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Abstract

This paper explores the influence of Artificial Intelligence (AI) adoption on labor demand creation and

displacement in the global economy. We extract firm-level data from 2015 to 2024, which encompasses numerous

job categories. Using OLS regression, Instrumental Variable and Difference-in-Differences (DID) method to

alleviate endogeneity, the results show that firms adopting AI technologies tend to significantly reduce their

reliance on routine labor, while simultaneously reallocating resources toward more complex and creative roles.

Furthermore, we find that AI adoption correlates with a significant increase in average offered wages consistent

with skill-biased demand and accompanied by the emergence of new jobs that did not appear in our dataset prior

to 2018. Our study addresses the absence of firm-level microanalysis and a theoretical model to specifically

test our hypotheses regarding AI’s impacts on labor: ”substitution effect”, ”complementarity effect”, and ”wage

polarization effect”. Finally, we argues that greater attention should be paid to the employment creation effect of

artificial intelligence (AI), and guide AI to develop in a positive direction toward creating more new occupations

and jobs.

Keywords: Artificial Intelligence (AI); Labor Demand; DID; Job Postings
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1 Introduction
In recent years, artificial intelligence (AI)-represented by
machine learning, large language models (LLM), and
automation technologies-has penetrated the economic and
social sectors at an unprecedented pace, reshaping the global
labor market landscape. Yet, this process is inherently
double-edged: AI is not only substituting repetitive labor but
also spawning new occupations such as ”prompt engineers”
and ”AI ethicists”. This duality has ignited a heated and
ongoing debate between policy makers, industry leaders,
and scholars. However, despite considerable discussion,
our understanding of the current impact of AI on the
labor market remains surprisingly unclear, often fluctuating
between optimistic predictions and dystopian anxieties.
Furthermore, the current market is characterized by a high
degree of uncertainty and a high sense of urgency and
requires immediate insight into the unprecedented influence
of AI on the labor market.

Significant gaps persist in existing research regarding
the microlevel mechanisms through which AI specifically
affects labor demand. On one hand, much of the
literature focuses on macro-level effects (e.g., industry-level
employment substitution rates) or single mechanisms (e.g.,
”substitution effect” or ”creation effect”). On the other hand,
AI application is often measured using superficial methods
like keyword searches (e.g., ”AI” or ”machine learning”),
which fail to capture the actual depth of AI penetration in
enterprises. Coupled with unresolved endogeneity issues
(e.g., high-skill enterprises may proactively adopt AI and
adjust labor structures), these limitations undermine the
reliability of causal inferences. Additionally, critical issues
such as the generative logic of emerging occupations and
the dynamic changes in skill premiums still lack empirical
support from microlevel data.

Our paper constructs a novel indicators, ”Employment AI
Intensity (AIFE)”, using large language models (LLMs).
Specifically, we examine: (1) the reallocation patterns of
routine/complex/ creative labor; (2) the wage polarization
effect driven by AI-induced skill premiums; By bridging
the analytical gap between ”macro trends” and ”micro
mechanisms,” we aim to provide micro-level evidence for
understanding employment transitions in the AI era, while
offering scientific insights for policymakers to optimize
skill training systems and guide human-AI collaborative
development.

The structure of the remaining sections of the paper is
as follows. Section 2 reviews the relevant literature and
elaborates on the innovations of this study; Section 3
presents the theoretical framework and research hypotheses;
Section 4 introduces the data sources and variable

construction; Section 5 empirically analyzes the impact
of AI on the demand of enterprises for different types of
occupations; and Section 6 concludes with key findings and
policy recommendations.

2 Literature Review and Contribution
2.1 Technological Progress and the Labor Market

Early studies on the impact of technological progress
on the labor market were primarily grounded in the
Skill-Biased Technological Change (SBTC) framework
(Katz and Murphy, 1992; Acemoglu and Autor, 2011). This
theory posits that technological change tends to complement
high-skilled labor while substituting for low-skilled labor,
thereby leading to rising skill premiums and increased
income inequality (Goldin and Katz, 2008). However, the
SBTC theory struggles to explain the “job polarization”
phenomenon observed in European and U.S. countries since
the 1990s—where employment growth has occurred in
high-skill and low-skill jobs, while medium-skill jobs have
shrunk (Goos and Manning, 2007; Autor and Dorn, 2013).

To account for this, Routine-Biased Technological Change
(RBTC) theory has gradually become the mainstream
analytical framework (Autor et al., 2003; Acemoglu and
Autor, 2011). RBTC shifts the unit of analysis from “skills”
to “tasks,” emphasizing that technology substitutes for
“routine tasks” rather than labor with specific skill levels.
Autor et al. (Autor et al., 2003) further categorize work
tasks into five types: non-routine analytical, non-routine
interactive, non-routine manual, routine cognitive, and
routine manual. This classification better captures the
heterogeneous effects of technology on labor demand.

2.2 The Impact of Artificial Intelligence on Labor
Demand

Research on the mechanisms through which AI affects
labor demand focuses on several dimensions. First, the
displacement effect: AI reduces demand for routine labor by
automating repetitive, rule-based tasks. Technologies based
on machine learning and natural language processing—such
as OCR, RPA, and chatbots—have already been widely
applied in fields like document processing, data entry, and
customer service (Frey and Osborne, 2017). Graetz and
Michaels (Graetz and Michaels, 2018) found that industrial
robot adoption led to significant reductions in routine
manual jobs in manufacturing. In the Chinese context, Yan
et al. (Yan et al., 2020) and Wang and Dong (Wang and
Dong, 2020) provided similar evidence.

Second, the productivity effect: AI enhances enterprise
productivity and reduces production costs, potentially
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Firm-Level Effects of AI on Labor Markets

boosting labor demand (especially for non-routine cognitive
jobs like R&D, management, and design) through scale
expansion (Brynjolfsson and McAfee, 2014). Bessen
(Bessen, 2019) noted that while automation substitutes for
some labor, it also indirectly creates new jobs by improving
total factor productivity (TFP).

Third, the new task creation effect: Acemoglu and
Restrepo (Acemoglu and Restrepo, 2018) proposed an
“automation–new task balance” model, emphasizing that
technology not only substitutes old tasks but also creates
new ones. Generative AI (e.g., GPT, diffusion models)
is giving rise to entirely new occupational fields, such
as prompt engineers, AI ethicists, and data strategists
(Eloundou et al., 2023). Felten et al. (Felten et
al., 2023) found that high-exposure occupations also
contain substantial augmentation (rather than substitution)
opportunities.

Some scholars have also highlighted the skill restructuring
and skill premium change effect: AI application alters the
structure of skill demand, driving “skill rebalancing.” On
one hand, demand for hard skills (e.g., programming, data
analysis, AI operations) rises; on the other hand, the value of
soft skills (e.g., communication, creativity, ethical judgment)
becomes increasingly prominent (Deming, 2017). The
emergence of generative AI may even weaken traditional
“experience premiums,” enabling low-experience workers to
boost productivity through AI tools (Noy and Zhang, 2023).

2.3 Generative AI and Large Language Models

Generative AI (e.g., large language models), due to
breakthroughs in natural language understanding, content
generation, and complex reasoning, differs significantly
from traditional AI in its impact on the labor market. Zeng et
al. (Zeng et al., 2025) argue that generative AI may improve
income distribution across groups—and even narrow income
gaps—through a “capital–skill complementarity” effect.

Zhang and Dan (Zhang and Dan, 2025), using
Chinese recruitment data, found that hiring demand
for high-exposure occupations (e.g., accounting, editing,
programmers) declined, while demand for low-exposure
occupations (e.g., catering services, nursing) rose. Eloundou
et al. (Eloundou et al., 2023) estimated that approximately
80% of U.S. workers have at least 10% of their tasks
affected by large language models (LLMs), with higher
exposure among high-education, high-wage occupations.

In terms of methodology, early studies relied on
occupational codes (Cortés et al., 2016) or surveys (?)
for classification, facing issues like strong subjectivity
and neglect of intra-occupational task differences. In
recent years, advancements in natural language processing
(NLP)—particularly the application of LLMs—have

enabled fine-grained task classification based on recruitment
texts. Chen et al. (?) used the Chinese-BERT-wwm model
to classify recruitment information with a 93% accuracy
rate, significantly improving the precision and scientific
rigor of classification.

2.4 Heterogeneous Impacts

Regarding heterogeneous impacts, differences
across enterprises, industries, and regions are key.
Non-state-owned enterprises and high-tech firms are
more likely to adopt AI, leading to more significant
labor structure adjustments (?). State-owned enterprises,
due to their greater social responsibility, exhibit weaker
displacement effects of AI on employment (Yin, 2023).

Manufacturing, finance, and IT services are high-frequency
AI application sectors, experiencing the most drastic
changes in labor demand structure (?). In services,
face-to-face interaction-intensive jobs (e.g., nursing,
education) are less affected (Frey and Osborne,
2017). Among regions, developed areas—boasting
better technological infrastructure and high-skilled
labor agglomeration—benefit more from AI, whereas
less-developed regions face risks of deepening technological
divides (Han et al., 2023). The remote collaboration
features of generative AI may partially mitigate regional
development imbalances (Zeng et al., 2025).

While existing literature provides a solid theoretical
foundation and rich empirical evidence for understanding
AI’s impact on labor demand, it still has limitations:
(1) Research on generative AI remains in its infancy,
with systematic insights into its differentiated effects on
different skill, task, and experience groups yet to be
established; (2) There is a lack of fine-grained data
grounded in China’s local context, with most studies
relying on macro-level data or indirect matching; (3)
Enterprise-level heterogeneity analysis is insufficient,
particularly comparative studies across ownership types,
industries, and regions; (4) Policy research has largely
focused on macro-level recommendations, lacking precise
intervention designs rooted in micro-level mechanisms.

2.5 Our Findings and Contributions

To address these gaps, this study presents a rigorous
examination of AI’s real-world impact on the labor market.
We recognize the significance of traditional economic
models. Complementing our empirical analysis, we
incorporate a conventional macroeconomic model to frame
aggregate dynamics and inform identification. We then
depart from conventional proxies and instead use a massive
dataset comprising over 100 million online job postings
collected from major Chinese recruitment websites between
2016 and 2020. To precisely gauge AI’s influence, we
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introduce novel metrics such as AI occupation exposure
AI intensity for employment (AIFE) that systematically
quantify the susceptibility of specific occupations to
transformation driven by AI adoption. Employing robust
econometric techniques, including instrumental variable
(IV) and difference-in-differences (DID) methodologies, we
rigorously estimate the causal effects of AI implementation
on firm-level hiring practices and wage structures.

Our findings make clear that artificial intelligence is
reshaping work. AI readily takes over routine manual
and cognitive tasks, yet it also amplifies the importance
of roles that require analysis, creativity, and judgment.
Perhaps most striking, it is spawning entirely new kinds
of jobs, both in AI-focused industries and across the broader
economy. The pattern is already visible. Positions such
as administrative clerks and assembly-line operators are in
decline, while demand is surging for data analysts, research
and development specialists, and AI practitioners. As this
shift unfolds, workers who bring skills that complement
AI are beginning to command a premium in the labor
market, signaling a broader revaluation of expertise. In
this case, alarmists claiming about mass technological
unemployment miss the mark. AI is less a job-destroyer
than a job-reconfigurer—transforming occupations, creating
new pathways for work, and opening space for richer forms
of collaboration between humans and machines.

The structure of the remaining sections of the paper is
as follows. Section 2 reviews the relevant literature and
elaborates on the innovations of this study; Section 3
presents the theoretical framework and research hypotheses;
Section 4 introduces the data sources and variable
construction; Section 5 is the empirical Model; Section
6 empirically analyzes the impact of AI on the demand of
enterprises for different types of occupations; and Section 7
concludes with key findings and policy recommendations.

Figure 1. The complexity of AI Technology

3 Theoretical Framework
3.1 A Functional Definition of AI

A credible empirical analysis of Artificial Intelligence (AI)
demands a definition that is both analytically precise and
conceptually robust. Common definitions, often centered
on vague notions of machines that ”learn” or ”think,” are
insufficient for economic inquiry, as they lack a clear,
falsifiable basis. Conversely, a definition that is merely
a static list of existing algorithms, such as support vector
machines or convolutional neural networks, is immediately
obsolete upon the next technological breakthrough. The
challenge, therefore, is to define AI not by its technical
components, but by its economic function.

The history of automation has been a relentless process
of substituting capital for human labor in specific tasks.
The technologies of the Industrial Revolution, from the
power loom to the steam engine, primarily automated
tasks requiring manual dexterity and physical power. In
the 20th century, early computing and robotics extended
this frontier to routine cognitive tasks governed by
explicit, rule-based instructions, such as calculation or
record-keeping (Acemoglu and Autor, 2011). For two
centuries, however, a vast range of tasks involving complex
pattern recognition, implicit knowledge, and adaptation
remained stubbornly resistant to automation, and are thus
extremely reliant on human labour.

The recent history of AI marks a fundamental break from
this pattern. The rapid succession of milestones, repurposed
here not as a definition but as evidence of an accelerating
frontier, illustrates this shift. The success of AlexNet in
2012 demonstrated that machines could automate complex
visual pattern recognition. The development of Generative
Adversarial Networks (GANs) in 2014 and Transformer
architectures in 2017 showed that capital could be applied
to sophisticated tasks of creation and natural language
understanding. The current proliferation of Large Language
Models (LLMs) represents a further, dramatic expansion of
this frontier into domains of communication, summarization,
and reasoning. Consequently, the 2020s are the age of
large language models. The GPT suite, Grok, Gemini,
and Deepseek are merely several of the large variety of
LLMs that exist in the status quo. The unprecedented rise of
artificial intelligence (AI) in recent years has led scientists
to anticipate further advances as technology matures.

Through historical timeline, evidence reveals the core
economic function of modern AI: it is the technology that
enables capital to perform tasks whose execution relies on
statistical inference and pattern recognition, rather than
pre-programmed rules. Hence, in this paper, Machine
Learning(ML) and Artificial Intelligence(AI) refer not to
specific computer systems and technologies. Instead, we
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conceptualize AI as the ongoing expansion of automation
into a domain of tasks previously thought to be the
exclusive purview of human cognition. In essence, we
frame AI not as a single invention, but as a process: a
moving frontier of what is technologically possible for
capital to perform.

3.2 Theoretical Analysis

As the basis of our story, we predict that, when holding
all else constant, greater AI penetration simultaneously
(i) reduces firms’ demand for routine, easily-automated
tasks and (ii) raises the productivity of cognitive,
innovation-intensive activities. This dual prediction is not
trivial: aggregate labor inputs and innovation rates both tend
to rise over time, so we must isolate how AI “subtracts”
from routine work even as it “adds” to R&D effort. To do
so, we embed a single AI-penetration parameter

θ ∈ [0, 1]

into a quality-ladder framework.

3.2.1 SUBSTITUTION CHANNEL

We define the effective routine-labor input as

Leff
R (t) = (1− θ)LR(t), (1)

where LR(t) is the aggregate routine labor input and θ is the
fraction of routine tasks automated by AI. Differentiating
with respect to θ yields

∂Leff
R

∂θ
= −LR(t) < 0, (2)

so a marginal increase in AI penetration directly “subtracts”
from routine labor. This formalizes our substitution effect:
as θ rises, firms require fewer workers in standardized,
repetitive roles.

3.2.2 COMPLEMENTARITY CHANNEL

In each of a continuum of product lines j ∈ [0, 1], R&D
labor LRD,j(t) generates quality-improving innovations
according to a Poisson process with arrival rate

zj(t) = χ(θ)LRD,j(t), (3)

where χ(θ) is strictly increasing (χ′(θ) > 0). Thus, AI acts
as a complement by raising the productivity of R&D labor.

Aggregating across all lines, the creative-destruction
hazard—the rate at which incumbents are displaced—is

δ(t) =

∫ 1

0

zj(t) dj = χ(θ)LRD(t), (4)

with LRD(t) =
∫ 1

0
LRD,j(t) dj.

Each successful innovation raises the quality of line j by a
factor (1 + µ), so the aggregate quality index

A(t) =

∫ 1

0

Aj(t) dj

evolves as

Ȧ(t) = µ

∫ 1

0

zj(t)Aj(t) dj = µχ(θ)LRD(t)A(t). (5)

Hence the balanced-growth rate of quality is

g(t) =
Ȧ(t)

A(t)
= µχ(θ)LRD(t). (6)

Because χ′(θ) > 0, raising θ increases both the
creative-destruction rate δ in (4) and the long-run growth
rate g in (6). This captures our complementarity effect: AI
not only automates routine tasks, but also “creates” demand
for innovation-driving human effort.

Intuition. Equation (1) formalizes how routine tasks, which
are easily codified and automated, are directly substituted by
AI, reducing the demand for low-skilled labor. In contrast,
equations (3)–(6) show that AI increases the marginal
productivity of high-skill R&D, leading to both a higher rate
of creative destruction (since incumbents are supplanted)
and a faster accumulation of aggregate quality. Together,
these two channels display our assumption that AI is both a
destructive force for routine work and a constructive force
for innovation-intensive activities.

3.2.3 JOB POLARIZATION

As AI technology becomes more deeply integrated into
various industries, it does not simply restructure existing
jobs. While AI penetration affects the demand for
current labor, it also spurs the creation of entirely new
industries and occupations, such as AI trainers, data
labeling engineers, equipment maintenance technicians,
etc. The incorporation of AI Capital as a newly-emerged
factor of production naturally and necessarily leads to
the manifestation of unique job categories linked to AI
management, maintenance, and development, as a further
complement to AI-driven automated systems. Moreover,
due to the technological nature of AI, these occupations
often require extensive specialized knowledge and a high
degree of expertise, including technical skills, human
judgment, and experience with supervision and management
of complex systems. As a result, while demand in the labor
market will increase as a whole, the newly-arisen demand
will likely be concentrated in highly-specialized, creative
labor rather than routine labor.

Simultaneously, the further polarization of various
occupational groups leads to a rapidly widening gap in
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their salary and living conditions. While the high demand
for technicians and specialized, “creative” labor drives up
equilibrium wages, routine labor faces a high threat of
mass displacement and low market demand, translating
into continuously lower wages. In other words, society
becomes highly stratified, with the “high skill premium”
being awarded to the emerging elite workforce, while
routine labor faces wage stagnation or declination due to
overabundance of supply. For workers who are unable
to reskill, they are incapable of entering the high-barrier
technological labor market with significantly higher wages.
This dual effect manifests in a growing wage gap between
occupations, exacerbating existing inequalities.

We define NCit as the proportion of total tasks in the firm
i at time t that are newly created (i.e. did not exist at the
baseline t0). We further define Eit as the AI exposure index
for firm i at time t. Specifically,

NCit = β0 + β1 · Eit + β2Xit + µi + δt (7)

In which Xit is the general skill level of the labor force,
and µi and δt represent firm and time-fixed effects. β1 > 0,
indicating that higher AI exposure results in a greater share
of newly created tasks.

We further define the average wage levelwit , withwhigh
it and

wlow
it 587-320-824representing creative and routine tasks

respectively.

wlow
it = αlow

0 + αlow
1 · Eit + αlow

2 Xit + µi + δt

whigh
it = αhigh

0 + αhigh
1 · Eit + αhigh

2 Xit + µi + δt

The fact that αlow
1 < 0 and αhigh

1 > 0 indicates that while
AI penetration has a positive influence on wages of creative
labor, the opposite is true for routine labor. This completes
the empirical proof for our core assumptions.

3.3 A Task-Based Model of AI and Labor

While our ultimate goal is an empirical quantification of
AI’s impact, a purely empirical approach risks measurement
without theory. To guide our investigation and provide
a disciplined framework for interpreting our results, we
first develop a dynamic task-based model of the firm.
This section lays the theoretical groundwork for the
subsequent empirical analysis, recognizing that any model is
a simplification, but one that is indispensable for clarifying
the mechanisms at play. We build upon the canonical
framework of Acemoglu and Restrepo (2018), but innovate
by introducing firm-level heterogeneity in AI capacity and
endogenizing the creation of new tasks at the firm level. This
structure allows us to derive a rich set of testable predictions

about firm-level hiring and wage structures, directly linking
our theory to our empirical strategy.

3.3.1 THE ECONOMIC ENVIRONMENT

We model the production side of the economy by focusing
on a representative firm, indexed by f . The firm’s decisions
are the micro-level engine of the phenomena we wish to
study.

Production Technology and Tasks. The firm produces a
final good, Yf , by performing a continuum of tasks indexed
by i ∈ [Nt − 1, Nt]. This task space is normalized to have
a measure of one, but its frontier, Nt, can expand over time
through innovation. Following the standard literature, we
assume these tasks are combined with a constant elasticity
of substitution, σ:

Yf =

(∫ Nt

Nt−1

yf (i)
σ−1
σ di

) σ
σ−1

, (8)

where yf (i) is the quantity of output from task i. We assume
σ > 1, implying that tasks are substitutes.

Factors of Production and Task Allocation. We depart
from the single-labor-type model and assume the firm can
hire two distinct types of labor, distinguished by the nature
of the tasks they perform.

• Routine Labor (LR): Performs standardized,
codifiable tasks.

• Creative Labor (LC ): Performs complex, non-routine
tasks, which include problem-solving, management,
and, crucially, research and development (R&D).1

In addition to labor, the firm can employ AI-Capital (K).

The allocation of these factors to tasks is governed by two
thresholds. A threshold J divides tasks that are inherently
routine from those that are inherently complex. The key
decision variable for the firm is the automation threshold,
If ∈ [Nt − 1, J ].

• Tasks i ∈ [Nt − 1, If ] are automated and can be
produced only by AI-capital.

• Tasks i ∈ (If , J ] are routine and can be produced only
by Routine labor.

1We combine the performance of existing complex tasks and
the creation of new tasks into a single labor category. This abstracts
from potential skill heterogeneity within the high-skill workforce,
a simplification that would grant us a clearer focus on the firm’s
allocation between routine and creative functions as a whole.
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Firm-Level Effects of AI on Labor Markets

• Tasks i ∈ (J,Nt] are complex and can be produced
only by Creative labor.

For analytical tractability, we treat J as an exogenous
parameter reflecting the fundamental technological
possibilities of an era, while If is a choice variable for the
firm.

It is important to note that this task-allocation structure
is a deliberate simplification from canonical models (e.g.,
Acemoglu and Restrepo (2018)), where capital and labor
often compete to perform the same task based on relative
costs. Our approach, which assigns factors to distinct task
domains, is chosen for tractability and to cleanly isolate
the impact of firm-specific AI capacity, θf , on the two key
margins of interest: the automation margin (If ) and the
new task creation margin (Ṅt). This focuses the analysis on
how a firm’s core capability drives its technological choices,
rather than on substitution effects from short-run factor price
fluctuations.

Firm-Specific AI Capacity. The central innovation of our
model is the introduction of a firm-specific parameter, θf ∈
[0, θ̄], representing the firm’s AI capacity. This parameter
reflects the firm’s accumulated knowledge, infrastructure,
and organizational capital for deploying AI. It is not
technology itself, but the firm’s capability to leverage it.
This capacity has a dual effect on productivity.2

The output of a task i is linear in the assigned factor, with
productivity γ(·):

yf (i) =


γK(θf )kf (i) if i ≤ If

γRlR,f (i) if If < i ≤ J

γC lC,f (i) if J < i ≤ Nt

(9)

where kf (i), lR,f (i), and lC,f (i) are the factor quantities.
To isolate the role of AI, we assume γR and γC are constant.
The productivity of AI-capital, however, depends on the
firm’s capacity: we assume γ′K(θf ) > 0. A firm with higher
AI capacity is more efficient at using AI-capital to perform
automated tasks.

The Dynamics of Task Creation. The task space is not
static. Firms can create new, more complex tasks through
R&D, which is performed by Creative labor. Let LR&D

C,f be
the amount of Creative labor allocated to R&D. The frontier
of tasks Nt evolves according to:

Ṅt = ψ(θf )L
R&D
C,f . (10)

2For tractability, we treat θf as an exogenous parameter.
Endogenizing its accumulation, for instance through
learning-by-doing or as a function of R&D investment, is
a compelling aspect for future research but beyond the scope of
this paper’s objective to derive static predictions.

Here, ψ(θf ) is the productivity of R&D, and we make
the crucial assumption that ψ′(θf ) > 0. This formalizes
the complementarity channel: a firm with greater AI
capacity is more effective at innovation. AI tools for data
analysis, simulation, and discovery augment the abilities
of its creative workforce. New tasks created at the frontier
Nt are, by their nature, complex and initially fall into the
domain of Creative labor, generating what the literature calls
a reinstatement effect.

3.3.2 THE FIRM’S OPTIMIZATION PROBLEM

The firm chooses its automation threshold If , its allocation
of factors to production, and its R&D investment to
maximize the present discounted value of its profit stream.
It takes factor prices as given: wR for Routine labor, wC for
Creative labor, and r for AI-capital.

Static Cost Minimization and the Automation Decision.
At any point in time t, for a given state Nt, the firm first
solves a static problem of minimizing the cost of producing
a given amount of output Yf . This requires choosing the
optimal intensity of each task, yf (i). The price of one unit
of output from task i, denoted pf (i), is equal to its marginal
cost of production:

pf (i) =


r/γK(θf ) if i ≤ If

wR/γR if If < i ≤ J

wC/γC if J < i ≤ Nt

(11)

The firm’s choice of the automation threshold If is governed
by a trade-off. To automate a task i, the firm must incur
a one-time, sunk cost, which we assume is a smooth,
decreasing function of the task index, C(i), with C ′(i) < 0.
This captures the idea that simpler, lower-indexed tasks are
cheaper to automate. The firm will automate all tasks up
to the point If where the marginal benefit of automating
one more task equals the marginal cost. The benefit is
the perpetual stream of cost savings from using cheaper
AI-capital instead of Routine labor.

Proposition 3.1 (The Optimal Automation Threshold). The
profit-maximizing automation threshold If is determined by
the condition where the marginal cost of automation equals
the present value of the flow of cost savings:

C(If ) =

∫ ∞

0

e−ρt

(
wR

γR
− r

γK(θf )

)
dt

=
1

ρ

(
wR

γR
− r

γK(θf )

)
(12)

where ρ is the firm’s discount rate. This equation implicitly
defines If as a function of factor prices and the firm’s AI
capacity, If (θf , wR, r).
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Firm-Level Effects of AI on Labor Markets

From this condition, we can determine how the firm’s
automation strategy responds to its AI capacity. An
increase in θf raises γK(θf ), which lowers the cost of
using AI-capital and thus increases the cost-saving from
automation on the right-hand side of (12). To restore
equality, the firm must move to a higher If where the
marginal cost of automation, C(If ), is lower (since C ′(i) <
0). This gives us our first key result.

Corollary 3.2 (The Displacement Channel). The optimal
automation threshold If is strictly increasing in the firm’s
AI capacity θf :

∂If
∂θf

> 0. (13)

This is the mathematical formalization of the displacement
effect. A higher AI capacity directly incentivizes the
firm to expand the range of tasks performed by machines,
displacing Routine labor.

The Dynamic R&D Decision. The firm’s dynamic
problem is to choose the amount of Creative labor to allocate
to R&D, LR&D

C,f , to control the evolution of its task frontier
Nt. Let Vf (Nt) be the firm’s value function. The associated
Hamilton-Jacobi-Bellman (HJB) equation is:

ρVf (Nt) = max
LR&D

C,f

{
Πf (Nt, L

R&D
C,f ) + Ṅt

∂Vf (Nt)

∂Nt

}
,

(14)
where Πf is the instantaneous profit flow, given by total
revenue minus total factor costs (including the wages of
R&D workers). Substituting Ṅt from (10), the first-order
condition with respect to LR&D

C,f is:

∂Πf

∂LR&D
C,f

+ ψ(θf )
∂Vf (Nt)

∂Nt
= 0. (15)

The marginal cost of hiring one more R&D worker is their
wage, wC . The marginal benefit is the value created by
accelerating the expansion of the task frontier. Thus, the
optimality condition simplifies to a beautifully intuitive
expression:

wC = ψ(θf )
∂Vf (Nt)

∂Nt
. (16)

The term ∂Vf (Nt)
∂Nt

is the shadow value of a new task.
Equation (16) states that the firm hires Creative labor for
R&D up to the point where their wage equals their marginal
value product in innovation. This value product is magnified
by the firm’s AI capacity, θf .

3.3.3 FROM MODEL TO MEASUREMENT: DERIVING
TESTABLE HYPOTHESES

We now have all the necessary components to derive the
model’s predictions for firm-level labor demand. These
predictions will form the basis of our empirical work, where

our constructed measure of AI intensity will serve as a proxy
for the theoretical parameter θf .

Let’s first write down the firm’s demand for each type of
production labor. Integrating the standard CES demand
for each task’s output over the relevant range gives us the
demand for each factor:

LR,f =

∫ J

If (θf )

lR,f (i)di = (J − If (θf )) ·
(
PγR
wR

)σ

Yf

(17)

LProd
C,f =

∫ Nt

J

lC,f (i)di = (Nt − J) ·
(
PγC
wC

)σ

Yf

(18)

Total demand for Creative labor is LC,f = LProd
C,f + LR&D

C,f .

Hypothesis 1 (Substitution): Higher firm-level AI
capacity (θf ) leads to a decrease in the firm’s demand
for Routine labor (LR).

Derivation: We can directly differentiate the
expression for LR,f with respect to θf . The primary
channel of impact is through the automation threshold
If (θf ).

∂LR,f

∂θf
∝ −∂If

∂θf
. (19)

From Corollary 13, we proved that ∂If
∂θf

> 0. Therefore,

it follows unambiguously that ∂LR,f

∂θf
< 0. The

model predicts that firms with greater AI capacity will
structurally reduce their demand for workers in routine
tasks. This is not an assumption, but a result of the
firm’s optimization over the automation margin.

Hypothesis 2 (Complementarity): Higher firm-level AI
capacity (θf ) leads to an increase in the firm’s demand
for Creative labor (LC).

Derivation: The effect on Creative labor is driven by
the R&D channel. From the optimality condition (16),
for a given shadow value of new tasks, an increase in
θf raises the productivity of R&D, ψ(θf ). To maintain
the equality, the firm must increase its hiring of R&D
labor, LR&D

C,f , which in turn accelerates the creation
of new tasks, Ṅt. These new tasks are performed by
Creative labor, subsequently increasing LProd

C,f over
time. Both effects are positive.

∂LC,f

∂θf
=

∂LR&D
C,f

∂θf︸ ︷︷ ︸
>0 (Direct R&D Effect)

+
∂LProd

C,f

∂Nt

∂Nt

∂θf︸ ︷︷ ︸
>0 (Reinstatement Effect)

> 0.

(20)
The model thus generates a powerful and robust
complementarity between a firm’s AI capacity and its
demand for high-skilled, creative workers.

10

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



Firm-Level Effects of AI on Labor Markets

Hypothesis 3 (Wage Polarization): The skill premium,
reflected in the relative demand for Creative versus
Routine labor, increases with a firm’s AI capacity (θf ).

Derivation: While our partial equilibrium model takes
wages as given, we can analyze the firm’s relative labor
demand, which is the force that would drive wage
changes in a general equilibrium setting. We examine
the derivative of the ratio of demand for Creative to
Routine labor:

∂

∂θf

(
LC,f

LR,f

)
=

∂LC,f

∂θf
LR,f − LC,f

∂LR,f

∂θf

(LR,f )2
. (21)

The numerator is unambiguously positive, as we have
shown that ∂LC,f

∂θf
> 0 and ∂LR,f

∂θf
< 0. A higher AI

capacity systematically skews a firm’s labor demand
structure towards Creative labor. This provides a clear
theoretical basis for expecting to find a higher wage
premium for AI-complementary skills within firms
that are more intensive AI adopters. While our partial
equilibrium model takes wages as given, this predicted
shift in the firm’s relative labor demand is precisely
the micro-level force that, when aggregated, would
be expected to drive wage polarization in a general
equilibrium setting.

3.4 Numerical Simulation

To translate the theoretical mechanisms of our model
into quantitatively meaningful predictions, we conduct
a numerical simulation. While the analytical results in
the previous section established the qualitative directions
of AI’s impact, a calibrated simulation allows us to
explore the magnitude of these effects and visualize the
full general equilibrium reallocation of economic activity.
The objective is to trace how the economy’s balanced
growth path—including the allocation of labor, the rate
of innovation, and the pace of creative destruction—evolves
as AI penetration, θ, increases from a baseline of zero to a
state of high integration.

3.4.1 CALIBRATION

To ground our simulation in plausible economic reality, we
calibrate the model’s parameters. Our strategy is to use
standard values from the macroeconomic and endogenous
growth literature for established parameters, while choosing
reasonable functional forms and values for the novel
parameters governing AI’s impact. The complete set
of parameter values used for our baseline simulation is
presented in Table 1.

The total labor supply, Ltotal, is normalized to one. The step
size of each quality-improving innovation, µ, is set to 0.2, a
value consistent with models of endogenous technological

change. The core of our simulation lies in the specification
of the R&D productivity function, χ(θ). We adopt a simple
and transparent linear form: χ(θ) = χ0(1 + γθ). The
baseline R&D productivity, χ0, is set to 0.1. The most
critical parameter is γ, which governs the elasticity of R&D
productivity with respect to AI penetration. In our baseline
specification, we set γ = 2.0. We explore the sensitivity of
our results to this crucial parameter in a subsequent analysis.

Table 1. Baseline Parameter Calibration.

PARAMETER VALUE DESCRIPTION

LTOTAL 1.0 TOTAL LABOR SUPPLY
µ 0.2 INNOVATION STEP SIZE
χ0 0.1 BASELINE R&D PRODUCTIVITY
γ 2.0 AI COMPLEMENTARITY ELASTICITY

Notes: This table lists the parameter values used in the
baseline numerical simulation. The functional form for
R&D productivity is χ(θ) = χ0(1 + γθ).

3.4.2 SIMULATION RESULTS

Using the calibration in Table 1, we solve for the model’s
balanced growth path equilibrium for each value of θ in the
range [0, 0.9]. We present the results sequentially to build
the economic narrative step by step.

First, we examine the most direct consequence of rising
AI penetration: the reallocation of the workforce. Figure 2
plots the equilibrium shares of labor allocated to routine and
R&D tasks. At θ = 0, with no AI, the economy dedicates
the vast majority of its workforce (98.0%) to routine tasks,
with only a small fraction (2.0%) engaged in R&D. As AI
penetration increases, the relative productivity of R&D rises,
pulling workers out of the routine sector. This reallocation
is initially slow but accelerates as θ becomes larger. By the
time AI has automated 90% of routine tasks (θ = 0.9), the
labor allocation has dramatically shifted: the share of the
workforce in R&D has surged to 35.9%, while the share in
routine tasks has fallen to 64.1%. This demonstrates that AI
is a potent driver of structural transformation in the labor
market.

This reallocation is driven by two powerful, competing
forces, which we visualize in Figure 3. The solid red
line (left axis) shows the effective routine labor input,
Leff
R = (1− θ)LR. This quantity declines sharply with AI

penetration, driven by both the direct substitution effect (the
1− θ term) and the indirect reallocation effect (the decline
in LR). At θ = 0.9, the effective routine labor input has
fallen to just 0.064, less than 7% of its initial level. This is
the powerful displacement force of AI. Simultaneously, the
dashed blue line (right axis) shows the R&D productivity,
χ(θ). This represents the powerful complementarity force,
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Firm-Level Effects of AI on Labor Markets

Figure 2. Labor Reallocation. This figure plots the equilibrium
allocation of labor between routine tasks (LR) and R&D (LRD)
as a function of AI penetration (θ).

making the remaining innovators in the economy vastly
more effective.

Figure 3. Substitution vs. Complementarity. The solid red line
(left axis) shows the effective routine labor input. The dashed blue
line (right axis) shows the productivity of R&D labor. The two
opposing forces of AI are shown as a function of AI penetration
(θ).

The central question for macroeconomic performance is
which of these two forces dominates. Figure 4 shows the net
effect on the economy’s long-run growth rate, g. The result
is unambiguous: the complementarity effect ultimately
overwhelms the substitution effect in driving aggregate
performance. As AI penetration increases, the growth rate
accelerates, initially slowly and then exponentially. At
θ = 0, the economy is nearly stagnant, with a growth rate
of just 0.04%. However, at θ = 0.9, fueled by both a larger

R&D workforce and higher R&D productivity, the long-run
growth rate surges to 2.01% per year. This result provides
a clear, quantitative illustration of our model’s prediction
that AI, despite its displacement effects, can be a powerful
engine of long-run prosperity.

Figure 4. Long-Run Economic Growth. This figure plots the
economy’s balanced-growth-path annual growth rate as a function
of AI penetration (θ).

Finally, we consider the impact on economic dynamism,
measured by the rate of creative destruction, δ. As shown
in Figure 5, this rate, which measures the pace at which
new innovations displace old technologies, follows a path
similar to the growth rate. It rises from a near-zero base to
a rate of 0.10 at θ = 0.9. This implies that in a high-AI
economy, the expected lifespan of a given technology or
firm is significantly shorter. While this heightened churn is
a necessary component of faster growth, it also suggests a
more volatile economic environment for firms and workers.

3.4.3 SENSITIVITY ANALYSIS

The magnitude of the complementarity effect is governed
by the parameter γ. To ensure our optimistic conclusion
about long-run growth is not merely an artifact of our
baseline calibration, we conduct a sensitivity analysis. We
re-run the simulation under two alternative scenarios: a
”Low Complementarity” case where γ = 1.0, and a ”High
Complementarity” case where γ = 3.0.

The results are qualitatively robust but quantitatively
informative. In the Low Complementarity scenario (γ =
1.0), the long-run growth rate at θ = 0.9 is a more modest
1.05%. In the High Complementarity scenario (γ = 3.0),
the growth rate reaches a remarkable 3.15%. This analysis
confirms that while the qualitative result of AI-driven growth
acceleration is a robust feature of the model, the ultimate
magnitude of this effect is highly dependent on the degree
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Firm-Level Effects of AI on Labor Markets

Figure 5. Creative Destruction. This figure plots the rate of creative
destruction (δ) as a function of AI penetration (θ).

to which AI technologies augment human ingenuity. This
highlights the importance of policies and firm strategies
that foster human-AI collaboration in innovation as a key
determinant of long-run economic performance.

4 Sample Data Selection and Research Design
Our empirical investigation is built upon a vast, granular
dataset of online job postings, which we process using
a state-of-the-art NLP pipeline. This section details the
construction of our analytical corpus. We first introduce the
source of our data, the Web Data Commons, and outline its
unique advantages over traditional labor market surveys. We
then describe, in detail, the complete process of extraction,
normalization, and cleaning, which utilizes Large Language
Models (LLMs) to create a robust, firm-level panel dataset
from noisy, web-scale structured data. Our work transforms
unstructured text into a novel metric, the AI Intensity for
Employment (AIFE), required for the causal analysis that
follows.

4.1 The Job Postings Universe

Traditional analyses of labor market dynamics have long
been constrained by the frequency and granularity of official
government statistics. Surveys like the Bureau of Labor
Statistics’ Occupational Employment Statistics (OES) are
typically released with a significant lag and present data at
an aggregate, macroeconomic level. This, in turn, obscures
the high-frequency firm-level adjustments that are central
to understanding the impact of rapid technological change
such as AI.

To overcome these limitations, we turn to the internet for a
much more specific approach: online job postings. Our data

Figure 6. Our Data Treatment Process. This process ensures we
obtain an unique and novel result, departing from conventional
proxies.

is sourced from the Web Data Commons (WDC) project,
a major academic initiative that extracts structured data
from the Common Crawl. The Common Crawl refers
to a collaborative and authoritative project launched and
developed by major search engines, including Google,
Bing, Yahoo, etc. that aims to maintain a standardized
vocabulary for online data. It is also one of the largest and
most comprehensive public web crawls available (2016).
Specifically, we utilize the WDC’s Schema.org extraction,
focusing on data annotated with the JobPosting
type. The use of the schema.org standard, while
not universally or perfectly adopted, provides large-scale
structured data extracted from company websites worldwide,
offering firm-level statistics and observations in numerous
states and industries globally.

The raw data set comprises all publicly available WDC
JobPosting extractions spanning from January 2015
to December 2024, encompassing several major tech
booms of the 21st century. The initial dataset consists
of approximately 412 million data quads, which is a
vast but extremely noisy and heterogeneous collection
of job advertisements. The immediate challenge then
lies in transforming this raw material into a consistent,
research-grade panel data set.

After selection, we extract relevant information from the
dataset, including:

1. Firm identifiers and location: Unique firm IDs,
country codes, and other information that allow firms to
be linked across years and enables aggregating results
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Firm-Level Effects of AI on Labor Markets

by region.

2. Employment-related information: online job
postings, job descriptions, special requirements and
skills listed in job postings, usually contained in the
url.

Figure 7. JobPosting property coverage (Circa 2022 Release).

By combining these firm-level characteristics with
employment and wage information, we can critically
examine how the presence and penetration of AI correlate
with labor market alterations.

Figure 8. (a)Annual volume of unique job postings, 2015-2024.
Note that the 2024 statistics is currently available.

After extraction, the primary advantage of this corpus is
obvious:

1. Scale and Scope: It offers a near-census of online
job postings, dwarfing proprietary datasets from single
platforms and providing a more holistic view of labor
demand.

2. Timeliness: The data is available at long range, from
2015 to 2024, meaning that we are equipped with a tool
that tracks labor market changes through a significant
time period.

However, the data’s web-scraped nature presents significant
challenges, including rampant duplication, lack of sufficient
and reliable information, and missing or malformed fields.
The remainder of this section details the rigorous pipeline
we developed to address these issues.

Data Processing and Normalization Pipeline. To
convert the raw job postings data into an analytical
corpus, we implemented a multistage pipeline designed
for hectogigabite-scale data.

1. Extraction and Encoding Unification: The first
step involves parsing the raw data quads and unifying
disparate field names (e.g., ‘name‘ vs. ‘title‘)
into a consistent schema for key attributes: job title
and job description. Garbled text, identification
sequences, and non-natural language encodings are removed
for clarity purposes. Postings with unreadable paths or
queries are discarded.

2. LLM-Powered Field Normalization: A central
challenge is the extremely low amount of information
included in a url string. An example url may appear as
”https://xxx.xxx.com/jobs/1/”, this gives little information
and thus have to be discarded in this second roll. Similarly,
urls only containing vague phrases like ”jobs-on-post” must
be eliminated in this process. Rule-based methods (e.g.,
regular expressions) are too brittle to handle this variety.

To solve this, we employ a Large Language Model for
structured data extraction. The model was trained to perform
two tasks: (i) extract the canonical job name from the
job title field, stripping away meaningless suffixes and
extraneous information. And (ii) generate a description
concerning aspects of the job.

3. Firm Name Canonicalization: While the LLM provides
a clean baseline, further steps are needed to create unique
firm identifiers for our panel analysis. We apply a second
layer of canonicalization to the LLM-cleaned firm names.
This involves: (a) converting all names to a uniform
case and encoding; (b) applying fuzzy string matching
algorithms to join highly similar names (e.g., ‘”finances”‘
and ‘”financing”‘).

The output of this pipeline is a clean, deduplicated corpus
unique job postings from over 13 years. Table 2 provides
summary statistics of the final analytical dataset.

4.2 Measuring the Independent Variable: A Firm-Level
AI Intensity Index

To measure our key theoretical construct of firm-level
AI capacity (θf ), we introduce our novel metrics: AI
intensity for employment (AIFE). We depart from simple
keyword semantic search that traditional studies usually
employ. Instead, we use a Gemma-family LLM to perform a
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Firm-Level Effects of AI on Labor Markets

Table 2. Summary Statistics of the Analytical Job Posting Corpus
(2015-2024).

STATISTIC VALUE

TIME PERIOD 2015 - 2024
TOTAL RAW POSTINGS (QUADS) ∼412 MILLION
POSTINGS AFTER PARSING ∼203 MILLION
POSTINGS AFTER DEDUPLICATION ∼158 MILLION

UNIQUE FIRMS IDENTIFIED ∼1.2 MILLION
UNIQUE JOB TITLES (RAW) ∼4.1 MILLION
MEDIAN POSTINGS PER FIRM-YEAR 18

Figure 9. (b) Annual website volume 2015-2024.

context-aware assessment of each job posting’s relationship
to AI.
Definition 4.1 (AI Intensity for Employment, AIFE). The
AIFE is our primary continuous measure. For firm f in year
t, it is the average AI score across all jobs j ∈ Jft posted by
that firm. This captures the overall AI-centricity of a firm’s
hiring strategy.

AIFEft =
1

|Jft|
∑
j∈Jft

Scorej/10. (22)

We prompted the LLM to rate each job description,
specifically by assigning a score from 0 to 10 reflecting its
depth of AI integration. The rubric distinguishes between:

• Core AI Roles (Score 8-10): Involve the research and
development of new AI models or systems (e.g., ML
Researcher).

• Applied AI Roles (Score 4-7): Involve the application
of existing AI tools to solve business problems (e.g.,
Data Scientist using AutoML).

• AI-Aware Roles (Score 1-3): Use AI-powered
software but do not require direct AI expertise (e.g.,
Marketing Analyst using an AI-powered suite).

LLM Regression Prompt

You are an expert data analyst
specialized in evaluating the impact
of artificial intelligence on the labor
market. Your task is to assess the "AI
Penetration" of a given job occupation.
Definition of AI Penetration:
The degree to which the core
responsibilities of this job currently
involve or require the use of Artificial
Intelligence (AI) and Machine Learning
(ML) technologies.
Instructions:
Analyze the job title provided.
Classification: Determine if the job is
fundamentally AI-related. If it is not,
output exactly 0.
Scoring: If the job is AI-related,
assign it a single integer score from 1
to 10 based on the following criteria:
9=8-10: Core AI Development Research.
Jobs focused on creating new AI
algorithms, models, and systems (e.g.,
"AI Researcher," "Machine Learning
Engineer").
4-7: AI Application Integration. Jobs
that require significant expertise to
apply, manage, or maintain existing
AI systems to solve complex problems
or enhance workflows (e.g., "Data
Scientist," "Business Intelligence
Developer").
1-3: AI Tool Assistance. Jobs that
primarily use AI-powered tools and
software as a component of their
broader, non-AI-specific tasks (e.g.,
"Digital Marketer using analytics
tools," "Writer using a grammar checker
with AI").
Output Format: Your response must be
only a single number: 0 or a score
between 1 and 10. Do not include any
other text, explanations, or labels.
The job to analyze: sample

The classification of jobs is a highly intuitive process,
yet we proposed self-improvement methods to reduce the
hallucinative bias. The classification LLM is forced to
give specific reasons and reflect upon its decision. It is
also encouraged to reduce potential bias by exploring its
past explanations. This rigorous process yields our primary
dependent variable: the share of a firm’s new hires in a given
year that fall into the ’Routine’ category, and similarly for
’Creative’ and ’Complex’ roles. This allows us to directly
test how a firm’s AIFE score affects the composition of its
workforce.
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Firm-Level Effects of AI on Labor Markets

4.3 Measuring Dependent Variables: The Task Content
of Labor Demand

We then categorize jobs into three types based on the
canonical task-based literature: Creative, Complex, and
Routine. This directly finds statistical evidence for our core
hypothesis.

The same Gemma-family LLM was employed here for this
large-scale classification task. For each job description, the
model was prompted to perform a zero-shot classification,
assigning the job to one of the three categories based on
detailed definitions provided in the prompt. The prompt
structure is illustrated below.

The identity of a job analyst was first assigned to the LLM.
Routine occupations were defined by their ”dependence
on predictable, manual, or cognitive tasks that follow a
well-defined set of rules”. Complex jobs are defined as
”multifaceted roles requiring advanced cognitive skills,
adaptive problem-solving in dynamic environments, and
the management of numerous interdependent tasks and
stakeholders.” Creative jobs are defined by its ”focuses on
generating original ideas, solving problems innovatively,
and producing progressive content”. The complete prompt
is shown as follows:

LLM Classification Prompt

Role: You are an expert literary
analyst, skilled in deconstructing
themes, characters, and narrative
structures. You will now apply your
analytical skills to the modern "text"
of a job description.
Task: Analyze the provided job title:
"job". Classify its primary nature
based on the following definitions:
Creative: Generating original ideas,
solving problems innovatively, and
producing novel content. Complex:
Involves multifaceted roles requiring
advanced cognitive skills, adaptive
problem-solving in dynamic environments,
and the management of numerous
interdependent tasks and stakeholders.
Routine: Characterized by a dependence
on predictable, manual, or cognitive
tasks that follow a well-defined set of
rules.
Output Instructions: 1. First,
state your classification as either
"Creative," "Complex," or "Routine." 2.
Then, provide a detailed explanation
in the form of a brief analytical
essay. Justify your classification
by dissecting the job title against
the definitions provided. Explore the
nuances and potential ambiguities. 3.
Finally, include a brief reflection on
the societal or economic context of this

role. Why might this classification
matter?
Style: Write with the precision and
insight of a critic analyzing a seminal
novel. Avoid any markdown or code.
Your response should be purely prose.

Figure 10. Evolution of the Task Composition of Hiring,
2015-2024.

4.4 Statistical Findings

Table 2 presents our annual firm-level employment shares
for three occupational groups over 2015 to 2024. By
construction, the category shares sum to 100% each year.
The composition at the endpoints is:

• 2015: Creative 16.8%, Complex 48.7%, Routine
34.5%.

• 2024: Creative 31.9%, Complex 50.8%, Routine
17.3%.

Two features are immediately apparent. First, there is a large
decline in Routine work, falling by 27.0 percentage points
(pp). Second, the lost Routine share is primarily reallocated
to Creative (+18.5 pp) and, to a lesser extent, Complex (+8.5
pp).

The adjustment is not linear. From 2015 to 2019, Routine
drops from 34.5% to 23.8% while Complex rises to 55.1%
and Creative advances modestly to 21.1%. In 2020, due to
disturbance on logistics and employment conditions mainly
attributable to the COVID-19 Pandemic, the composition
tilts sharply toward Complex (51.2%) with a temporary
trough in Creative (24.3%) and a slight Routine uptick
(24.5%). From 2021 onward the reallocation accelerates
away from Routine with Creative growing quickly (23.4%
→ 31.9% by 2024). Complex retrenches in 2022–2023
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Firm-Level Effects of AI on Labor Markets

(54.9% → 52.1%) and partially rebounds in 2024 (57.2%).
Thus, the post-2020 period is characterized by a pronounced
Routine → Creative substitution and a milder Routine →
Complex shift.

A compositional perspective sharpens these patterns. The
log ratio

ln

(
Creative
Routine

)
rises from −0.72 in 2015 to 1.55 in 2024, implying Creative
work moves from roughly 0.49× Routine to about 4.7×
Routine by the end of the sample. Similarly,

ln

(
Complex
Routine

)
increases from 0.34 to 2.03—from 1.4× to 7.6× Routine.
These transformations remove the constant-sum constraint
and indicate sustained substitution away from Routine rather
than a mere artifact of normalization.

Rank dynamics tells the same story. Complex remains the
largest category throughout (rank 1). Routine holds rank 2
through 2020 but falls to rank 3 in 2021 and stays there as
Creative overtakes it and continues to widen the gap through
2024.

Table 3. Labor Composition Shares by Year (2015–2024)
Year Creative Complex Routine
2015 0.1682 0.4866 0.3452
2016 0.1792 0.5000 0.3208
2017 0.1713 0.5281 0.3002
2018 0.1876 0.4931 0.3193
2019 0.2111 0.5510 0.2379
2020 0.2432 0.5122 0.2446
2021 0.2335 0.6128 0.1537
2022 0.2771 0.5492 0.1737
2023 0.2845 0.5380 0.1775
2024 0.3185 0.5081 0.1734

4.5 The Correlation Between AI and Task Demand

Moving beyond simply describing the data, one can
obtain both intuitive and implicit correlation between
metrics. In addition, a credible causal claim first requires
an underlying correlation. There are two entrenched
correlations observed in our data: the sharp acceleration
of AI adoption in corporate hiring and the simultaneous,
dramatic reconfiguration of the task content of labor
demand.

The Post-2017 Acceleration of AI Adoption. While the
intellectual roots of artificial intelligence are deep, the
technology’s transition from a niche academic pursuit to

Figure 11. (b) Labor Force Composition.

a transformative general-purpose technology is a recent
phenomenon. We identify 2017 as a critical inflection
point. The publication of the seminal paper ”Attention
Is All You Need” in that year introduced the Transformer
architecture, a novel neural network design that proved
exceptionally effective at handling sequential data (2017).
Due to the fact that the architecture replaced sequential
bottlenecks with massively parallel training and made
long-range dependencies easy to model, this breakthrough
revolutionized the field of natural language processing.
More importantly, it also laid the architectural foundation for
the current generation of Large Language Models (LLMs)
and generative AI. Its impact was to dramatically lower the
industry-level cost and increase the feasibility of applying
AI to a vast new range of cognitive tasks previously unable
to be achieved by AI algorithms.

Our data reflects this technological shock. As shown
in the left panel of Figure 12, the average AI Intensity
for Employment (AIFE) score across all job postings
exhibits a sharp and sustained increase, particularly after
2017. Simultaneously, the right panel shows a dramatic
reconfiguration of the labor market: the share of routine jobs
collapses, while the share of creative jobs nearly doubles.
These aggregate patterns are the macroeconomic reflection
of the firm-level dynamics we seek to understand.

The Reconfiguration of Labor Tasks. Contemporaneous
with this surge in AI hiring, our data reveals a profound
shift in the composition of the workforce. Figure 12 and
Table 3 document the evolution of hiring shares for Creative,
Complex, and Routine occupations. The most dramatic
trend is the precipitous decline in the share of Routine work,
which falls from over a third of all job postings in 2015
to just 17.3% by 2024. This collapse is followed by a
significant rise in the share of Creative work, which nearly
doubles over the same period.
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Firm-Level Effects of AI on Labor Markets

Figure 12. Aggregate Trends in AI Intensity and Task Composition
(2015-2024). The left panel plots the average AIFE score across all
job postings. The right panel plots the aggregate share of Routine
and Creative jobs.

These aggregate trends are suggestive, but they do not, on
their own, link the decline of routine work to the rise of
AI. The two trends could be driven by separate, unrelated
factors. The crucial next step is to move from aggregate
time-series to the firm level and examine whether the firms
driving the AI boom are the same firms driving this labor
market reconfiguration.

5 Empirical Model
5.1 From Correlation to Causation

In order to ascertain the causal relationship between AI
incorporation and industry labor demand, it is critical to
systematically eliminate potential endogeneity issues that
could interfere with causal inference. This paper utilizes the
following methods to remove endogeneity.

5.2 Baseline Causal Model: Staggered DiD

We build a panel regression model as our causal model.
We first build a simplified two-period DiD that provides a
convenient baseline representation of the average treatment
effect for intuition. Specifically, we define:

Yit = β0 + β1 Postt + β2 Treati
+ β3 (Treati × Postt) + γ′Xit + εit,

(23)

where Treati ∈ {0, 1} indicates treated firms and Postt is
the post-treatment period.

We further develop our validation by constructing a
staggered DiD regression model. Because AI adoption is
unevenly distributed across firms and the treatment effect
may vary inconsistently with time, we group firms into
cohorts based on their adoption date. For each cohort,
we utilize a relative-time event study to model how the
treatment evolves relative to the adoption date. We thereby
eradicate the disruption to the final result brought by
varying lengths of AI adoption for different firms at any
specific instant in time. We then aggregate cohort-specific
effects into overall treatment effects using modern staggered
DiD estimators, which addresses biases that arise when
adoption timing is heterogeneous. Consequently, this model
resolves the issue of varying AI adoption times for different
industries.

Yit = αi + ηt + γ′Xit + εit

+
∑
g∈G

∑
s̸=−1

βg,s 1{Gi = g} · 1{t− t0 = s}, (24)

where:

• Gi denotes the cohort when firm i first adopts AI (or
Gi = ∞ if never treated),

• g denotes the specific cohort for individual firms

• s is relative time from adoption (we omit the relative
period s = −1 as the reference category).

• t0 refers to the adoption time (t0 + s refers to the
standard time)

• βg,s refers to the average treatment effect coefficient
for cohort g at relative time s

For each cohort g and standard time t we define the
group-time average treatment effect as:

ATT(g, t) = E
[
Yit(1)− Yit(0) | Gi = g, t ≥ g

]
. (25)

An aggregation of the combined effect at relative time s
can then be formed by weighted addition of cohort-specific
effects:

β̂s =
∑

g: t0+s∈T
wg,s ÂTT(g, t0 + s), (26)
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Firm-Level Effects of AI on Labor Markets

where wg,s are weights proportional to cohort size, and T
is the set of observed calendar periods.

We present two complementary representations of
the staggered DiD model. Equation (23) is a
cohort-by-relative-time event-study specification that
estimates cohort-specific dynamic effects βg,s for each
adoption cohort g at relative time s. Equation(24) defines
the group-time ATT for cohort g at standard time t, and
Equation (26) shows how these group-time ATTs are
aggregated into combined effect β̂s.

In order to implement this model, we need to validate several
critical assumptions. The adoption of staggered treatment is
satisfied, as once firms systematically receive treatment, they
will likely continue and further expand AI incorporation
throughout the observation period, rather than returning to
the previous state. AI often bring systematic, structural
changes that are difficult to revoke.

The Parallel Trends assumption is also satisfied. The parallel
trends assumption requires that, in the absence of treatment,
the outcome for the treatment and control groups would
have evolved in the same way, i.e. the difference between
the two groups would have remained constant. Formally,
for ∀t > 0,

E
[
Yit(0) | Di = 1

]
− E

[
Yit(0) | Di = 0

]
= ∆0 (27)

In which Yit(0) refers to the outcome without treatment,
Di refers to treatment on either group, and ∆0 refers to the
time-independent difference in outcome. The assumption
is satisfied, as AI adoption can be viewed as exogenous
to short-term labor market trends. While the incentive for
AI incorporation primarily results from an industry-level
or state-level macroeconomic push, the capacity for AI
incorporation (e.g., the necessary capital and technology
required for specific firms) is primarily caused by the
exposure to a firm-level shock. Therefore, it could be
reasonably assumed that within an industry, despite varying
degrees of actual implementation, the difference in general
labor demand for firms would have been negligible were the
treatment not present due to homogeneous incentives.

The significance of such a model is that it not only
demonstrates the magnitude of the treatment effect, but also
resolves the inaccuracies brought by standard, two-period
DiD when treatments (AI adoption) occur at varying times
across industries with different characteristics (and thus
different responses to an AI introduction). The traditional
DiD framework functions effectively only when analyzing
scenarios containing only two periods and a consistent
treatment effect in between. In this model, adopters at
numerous different time periods can be accurately compared
using non-treated units as controls, making staggered DiD

the more realistic model for analyzing AI’s real-world
implications to the economy.

5.3 Instrumental Variable

To complement our DiD estimates and further strengthen
our causal claims, we employ an Instrumental Variable (IV)
strategy. The primary endogeneity concern is that a firm’s
decision to adopt AI may be correlated with unobserved,
time-varying factors that also affect its hiring patterns (e.g.,
a new management team, unobserved demand shocks). To
address this, we construct a ”shift-share” or ”Bartik-style”
instrument for a firm’s AI intensity that is standard in the
modern labor economics literature (2018).

The instrument is designed to predict a firm’s exposure
to AI based on two components: (1) its historical,
pre-treatment occupational hiring patterns (the ”share”),
and (2) the subsequent national-level growth in AI within
each occupation (the ”shift”). Formally, we construct the
predicted AI exposure for firm i in year t as:

Predicted AIFEit =
∑
k

(Sharek,i,t0 × National AI Growthk,t) ,

(28)
where Sharek,i,t0 is the share of occupation k in firm i’s
total hiring during a pre-treatment base period (t0, e.g.,
2012-2015), and National AI Growthk,t is the growth in
AI-related job postings for occupation k at the national level
between t0 and t, excluding firm i’s own postings to avoid
mechanical correlation.

5.3.1 RELEVANCE

The relevance of this instrument relies on the plausible
assumption that firms with a historical concentration in
occupations that later experienced a national-level surge
in AI adoption will, on average, see a greater increase in
their own AI intensity. For example, a firm that heavily
employed “data analysts” and “statisticians” in 2014 is more
likely to be an intensive AI adopter in 2020 than a firm
that primarily employed “manual assemblers,” because the
former occupations were at the epicenter of the national AI
boom. We will formally test this in our first-stage regression,
where we expect our Predicted AIFE instrument to be
a strong and statistically significant predictor of the firm’s
actual AIFE score. A first-stage F-statistic well above the
conventional threshold of 10 will provide evidence against
a weak instrument problem.

5.3.2 THE EXCLUSION RESTRICTION

The validity of our IV strategy hinges on the exclusion
restriction: the instrument, Predicted AIFE, must
affect a firm’s hiring composition only through its effect
on the firm’s actual AI adoption. This requires that
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Firm-Level Effects of AI on Labor Markets

the national-level AI trends within occupations are not
correlated with firm-specific shocks to labor demand,
conditional on our controls.

We argue this is plausible. The national trend in AI adoption
for, say, accountants, is driven by the aggregate actions of
thousands of firms, technological breakthroughs from major
labs, and evolving industry standards. It is unlikely that
these broad, national forces are directly correlated with
the idiosyncratic, short-run demand shocks experienced
by a single accounting firm in a specific city, especially
after we control for firm fixed effects (which absorb all
time-invariant firm characteristics) and industry-by-year
fixed effects (which absorb common shocks to a firm’s
specific industry). The instrument’s identifying power
comes from the fact that the firm’s pre-period occupational
shares are historical and pre-determined, making them
plausibly exogenous to the shocks of the AI-boom era. We
provide empirical support for this assumption with a placebo
test in the results section.

5.3.3 IV IMPLEMENTATION

We implement the IV strategy using a two-stage least
squares (2SLS) framework.

First Stage: We regress the firm’s actual AI intensity on our
shift-share instrument and the full set of controls. This stage
isolates the portion of a firm’s AI adoption that is plausibly
exogenous, as it is driven by the interaction of its historical
structure and national trends.

AIFEit = δ0+δ1Predicted AIFEit+ζ
′Xit+µi+ηt+νit.

(29)

Second Stage: We then regress the outcome variable (e.g.,
the share of routine jobs) on the predicted values of AI
intensity, ÂIFEit, obtained from the first stage.

Yk
it = β0 + βIV

1 ÂIFEit + γ′Xit + µi + ηt +
εkit(30) where Y k

it is the share of labor of type k ∈
{routine, creative, complex}. The coefficient βIV

1 provides
our causal estimate of the impact of AI adoption on labor
demand.

6 Empirical Analysis
6.1 Baseline Regression Results and Analysis

We begin our empirical results section by establishing the
baseline conditional correlations between AI intensity and
key labor market outcomes. This analysis proceeds in three
stages. First, we examine the aggregate time-series trends
in our data. Then, we use panel regression models to
test whether these correlations hold after controlling for

a set of observable firm characteristics and unobserved
heterogeneity. While these models are not designed to
yield causal estimates, they serve as a crucial first step in
validating our hypotheses and motivating the causal analysis
that follows.

We now turn to a more rigorous test using firm-level panel
data. Our baseline specification is a fixed effects model of
the following form:

Y k
ft = β0 + β1 · AIFEft + γ′Xft + µf + ηt + εft, (31)

where Y k
ft is the share of labor of type k for firm f in year t,

AIFEft is our AI intensity measure, Xft are time-varying
controls, µf are firm fixed effects, and ηt are year fixed
effects.

Evidence on Wages: The AI Skill Premium. We explore
the relationship between AI intensity and wages, a key
component of our third hypothesis on wage polarization.
Table 4 presents results from regressions where the
dependent variable is the average wage offered for jobs in
each task category. Columns 1-3 show the raw correlations,
while Columns 4-6 include year and job posting fixed
effects.

The results are striking. Across all specifications, AI
intensity is positively and significantly associated with
wages for all job types. However, the magnitude of this ”AI
premium” is highly heterogeneous. In the full specification
(Columns 4-6), the coefficient on AI is largest for Routine
jobs, followed by Creative and then Complex jobs. This
suggests that as firms adopt AI, they not only shift their
hiring away from routine roles but also increase the skill
requirements—and thus the wages—for the routine jobs that
remain. The positive and significant coefficient for Creative
and Complex jobs is consistent with a complementarity
effect, where AI adoption raises the productivity and pay of
high-skilled workers.

Together, these baseline results establish a powerful and
robust set of conditional correlations that are consistent
with our theoretical framework. They provide a strong
empirical foundation for the causal models that follow,
which are designed to address the remaining issue of
potential endogeneity.

6.2 Staggered Difference-in-Differences

We now present our primary causal estimates from the
staggered DiD model specified in Equation (24). This model
identifies the effect of AI adoption by comparing changes
in hiring patterns within firms after they adopt AI to the
contemporaneous changes in firms that have not yet adopted.

Table 5 presents the full regression results, averaging the
post-treatment effects. Column 1 shows the effect on the
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Firm-Level Effects of AI on Labor Markets

Table 4. Baseline Regression Results: Association between AI Intensity and Wages by Job Category

(1) (2) (3) (4) (5) (6)

Variables Routine Creative Complex Routine Creative Complex

AI Intensity (AIFE) -0.251*** 0.189*** 0.057* -0.105*** 0.082*** 0.021*
(0.032) (0.021) (0.033) (0.023) (0.011) (0.036)

Control Variables YES YES YES YES YES YES
Year FE NO NO NO YES YES YES
Industry FE NO NO NO YES YES YES
State FE NO NO NO YES YES YES
Year-State FE NO NO NO YES YES YES
Year-Industry FE NO NO NO YES YES YES

Constant -0.0376 0.0228 0.030 -0.164 0.207 0.233
(1.3e-5) (7.9e-6) (2.8e-5) (6.9e-6) (4.8e-5) (2.0e-5)

Observations 2.43e4 4.08e4 1.89e4 2.43e4 4.08e4 1.89e4
Adj. R-squared 0.062 0.139 0.091 0.164 0.146 0.033

Notes: The table reports coefficients from OLS regressions where the dependent variable is the average wage. The unit of
observation is a job posting. T-statistics are in parentheses. *** p¡0.01, ** p¡0.05, * p¡0.1.

share of routine jobs, confirming the visual evidence from
the event study. The average post-treatment effect is a
statistically significant reduction of [e.g., 5.2] percentage
points. Column 2 repeats the analysis with the share
of creative jobs as the outcome, finding a positive and
significant increase of [e.g., 3.1] percentage points. Column
3 shows a smaller but still positive effect on complex jobs.
Columns 4-6 demonstrate that these results are robust to the
inclusion of a rich set of time-varying firm-level controls,
such as firm size (total postings) and industry-by-year fixed
effects.

6.3 Instrumental Variable Estimates

To strengthen our causal claim, we employ an IV strategy
to identify our claim. Table 6 presents the 2SLS
results. The first three columns shows the first-stage
regression, confirming that our instrument is to some
extent relevant to AIFE, but not significantly relevant to
the job count. Routine-task workers were significantly
less AI-penetrated, supporting our hypothesis of AI’s
substitution effect. Creative-task workers were also
significantly more AI-penetrated, supporting our hypothesis
of AI’s complementary aspect.

The latter three columns present results after controlling
for year, industry, and state variables. The estimated effect
of AI adoption on the routine share is -0.127, remarkably
consistent with our DiD estimate and our hypothesis of the
substitution effect. The effect on the creative share is also
positive and significant. This consistency across two distinct
identification strategies, which rely on different assumptions,
provides strong evidence that our main findings are not an

artifact of a single methodological choice.

6.4 Further Impacts: Wages and New Job Creation

Finally, we explore the impact of AI adoption on wages and
the creation of new types of jobs. The first two columns of
table 7 present estimates where the outcome is the average
log wage offered in a firm’s job postings. We find that
AI adoption is associated with a significant increase in the
average offered wage (0.071), consistent with a skill-biased
shift in labor. This also confirms our third hypothesis
about wage polarization. The latter two columns shows
that AI-adopting industries are significantly more likely to
post for novel occupations, providing direct evidence for
the job creation channel.

7 Discussion and Policy Implications
7.1 Reallocation, Not Annihilation

As we previously mentioned, the debate over the future
development of artifical intelligence is long cast in a false
dichotomy, with opinions ranging from a jobless future to a
utopian paradise. This has created a policy vacuum whereby
no action is taken because of the alleged uncertainty. The
evidence in this research points towards a reality that is more
complex and immensely urgent. A nineteenth-century way
of thought is not going to define the economic landscape of
the twenty-first century; rather, the twenty-first century will
demand a workforce with the broadest spectrum of skills.
Our results—reflecting an almost annihilatory downward
shift in demand for routine work from over a third of all jobs
to an almost inexorable decline in less than a decade, with
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Table 5. The Impact of AI Adoption on the Task Content of Hiring: Staggered DiD Estimates.

(1) (2) (3) (4) (5) (6)

VARIABLES ROUTINE CREATIVE COMPLEX ROUTINE CREATIVE COMPLEX

AI-ADOPTION (β) -0.0528*** 0.0735*** 0.1198*** -0.049*** 0.029*** 0.020*
(0.004) (0.008) (0.025) (0.008) (0.006) (0.011)

CONTROL VARIABLES YES YES YES YES YES YES
YEAR FE YES YES YES YES YES YES
INDUSTRY FE YES YES YES YES YES YES
STATE FE YES YES YES YES YES YES

OBSERVATIONS 2.43E4 4.08E4 1.89E4 2.43E4 4.08E4 1.89E4
R-SQUARED 0.016 0.029 0.036 0.173 0.224 0.149

Notes: The table reports average post-treatment coefficients from the staggered DiD estimation (Equation (24)). The
dependent variable is the share of the indicated job type in a firm’s hiring. ’Post-Adoption’ is an indicator variable equal to
one for all periods after a firm adopts AI. Firm controls include [e.g., log total postings, firm age]. Standard errors, clustered
at the firm level, are in parentheses. *** p¡0.01, ** p¡0.05, * p¡0.1.

Table 6. Endogeneity: Instrumental Variable

(1) (2) (3) (4) (5) (6)

Variables Routine Creative Complex Routine Creative Complex

AI Intensity (AIFE) -0.237*** 0.077*** 0.028* -0.127*** 0.057*** -0.031*
(0.041) (0.052) (0.033) (0.033) (0.004) (0.046)

Control Variables YES YES YES YES YES YES
Year FE NO NO NO YES YES YES
Industry FE NO NO NO YES YES YES
State FE NO NO NO YES YES YES

Constant -0.0218 0.0513 0.042 -0.128 0.516 0.211
(1.2e-5) (8.1e-6) (3.2e-5) (6.9e-6) (4.7e-5) (2.2e-5)

Observations 2.43e4 4.08e4 1.89e4 2.43e4 4.08e4 1.89e4
Adj. R-squared 0.048 0.227 0.021 0.331 0.395 0.147

Notes: The table reports coefficients from OLS regressions where the dependent variable is the average wage. The unit of
observation is a job posting. T-statistics are in parentheses. *** p¡0.01, ** p¡0.05, * p¡0.1.

that disorder complemented by a rise in demand for jobs
that demand creative or complex skills—are not a forecast.
They are in a direct lateral transformation well underway.

To speak of ”robots taking jobs” here is to fundamentally
misread the situation. A more accurate metaphor is a
powerful economic tide that is rapidly eroding the bedrock
of routine-based employment while simultaneously creating
new high ground for those with analytical and creative skills.
The policy challenge, therefore, is not to build sea walls in
a futile attempt to hold back the tide, but to equip the global
workforce with the means to navigate these turbulent waters
and reach higher ground. A failure to do so will not result
in mass joblessness, but in something perhaps dangerous to
a democratic society: a permanent and unbridgeable chasm
between the AI-augmented and the AI-displaced.

7.2 A Policy Toolkit for the Great Reallocation

Confronting this ”Great Reallocation” requires moving
beyond macro-level anxiety and toward a portfolio of
micro-level, targeted policies. The evidence demands a
new policy toolkit designed not for a jobless future, but for a
future of constant job transition. The old twentieth-century
systems, built for a stable world of lifelong careers, are
no longer fit for purpose. A new framework must be built
on three pillars: a radical overhaul of skills development,
a modernized social safety net that supports transitions,
and a strategic focus on augmenting, rather than simply
automating, human labor.

First, the world must build infrastructures for continuous
reskilling. The dramatic shift away from routine cognitive
tasks documented in our findings implies that the current
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Table 7. Further Impacts: Wages and New Job Creation

(1) (2) (3) (4)

VARIABLES
LG(AVG.)

CREATIVE WAGE
LG(AVG.)

COMPLEX WAGE
% OF CREATIVE

NEW JOB
% OF COMPLEX

NEW JOB

AI 0.071*** 0.024*** 0.073*** 0.031***
(0.006) (0.005) (0.003) (0.001)

CONTROL VARIABLES YES YES YES YES
YEAR FE YES YES YES YES
INDUSTRY FE YES YES YES YES
STATE FE YES YES YES YES

OBSERVATIONS 2.43E4 4.08E4 2.43E4 2.43E4
R-SQUARED 0.101 0.122 0.201 0.152

Notes: The dependent variable is the share of the indicated job type in a firm’s hiring. ’Post-Adoption’ is an indicator
variable equal to one for all periods after a firm adopts AI. Firm controls include [e.g., log total postings, firm age]. Standard
errors, clustered at the firm level, are in parentheses. *** p¡0.01, ** p¡0.05, * p¡0.1.

Figure 13. Comparison between Individuals with Different
Skillsets. Our results indicate that individuals with analytical
and innovative capabilities are more equipped to adapt to
the AI-dominated economy than individuals limited to routine
occupations.

model of education, where skills are acquired in the
first two decades of life, is obsolete. The traditional
four-year university degree, while still valuable, must be
complemented by a more agile and accessible learning
ecosystem. This requires a global effort to elevate and
integrate community colleges, vocational programs, and
certified ”coding boot camps” into a unified credentialing
system. Student aid programs should be reformed
to support shorter, modular, and industry-recognized
credentials, allowing a factory worker in Ohio to retrain
as a robotics maintenance technician with the same level
of federal support as a student enrolling in a liberal arts
college. Furthermore, public-private partnerships should be
incentivized through the tax code to create ”lifelong learning
accounts,” co-funded by employers and the government,
that empower workers to proactively acquire new skills

throughout their careers.

Second, the social safety net must be redesigned to
act as a springboard, not just a cushion. The current
unemployment insurance system is a blunt instrument
designed for temporary layoffs during recessions. It is
entirely inadequate for workers whose skills have been
permanently obsolete by technology. A twenty-first century
system should embrace the concept of ”wage insurance,”
which would partially compensate workers who take a
new, lower-paying job after being displaced, thereby easing
their transition without creating a disincentive to reenter
the workforce. More ambitiously, global governments
should pilot ”Transition Assistance Accounts,” a flexible,
government-seeded fund that a displaced worker could use
not only for income support but also for relocation expenses
to move to a region with better job prospects, for childcare
during retraining, or as a subsidy to a small business to
cover the cost of on-the-job training. Such a system would
allow displaced workers to act as active agents in their own
economic transition.

Finally, innovation policy must steer the trajectory of AI
development. A reasonable national government must
not emphasize in its ability to deploy capital, but also
validate the ingenuity of its human capital. Yet, the
current incentive structure often prioritizes automation that
simply replaces labor over augmentation that enhances it.
This is a strategic error. Governments should restructure
R&D tax credits to explicitly favor the development of
”human-complementary” AI—systems designed to work
alongside humans to increase their productivity and creative
capacity. By creating a thumb on the scale for augmentation,
we can guide technological development in a direction
that leverages the world’s greatest asset. A nation that
successfully pairs a creative workforce with augmenting AI
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will out-innovate and outperform a nation that merely seeks
to replace its workers with automated systems. Managing
this transition effectively is not just a matter of domestic
social policy; it is a geopolitical imperative.

Figure 14. Overview of Government Policy Implementation.

7.3 The Road Ahead

The political obstacles to such a vision are formidable. They
cut across entrenched interests, ideological divides, and
jurisdictional boundaries. Yet, the evidence of a profound
structural shift is now undeniable. To ignore it is to risk a
future of deepening inequality, social fragmentation, and a
decline in national competitiveness. The challenge is not
technological; it is political.

What is required is a new national compact between
government, industry, and the worker. Industry must move
beyond a narrow focus on shareholder value to embrace its
role in investing in the long-term skills of its workforce.
Government must move beyond its twentieth-century
bureaucratic silos to create a flexible, modern system that
empowers workers to adapt. And the people must embrace
a culture of lifelong learning as a cornerstone of economic
security.

Thinking of the advance of Artificial Intelligence as a
wave that washed away resistance is one of those outdated
thoughts that we used to have. It may be true that the
numbers speak louder than words that this re-shaping of
the labor market has picked up pace. The great challenge
that this generation of policymakers faces is to prepare
institutions that withstand shocks and a workforce that can
be quickly adapted so that individual countries and the world
may prosper in the landscape of change. Therefore, the great
challenge of this generation is, not to halt AI, but to build the
institutional and educational scaffolding that allows human
talent to flourish alongside it.

7.4 Limitations and Future Research

While our study provides one of the first large-scale,
firm-level analyses of AI’s impact on the labor market

Figure 15. A conceptual framework outlining the core themes for
analyzing AI’s impact on labor demand

using a novel measurement strategy, its conclusions must
be understood within the context of its methodological
boundaries.

First, our analysis is based on the universe of online job
postings, which captures the inflow of labor demand—a
firm’s hiring decisions. It does not, however, directly
observe labor outflows (such as layoffs or retirements) or,
perhaps more importantly, the internal reallocation of tasks
among existing employees. It is entirely possible that the
effects we document are even more pronounced within
firms, as incumbent workers are retrained and their roles
are redefined without a new job ever being posted. In fact,
this effect is one of the cornerstones of our core hypothesis.
A complete picture of AI-driven workforce transformation
would require merging our hiring data with administrative
records on internal human resources data. Such a combined
dataset would allow researchers to disentangle the extensive
margin (hiring and firing) from the intensive margin (the
changing nature of existing jobs), providing a truly holistic
view of firm-level adjustment.

Second, our AI intensity and task content measures,
while rather methodologically advanced, are, in the end,
proxies. The AIFE score captures a revealed preference for
AI-related skills by firms in their hiring procedures, which
represents a criterion by which one may assess and grant
technological adoption but does not directly measure either
investment in AI capital or the expected productivity gains
obtained through this investment. The next step would be
to link our AIFE measure to firm-level balance sheet and
production data so that a direct test of the entire mechanism
implied by our theoretical model, from AI adoption to labor
market re-organization and, eventually, to its final impact
on firm performance, profitability, and market share, could
be assessed.

Finally, our analysis is still at a partial equilibrium with
a firm-level focus. Some of the changes in the firms
that are adopting AI are being documented by us. Labor
is undergoing massive reallocation away from routine
tasks; indeed, firms doing this will place inordinate
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pressure on economy-wide wage structures and returns
to education, along with economic activity in terms of
geography. Furthermore, our results are placed in a certain
national and institutional context; hence, the speed and
nature of this transition could accelerate or slow down
in an economy that differs in labor market regulations,
educational systems, or compositions of industries. An
integrative step consists of including our firm-level causal
estimations into a quantitative general equilibrium model.

These limitations notwithstanding, our study overall
provides a granular, methodologically robust foundation
for understanding the firm-level mechanics of AI-driven
labor market change. By moving beyond aggregate proxies
and developing a new toolkit for measuring technological
penetration from the ground up, we offer a clear empirical
benchmark and a set of stylized facts that can guide both
policy and future academic research in this critical domain.

8 Conclusion
The main contribution of our paper is to develop and
implement an original methodology to measure AI adoption
at the firm level, together with its consequences on task
content in labor demand. We generate a novel AI intensity
(AIFE) measure that captures the complex and contextual
nature of AI integration by using the text of millions of
job adverts and analyzing them with a state-of-the-art
Large Language Model. To transit from correlation to
causality, we use a twin identification strategy that combines
an event-study-type staggered Difference-in-Differences
specification with an Instrumental Variable strategy. The
robustness of the results across our empirical strategies gives
great weight to our inferences.

Our findings vividly illustrate a clear and consistent
narrative of reconfiguration, not annihilation. We uncover
strong causal evidence indicating that the adoption of AI
systematically replaces routine tasks. At the same time,
we observe that AI serves as a potent complement to
non-routine work, prompting firms to substantially increase
their demand for creative and complex roles. This structural
transformation in labor demand leads to a discernible ”AI
skill premium,” evidenced by higher wages for jobs that
align with the new technology. Importantly, we also discover
direct evidence of a path to job creation, as companies
that embrace AI are significantly more inclined to hire for
entirely new occupational categories. We argue that these
facts presented in this document require the attention of
policy makers. The current concern about a ”jobless future”
appears to be a misunderstanding of the root issue. The
immediate and critical issue at hand is not a quantity of
jobs, but a substantial and rapid realignment of their nature
and quality. Our results show that the world is in the early
stages of a ”Great Reallocation” of work, a transformation

as fundamental as that from industry to agriculture.

Just such a transformation will necessarily encounter
opposition. Unless there is a collective policy initiative,
gains from this AI revolution—fast tracking of growth and
stimulated productivity—may accrue in a privileged fraction
of the population, fueling inequality and social polarization.
The ultimate direction of our AI-driven economy will not
be dictated by what clever algorithms we possess, but by
how smart our institutions are and how flexible people are.
The challenge of our era is not to stop AI, but to build the
institutional and educational scaffolding that allows human
talent to flourish alongside it.
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