si−1 =

i−1∑
j=1

dj (t
∗
j − t∗j−1), (38)

hence

si − si−1 = di (t
∗
i − t∗i−1), (39)

which links the size of tier-i’s customer set to its per-customer allocation. Therefore

d∗i =
si − si−1

t∗i − t∗i−1

. (40)

Shadow pricing and individual optimality.: Introduce a shadow price µ ≥ 0 for the reliability-filtered

resource. A representative consumer’s Hamiltonian (surplus) is

H(d, ρ, µ) = ρU(d) − (1− ρ)L(d) − µd. (41)

An optimal contract (ρ∗, d∗) satisfies

H(d∗, ρ∗, µ) = max
d,ρ

H(d, ρ, µ) = H∗, (42)

together with feasibility and complementary slackness (market clearing). The first-order condition for d∗i (given

ρi and µ) is

ρi U
′(d∗i ) − (1− ρi)L

′(d∗i ) = µ, (43)

i.e., marginal social benefit equals the marginal resource cost.

Tier-wise optimal contracts.: There exist 0 = t∗0 < t∗1 < · · · < t∗k = 1 with k ≤ n such that for any

t ∈ [t∗i−1, t
∗
i ),

d∗i = argmax
d

{
ρ∗iU(d)− (1− ρ∗i )L(d)− p∗i d

}
, (44)

d∗i =
si − si−1

t∗i − t∗i−1

, (45)

ρ∗i =

n∑
j=i

πj , (46)

R∗
ω(t) =


1, t ∈ [0, t∗i ], S(ω) = si,

0, otherwise.
(47)

Given a target consumer surplus H∗, (44) and (45) jointly determine each tier’s purchase d∗i and the measure

of consumers assigned to that tier, while satisfying the supply constraints and implementing reliability through

the priority rule.

a) Producer revenue and welfare decomposition.: The producer’s expected revenue is

π =

∫ 1

0

p(t) d(t) dt =

n∑
i=1

pi

∫ ti

ti−1

di dt =

n∑
i=1

pi di (ti − ti−1) =

n∑
i=1

pi (si − si−1), (48)

where, under the optimal priority allocation, tier i serves consumers t ∈ [ti−1, ti) with per-customer quantity

di =
si−si−1

ti−ti−1
.

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



14

The producer’s (gross) profit under the optimal allocation is therefore

maxπ =

n∑
i=1

pi (si − si−1). (49)

Social welfare—producer surplus plus consumer surplus—equals

W ∗ =

n∑
i=1

(t∗i − t∗i−1)
[
ρ∗iU(d∗i )− (1− ρ∗i )L(d

∗
i )
]

(50)

=

n∑
i=1

(t∗i − t∗i−1)
[
p∗i d

∗
i +H∗

i

]
(51)

=

n∑
i=1

p∗i (si − si−1)︸ ︷︷ ︸
producer revenue

+

n∑
i=1

(t∗i − t∗i−1)H
∗
i︸ ︷︷ ︸

consumer surplus

, (52)

where

H∗
i ≡ max

d

{
ρ∗iU(d)− (1− ρ∗i )L(d)− p∗i d

}
= ρ∗iU(d∗i )− (1− ρ∗i )L(d

∗
i )− p∗i d

∗
i ,

is the (per-consumer) optimal surplus for tier i, cf. the Hamiltonian in (42). At the efficiency optimum, the

resource shadow price µ equals the tier price p∗i , by complementary slackness and market clearing; thus (51)–(52)

express the standard identity “producer revenue + consumer surplus = social welfare.”

V. CASE STUDIES AND REGIONAL COMPARISON

To verify the applicability and flexibility of the proposed variable-reliability market under different regional

conditions, we examine two representative Chinese cities: Lanzhou in the northwest and Guangzhou on the

southern coast. The former has abundant sunshine and relatively stable weather, representing a high-predictability

PV environment; the latter is cloudier and rainier with stronger variability, representing a more challenging

meteorological setting.

A. Parameter Settings and Output Modeling

According to national meteorological statistics, Lanzhou’s average effective daylight duration is about 6.7

hours/day with a clear-sky share of roughly 65%, while Guangzhou’s counterparts are 4.8 hours/day and 35%,

respectively. Based on the diurnal baseline model in this paper, we simulate hourly PV output for a typical clear

day in Lanzhou and a typical cloudy day in Guangzhou. We apply a weather attenuation factor η(t) of 100% and

80%, respectively, and superimpose a cloud-induced disturbance term (author-specified for illustration rather

than measured data). Minute-level series are used later to evaluate ramping cost. The resulting representative

day profiles, XLanzhou(t) and XGuangzhou(t), are shown in Fig. 9.

B. Availability G(x) Comparison

From the output sequences we compute the availability functions G(x) for both locations. As shown in Fig. 10,

Lanzhou’s availability dominates Guangzhou’s across all thresholds, especially in the high-power region (e.g.,

x > 80 MW), where Lanzhou still has a significant chance of meeting the target while Guangzhou’s probability

is near zero. This indicates greater stability and reliability for Lanzhou’s PV output.
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Fig. 9: Theoretical PV output profiles: Lanzhou (clear) vs. Guangzhou (cloudy).

Fig. 10: Theoretical availability curves G(x): Lanzhou (clear) vs. Guangzhou (cloudy).

For illustration, a high-reliability contract at x = 20 MW in Lanzhou achieves an empirical delivery rate close

to 40%, aligned with its availability curve; a medium-reliability contract at the same x in Guangzhou delivers

about 30%, reflecting higher meteorological uncertainty. The cross-regional differences in contract structures

are direct mappings of the underlying availability curves and weather stability.

C. Ramping and Integration Cost Calculations

Using minute-level samples of the two representative-day profiles, we compute ramping cost via (5) in

conjunction with figs. 9 and 10, and then evaluate the full-information and no-information integration costs

via (11) and (16). The results are summarized in TABLE I.

TABLE I: Ramping and integration costs: Lanzhou vs. Guangzhou

Region Cramp (¥) CI1 (¥) σ1 CI2 (¥) σ2

Lanzhou 62.68 651.97 23.71% 1125.18 40.92%

Guangzhou 1426.58 2015.87 73.30% 2489.08 90.51%20
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D. Contract Design

We now present a tiered contract design based on variable reliability. The core idea is to map the PV

availability G(x) and discrete output states {sj , πj} into a set of reliability tiers {ρk}, partition consumers by

reliability preference, and then determine each tier’s capacity dk and price factor αk.

a) Step 1: Determine reliability tiers ρk.: Discretize intra-day output into n states

0 < s1 < s2 < · · · < sn,

n∑
j=1

πj = 1.

Select K ≤ n tiers ordered by reliability. Define

ρk = P[S ≥ sk] =

n∑
j=k

πj , k = 1, . . . ,K. (53)

Alternatively, choose output thresholds xk on G(x) and set ρk = G(xk).

b) Step 2: Partition consumers by preference.: Split t ∈ [0, 1] into K groups:

0 = t0 < t1 < · · · < tK = 1,

where (tk−1, tk) is the set of consumers choosing tier k, with share

θk = tk − tk−1,

K∑
k=1

θk = 1.

c) Step 3: Determine tier capacities dk.: In state si, only contracts with reliability at least ρi are served.

The supply constraint ∫ 1

0

d(t)Rω(t) dt ≤ S(ω)

implies a monotone allocation. For any i,

si =

i∑
j=1

dj (tj − tj−1), (54)

hence

si − si−1 = di (ti − ti−1), di =
si − si−1

ti − ti−1
. (55)

d) Step 4: Pricing (two common approaches).:

1) Cost-based: Given a base capacity price c0 (¥/MW per period), introduce tier multipliers αk:

pk = αk c0, α1 > α2 > · · · > αK .

Multipliers can reflect marginal social cost, reserve/ramping allocation, or calibrated coefficients.

2) Shadow-price: With shadow price µ for the reliability-filtered resource, a consumer’s surplus

H(d, ρ, µ) = ρU(d)− (1− ρ)L(d)− µd

implies at the optimum

ρkU
′(d∗k)− (1− ρk)L

′(d∗k) = µ = pk,

so pk increases with ρk.

For the Lanzhou/Guangzhou cases we use the first approach with c0 = c, i.e., pk = αkc. One may set

αk = 1 + γ1(ρk − ρ̄)

(linear or piecewise fits; γ1 a tuning parameter).
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e) Step 5: Tiered examples.: Using the computed G(x) and variability features, we list five illustrative

tiers for each region: parameters (ρk, θk, dk, αk) with prices pk = αkc. See TABLE II (with M = 100 MW).

TABLE II: Illustrative tiered contracts: Lanzhou vs. Guangzhou

Region Tier ρk θk dk (MW) αk pk = αkc

Lanzhou 1 0.95 15% 133.3 1.30 71.5

2 0.80 35% 57.1 1.10 60.5

3 0.50 30% 83.3 1.00 55.0

4 0.15 15% 133.3 0.90 49.5

5 0.00 5% 0.0 0.70 38.5

Guangzhou 1 0.95 5% 400.0 1.40 77.0

2 0.80 15% 133.3 1.20 66.0

3 0.50 25% 80.0 1.00 55.0

4 0.20 35% 57.1 0.85 46.8

5 0.00 20% 0.0 0.60 33.0

Here ρk is sampled from G(x), θk is an assigned consumer share, dk follows (55), and αk respects (1).

f) Discussion.: TABLE II reflects the regional differences in G(x) and cost structure. Lanzhou’s availability

is higher/flatter, allowing high-reliability tiers (e.g., ρ ≥ 0.8) to cover a larger fraction of users with more

balanced capacities. Guangzhou’s high-power availability is much lower, so high-reliability products are scarce

with larger markups, while mid/low tiers host more users and volume. Together with the previously computed

Cramp, CI1, CI2, and σ1, σ2, the results show that forcing PV into a single “firm” product would raise social

subsidies—whereas the variable-reliability mechanism lets users with lower reliability needs voluntarily absorb

quantity risk, reducing reserve requirements and balancing stress and improving price signals and total welfare.

The case study demonstrates adaptation to different meteorology and regional features, achieving efficient

allocation under heterogeneity.

Fig. 11: Contract capacity stacking (example). Each bar shows the fraction of capacity allocated to reliability tiers {ρk} in

a region (normalized to
∑

k = 1). Colors follow the order in TABLE II (high to low ρ). Lanzhou exhibits a more balanced

mix, consistent with a higher, flatter G(x); Guangzhou concentrates in mid/low tiers, indicating scarcity and higher markups

for high-reliability products. This pattern aligns with regional differences in Cramp, CI1, CI2, and σ1, σ2.
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As shown in Fig. 11, we visualize the outcome by stacking the normalized contract capacities by reliability

tier in each region. For region r, the height of tier k equals θkdk
/∑

j θjdj , so each bar sums to 1 and the

composition—not the absolute level— is comparable across regions. Lanzhou exhibits a more balanced mix

with substantial mass in high-ρ tiers, whereas Guangzhou concentrates in mid/low-ρ tiers and has only a thin

high-ρ slice, reflecting the scarcity (and higher markups) of high-reliability products.

VI. CONCLUSION

Using minute resolution PV series, we first construct the availability curve G(x) and propose an indicator

aggregation ramping metric that converts traditional ¥/MW·min charges into capacity commensurate ¥/MW,

resolving the unit mismatch between regulation and capacity. We then derive closed form integration costs

and subsidy rates under full, no, and partial information scenarios, quantifying the marginal value of forecast

accuracy. Combining reliability stratification with a capacity price joint design, random output risk is endoge-

nized within contracts, avoiding additional system wide reserves while maintaining real time balance. Finally,

a Lanzhou (clear) vs. Guangzhou (cloudy) comparison illustrates regional adaptability: under highly variable

minute scale conditions in Guangzhou, the social subsidy rate declines from about 90% under the traditional

specification to below 70% with variable reliability, while Lanzhou remains around 25%. These results highlight

the potential of variable reliability markets to reduce reserve needs, improve price signals, and enhance system

economics for high penetration PV integration. Viewed through the lens of the green economy, our approach

brings environmental and system variability externalities into contracts and settlement ex ante, delivering joint

gains in efficiency and equity: dimensionally unified ramping metrics and availability profiling reduce reliance

on rigid reserves and lower socialized integration costs, while reliability price menus and a priority rule align

incentives via voluntary choice. This maps directly onto the UNEP emphasis on well being, equity, and lower

environmental risk, and is consistent with the OECD/World Bank green growth focus on resource efficiency

and resilience without sacrificing growth.
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