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Multi-Microgrid Systems under the Dual-Carbon Goals

Abstract

Under the dual-carbon goals, the integration of high-penetration xenewable energy into
multi-microgrid systems introduces significant challenges, including increased uncertainty in
supply and demand, inefficient coordination, and the lack of market<oriented trading mecha-
nisms. To address these issues and achieve a balance between economic efficiency and opera-
tional stability, this study proposes a collaborative’scheduling.and energy trading framework
that integrates deep reinforcement learning with, Stackelberg-game theory. A hierarchical
optimization model is developed, where the distribution system operator (DSO) acts as the
leader setting energy prices, and individual microgrids serve as followers optimizing their
local operations in response to price signals: The microgrid decision-making process is for-
mulated as a Markov decision process, incorporating renewable generation, load demand,
energy storage, and demand response, while ensuring physical and operational constraints
are satisfied. To enhance learning.stability and accuracy in continuous action spaces, a PER-
Dueling-DDQN architecture is employed for'value-based learning, and the DDPG algorithm
is adopted to solve the bilevel game; leveraging actor-critic networks and experience replay
for efficient training. The.distributed design ensures that sensitive operational data remain
localized, preserving privacyswhile enabling coordinated control. Simulation results on an
IEEE 33-node system demonstrate that the proposed approach achieves superior economic
performance and robustness under uncertain conditions, effectively supporting market-driven,
privacy-preserving coordination/in multi-microgrid systems with high renewable penetration.

Keywords: Multi-Microgrid System; Dual-Carbon Goals; Deep Reinforcement
Learning; Stackelberg Game; Collaborative Scheduling; Energy Trading Mecha-
nism; PER-Dueling-DDQN; DDPG Algorithm
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1 Introduction

1.1 Background

Energy is a crucial foundation for economic and social development, with fossil fuels serving as
the primary conventional source for power generation [1]. However, the large-scale extraction and
consumption of fossil fuels have led to increasingly prominent issues of energy scarcity. Meanwhile;
the combustion of fossil fuels causes environmental pollution and the greenhouse effect, severely
impacting human health and socioeconomic development. Therefore, countries around the.world
are actively adjusting their energy structures, promoting the development of renewable energy-to
facilitate sustainable economic and social progress. An individual microgrid has limited capacity
and limited self-regulation capability. If there are sudden fluctuations in renewable generation or
load power that exceed its regulation range, the voltage and frequeneystability of the microgrid
may be compromised [2]. To address this issue, several geographically’ adjacent: microgrids can
be integrated into a multi-microgrid (MMG) system, enabling energy. sharing and .mutual support
among them. This enhances the utilization efficiency of renewable energy and improves the overall
system’s operational reliability and stability. Energy exchange among multiple‘microgrids is often
accompanied by market transactions. Under appropriate market mechanisms, the trading benefits
within a multi-microgrid system are generally higher than those achieved by individual microgrids
operating independently.

1.2 Literature Review

Recent studies have explored diverse approaches to‘optimize microgrid operation and energy
management under increasing penetration of renewable sources and distributed energy systems.
Parisio et al. [3] formulated the microgridioptimization problem as a mixed-integer linear program
(MILP), incorporating both discreteswvariables~such as generator on/off states—and continuous
variables like power flows, while‘enforcing system constraints. By leveraging commercial solvers
such as CPLEX or Gurobi, their model predictive control strategy achieves near-optimal perfor-
mance with sub-second computation times, ‘enabling real-time implementation. In a related effort,
Shayan et al. [4] applied a dynamic decision algorithm combined with a Markov-based prediction
chain to optimize multi-microgrid systems under boost voltage control, demonstrating through 13
case studies that higher renewable penetration reduces fossil fuel consumption but may compromise
economic viability unless supported by favorable feed-in tariffs—specifically above 0.06 USD /kWh
for full renewable feasibility. To address the complexity of real-time scheduling in microgrids with
multiple battery energy storage systems (BESSs), Shuai et al. [5] proposed an online optimization
framework aising a Branching Dueling Q-Network (BDQ), a deep reinforcement learning (DRL)
method that.effectively. handles high-dimensional action spaces and scales well with system size,
thus mitigating the curse/of dimensionality. Complementing this, Li et al. [6] developed a feder-
ated 'dueling deep. Q-network (DDQN) within an edge-cloud computing architecture to preserve
data privacy.and reduce communication overhead in distributed microgrid energy management,
introducing a'novel action exploration mechanism to enhance economic performance without sac-
rificing scalability. Game-theoretic approaches have also gained traction: Dong et al. [7] designed
a‘hierarchical Stackelberg game model integrated with a multi-agent system for microgrid clusters,
where the cluster operator sets incentive prices, individual microgrids optimize energy transactions,
and end. users adjust consumption accordingly, resulting in improved coordination and economic
benefits across the network. Similarly, Liu et al. [8] employed a Stackelberg game framework for
microgrids with photovoltaic (PV) prosumers, in which the microgrid operator acts as the leader
by setting optimal prices, while prosumers respond as followers to maximize their utility, with a



dedicated billing mechanism addressing uncertainties in PV generation and load demand; real-
world data validated the model’s ability to improve operator profits, prosumer satisfaction, and
overall energy balance. Extending this concept, Li et al. [9] introduced a real-time pricing model
based on an improved Stackelberg game for microgrids equipped with wind, solar, and energy stor-
age systems, where joint optimization of storage scheduling and dynamic pricing led to a 31.89%
increase in daily profits compared to unoptimized scenarios and a 5.4% gain over conventional
methods. Finally, Hu et al. [10] integrated reinforcement learning with myopic optimization/ina
soft actor-critic DRL framework for multi-timescale microgrid coordination, where an actor-critic
agent determines storage actions and a myopic model refines power flow decisions using, real-time
measurements processed through deep neural networks, achieving a 90.98% improvement in online
energy management efficiency over the myopic approach alone.

2 List of Symbols

Table 1: Symbol Definitions
Symbol Description Unit

At Time step/index h
Total operational cost of the micregrid system-over the scheduling

Ceost(t) horizon at time ¢ ¥
Chuy(t) Cost of purchasing electricity from-the main grid at time ¢ ¥
Cseu(t) Revenue from selling electricity te the'main grid at time ¢ ¥
Cur(?) Total operating costs of mieroturbines at time ¢ ¥
Cpr(t) Compensation cost.for'demand response interruptions at time ¢ ¥
Cpss(t) Operating costs of energy storage systems at time ¢ ¥
Cost /revenue associated.with electricity exchanged between the
Cex(t) microgrid and external grid (positive for purchase, negative for sale) ¥
at time ¢
c Unit charge/discharge eost (including battery maintenance and v
BSS lifetime degradation)

Cpr Unit doad curtailment compensation cost $/ kW
Py (1) Power purchased from main grid at time ¢ kW
Piey(t) Power sold to main grid at time ¢ kW
Poaa(t) Total active .power demand of residential appliances at time ¢ kW
Pyr(t) Active power output of a wind turbine at time ¢ kW
Ppy(t) Active power output of the photovoltaic system at time ¢ kW
Poa() Amount/of load voluntarily or contractually reduced by consumers W

" 4 during DR events

Neha Charging efficiency /

Ndis Discharging efficiency /

a Time-invariant costs of microturbine operation, including scheduled /
maintenance fees, start-up/shutdown costs...

b The variable operating cost coefficient /

SOC(t) State of charge of the battery at time ¢ %




3 Optimization Model for Multi-Microgrid Energy Man-
agement

To enable cost-efficient and reliable operation of multi-microgrid systems under high renewable
penetration, an optimization framework is formulated to minimize total operational.costs over
a defined scheduling horizon. The objective function integrates key components ineluding grid
power exchange, distributed generation, energy storage operations, and demand-side-flexibility.
This section presents the mathematical formulation of the cost minimization problem, along with
auxiliary equations that define each cost component in detail.

3.1 Objective Function

The primary goal is to minimize the total operational cost acress all time intervals within the
scheduling period. This is expressed as:

minCcost(t) = CEx(t) + CMT(t) + CEgs(t) -+ CDR(t), (1)

where C.ost(t) denotes the total system cost at time ¢, composed, of four/major terms: Cgx(t)
represents the net cost of electricity exchanged with the main grid; €y (t) accounts for the oper-
ating cost of microturbines; Cggs(t) captures the operational expenses of battery energy storage
systems; and Cpg(t) quantifies compensation paid‘te users participating in demand response pro-
grams. Each term is modeled to reflect real-world. economic and physical constraints, ensuring
practical applicability of the solution.

3.2 Component Cost Models
3.2.1 Grid Power Exchange Cost

Electricity trading between the microgrid cluster and the upstream grid involves both purchas-
ing and selling actions. The associated eost or revenue is calculated as:

Cox (0= (Couy (D Pouy (1) — Csen(t) - Poeu(t)) - At (2)

where Cy, () and Cye;(t). are the time-varying electricity prices for buying and selling, respectively;
Pyuy(t) and Py (t) denote thedmported and exported active power at time ¢; and At is the duration
of the time step in hours. Note that power export is limited by contractual agreements and local
regulatory policiesy which-are enforced through additional constraints in the model.

3.2.2 Microturbine Operating Cost

The operating cost of microturbines includes fixed start-up and maintenance charges, as well
as variable fuel-related expenses dependent on output power. It is modeled as a linear function of
generated power:

Cur(t) = (a+0b- Pyr(t)) - At, (3)

where a.represents the fixed cost per hour regardless of generation level, b is the fuel cost coefficient
in ¥/kW, and Py (t) is the real power output of the microturbine at time ¢. This simplified
quadratic-to-linear approximation balances accuracy and computational tractability, especially
when embedded in mixed-integer programming frameworks.



3.2.3 Energy Storage System Cost

Battery degradation and maintenance contribute significantly to long-term operational ex-
penses. The cost associated with charging and discharging cycles is given by:

CESS<t) = CESS : (Pcha(t) * Ncha + szs(t) . ndis) : At? (4>

where Cpggg is the unit cost per effective power throughput (¥/kWh), P.,.(t) and«Fy(t) are
the charging and discharging power levels, and 7.4, 14is Tepresent the corresponding charge ‘and
discharge efficiencies. This expression approximates aging effects based on round-trip energy flow,
commonly used in short-term dispatch models.

3.2.4 Demand Response Compensation

Incentive-based demand response programs require financial compensation for load curtailment.
The resulting cost is:

where Cppg is the agreed-upon compensation rate (¥/kW), and Ppg(t)/is the amount of load
reduced during event periods. This term encourages consumer participation while maintaining
budgetary control within the overall optimization framework.

3.3 Constraints

This section presents the constraints imposed on.the /system to ensure its safe, stable, and
economical operation. The constraints are designed to maintain electrical safety by preventing
overloads and faults, guarantee system.stability by satisfying operational limits, and promote
economic efficiency by adhering to demand response-and operational cost requirements. Together,
these constraints define the feasible operating region of the system under various conditions.

3.3.1 Power Balance Constraint

At every time step, total generation and imports must match total demand and exports to
ensure system stability. ‘This.can be expressed as:

Pyr(t) + Ppy (t) + Pwr(t) + Pais(t) — Pena(t) — Pioaa(t) + Ppr(t) + Pouy(t) — Peeu(t) =0 (6)

Here, Pyir(t) representsithe’output power of microturbines at time ¢; Ppy (t) and Pyr(t) denote
the output powers of-photovoltaic and wind turbines at time ¢, respectively; Pys(t) and P, (t)
represent the discharge and charge powers of energy storage systems at time ¢; P,qq(t) is the load
demandat time't; Ppr(t) is the load reduction due to demand response programs at time ¢; and
Pyy(t) and Py (¢) are the power purchased from and sold to the main grid at time ¢. Equation (6)
ensures that the power balance is maintained at any time point, thus ensuring the stable operation
of the system.

3.3.2 Distributed Generator (MT) Output Limits

Microturbines operate within a feasible power range constrained by their technical specifica-
tions:

min PMT S PMT(t) S max PMT (7)
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Here, min Py;r and max Py;7 represent the minimum and maximum output powers of microtur-
bines, respectively. This constraint ensures that microturbines operate within a safe and efficient
range, avoiding equipment damage or performance degradation caused by exceeding their design
limits.

3.3.3 Battery Charging/Discharging Limits

To ensure safe operation and prolong battery life, charging and discharging powers are re-
stricted:

Poa(t) >0,  Pys(t) < max Ppgs(t) (8)

Here, P.j,(t) denotes the charging power at time ¢, Pys(t) denotes the discharging. power at
time ¢, and max Pgrgs(t) represents the maximum charge/discharge power of.the energy storage
system at time ¢. These constraints ensure that batteries operate within a.safe range, avoiding
damage caused by overcharging or over-discharging.

3.3.4 State of Charge (SOC) Dynamics

The state of charge (SOC) of the battery evolves according to charging/discharging activities
and associated efficiencies:

Pdis (t)
Ndis
Here, Eggs(t) represents the energy stored in the battery at time ¢; P.,,(t) and Py;(t) denote
the charging and discharging powers at time t;respectively; 7.,, and 14 represent the charging and
discharging efficiencies, respectively; and At is the duration of the time step. Equation (9) describes
the evolution of battery energy over time; ensuring that the battery charges and discharges within
reasonable limits, thereby maintaining-the long-term stable operation of the system.

Epss(t+1) = Epgs(t) + Pana(t) - Nenar At = - At 9)

3.3.5 SOC Limits

The state of charge (SOC) of the battery must remain within the manufacturer-recommended
range to avoid damage: This can‘be’expressed as:

Epss(t)
max EESS

min SOC < SOC(t) = < max SOC (10)

Here, min'SOC and max SOC represent the minimum and maximum allowable values for the
battery’s SOC; Ergs(t)denotes the energy stored in the battery at time ¢; and max Egrgg represents
the maximum energy storage capacity of the battery. By setting these limits, we ensure that
the battery operates within a safe range, preventing damage caused by overcharging or deep
discharging.

3.3.6 Grid Exchange Limits

The power exchanged with the main grid cannot exceed the physical capacity of the connec-
tion peint to ensure electrical safety, prevent overloading, and avoid tripping of protective devices.
Specifically, the power purchased from and sold to the main grid must satisfy the following condi-
tions:

0< Pbuy(t)a Psell(t) < maXPEX (1]->

8



Here, Py, (t) represents the power purchased from the main grid at time ¢; Ps.;(t) represents
the power sold to the main grid at time ¢; and max Pgx is the maximum power exchange capacity
of the connection point. These constraints ensure that the power exchange between the system
and the main grid remains within a safe limit, avoiding electrical faults caused by exceeding the
physical capacity.

3.3.7 Demand Response Limitation

In demand response programs, the amount of load reduction must be limited to avoid negatively
impacting user satisfaction. Excessive curtailment of power consumption can cause discomfortor
inconvenience to users, thus the demand response constraint ensures that the reduction is kept
within an acceptable range:

Pred (t)
Pload(t)

Here, P,.4(t) denotes the reduced load at time t; P,qq(t) represents the total load demand at
time ¢; and max P is the maximum allowable load reduction xratio. By setting this constraint,
we can meet the operational needs of the system while ensuring that the user experience is not
significantly affected.

0<P=

< max P (12)

4 Markov Decision Process Framework for Microgrid Op-
timization

4.1 MDP Formulation

The microgrid energy management.problem is formally modeled as a Markov Decision Process

(MDP), defined by the 4-tuple:

MDP = (S, 4, P,r) (13)

In this formulation, S.represents the state space which encompasses all possible states of the
system; A denotes the action spagce consisting of all feasible actions that can be taken at any given
state; P is the state tramsition probability that defines the likelihood of transitioning from one
state to another givenia specificiaction; and r stands for the reward function which quantifies the
immediate benefit received/after taking an action in a particular state.

4.1.1 State Space (:5)

The state vector ,S; integrates external environmental inputs and internal operational status:

Sy = {Pwr(t), Ppv(t), Poad(t), Couy(t), Cseu(t), SOC.} (14)

Here, Pyp(t) represents the output power of wind turbines at time ¢; Ppy () denotes the output
power of photovoltaic systems at time ¢; P,qq(t) represents the load demand at time ¢; Cp,, () and
Csei(t)denote the cost of purchasing power from the main grid and the revenue from selling power
to the 'main grid at time ¢, respectively; and SOC. represents the state of charge of the energy
storage system. These variables collectively form a comprehensive description of the microgrid’s
operational state at any given time point.



4.1.2 Action Space (A)

The action vector is defined as:

Ay = (Puyr(t), Prss(t), Pex(t)) (15)

Here, Pgrgs(t) replaces the separate charge P, (t) and discharge Py;s(t) variables, while Pgx ()
replaces the separate grid purchase Py, (t) and sale Ps.;(t). By using a single continuous variable
for ESS and grid exchange, we ensure that the energy storage system cannot charge and discharge
simultaneously, and the grid cannot buy and sell power at the same time.

4.1.3 Reward Function ()

The reward function r; is designed to guide the scheduling agent toward operational strategies
that minimize cost while ensuring compliance with system constraints.. It comprises two compo-
nents: the dispatch cost C, (t)t and the penalty term ngte)n:

COos

e = _<Cc(?st + ngte)n) (16>

The dispatch cost represents the direct monetary expenditure-of the operator at time ¢, ex-
pressed as:

Cc((?st = CZSZ)y R 05(21 + Cz(\?T (17)

A lower C’C(th corresponds to reduced operating expenses, thereby increasing the reward. The
penalty term discourages violations of operational constraints that could compromise system safety
or reliability. Two categories of constraints are considered:

1. Directly avoidable constraints, which canbe fully prevented by limiting the action space,
thus requiring no penalty.

2. Indirect constraints, which cannot.be eliminated through action limits alone and therefore
require explicit penalty terms.

The penalty term is formulated as:

Cpen(t) = Vifsoc + ‘/QfEX (18)

Here, fso¢ quantifies the extent to which the battery state-of-charge (SOC) exceeds the safe
range, and’fgyx measures the excess in power exchange with the main grid beyond its physical
limits. Each-violation magnitude f; is calculated as:

| X — max Xg| + | Xy — min Xj|
Jr=In

(19)

max X — min X,

where max X, and min X, are the allowable upper and lower bounds, and V;, V5 are the
corresponding penalty coefficients.

10



4.2 Objectives

4.2.1 Cumulative Reward

In the Markov Decision Process (MDP) formulation, the objective is to maximize the cumulative
discounted reward R; over the decision horizon. The cumulative reward starting from time step ¢
is defined as:

Ri=ri+~v 11+ rgo+ ...+ rp (20)

where r; is the immediate reward obtained at time ¢, and + is the discount factor,with 0. < <. 1.
In this study, we set v = 0.9 to balance the relative importance of future rewards against immediate
rewards.

4.2.2 Value Functions

The value function provides a measure for evaluating the quality of states and the benefits of
actions under a given policy 7.

1.State-value Function

The state-value function is defined as:

Vi(s) = E[Ry | Sy = s, 7] (21)

This equation represents the expected cumulative reward starting from state s and following
policy 7. It measures the average return that.can be obtained by taking a series of actions according
to policy 7w from a specific state.

2.Action-value Function

The action-value function is defined as:

QAsva) = E[R| Sp= s, Ay = a, 7] (22)

This equation represents the‘expected cumulative reward when taking action a in state s and
thereafter following policy 7. Tt measures the immediate and future returns after selecting a
particular action in a specificistate:

3.0Optimal Policy

The optimal policy is.determined hy:

m(s) = arg max Q(s,a) (23)

This equation indicates ¢hoosing the action a that maximizes the action-state value function
for the current state's.. The optimal policy aims to maximize long-term cumulative rewards by
selecting the best/action at each state.

5/ Solution Methodology

This\section presents the solution approach based on an improved Deep Q-Network (DQN)
framework,.designed to address overestimation issues and enhance learning stability in the micro-
grid scheduling problem formulated in Section 3.

11



5.1 Neural Network Architecture

The Q-network is implemented as a neural network with the following structure:

e Input Layer: Processes the state vector representing real-time operating conditions; includ-
ing electricity prices, state of charge, and load demand.

e Hidden Layers: Multiple fully-connected layers utilizing Rectified Linear Unit (ReLU)
activations to extract high-dimensional features and model complex state relationships.

e Output Layer: Generates Q-values for all possible actions, employing ahyperbolic tangent
(Tanh) activation function to constrain outputs within a stable numerical range:

Input Layer Hidden Layer Output Layer Q Values

® S Q. ay)
: Q(S.a,)

| O Qs 2)

Ag Q(s.a,)
O Q(S.a,)

RelLu
RelLu
Tanh

State S

00-0

Figure 1: Neural Network Architecture

The input layer receives the state vector: S, which contains information about the current
environment, such as electricity prices, state of charge, and load demand. This layer enables the
network to understand the eurrent system’s operational status and convert it into a form that can
be processed by subsequent layers. The hidden layers consist of multiple fully connected layers, each
using ReLLU activation funetions.</The'ReL.U activation helps the network learn complex nonlinear
relationships, thereby better capturing interactions between states. By stacking multiple layers,
the network can gradually extract higher-level abstract features, which are crucial for accurately
evaluating the value of different actions. The output layer is responsible for generating Q-values
for all possible actions/ To ensure the stability and reasonableness of the outputs, the Tanh
activation function is“employed here. The Tanh function constrains the output values between
-1 and.1, helping to avoid'numerical instability issues and making the network’s learning process
smoother and morereliable. This architecture captures nonlinear state-action dependencies while
maintaining output stability, enabling optimal decision-making in dynamic grid environments.

5.2 Double Q-Network Design

To mitigate instability during training, a Double DQN architecture is adopted, consisting of
two identical Q-networks:

1. Evaluation Q-network: interacts with the environment to select the optimal action based on
the current state.

12



2. Target Q-network: provides stable target Q-values for parameter updates.

The parameters of the target network are periodically updated from the evaluation network,
preventing rapid target fluctuations and improving training stability.

5.3 Loss Function

The network parameters are optimized by minimizing the mean squared error between.the
predicted Q-values and target Q-values.

L(0) = El(g: — Q(st, ar | 9))?] (24)
Where: ¢; is the target Q-value computed by the target network:

Gt =T+ vmafé(stﬂ, Q41 | 5) (25)
at4

r; is the immediate reward at time step ¢, representing the direct gain obtained from executing
action a; in state s. « is the discount factor reflecting«the depreciation rate of future rewards
relative to immediate rewards. max,, Q(5¢41, 041 | 0) isthe maximum Q-value of the next state,
given by the target network, representing the best possible future return.

5.4 Analysis of Overestimation in Deep Q-Networks

In conventional Deep Q-Networks (DQNY); the target Q-value is computed using the maximum
estimated QQ-value over all possible actions'in the next ‘state:

INE TNt 7 max Q(s¢41,a) (26)

However, this maximization operation’introduces a positive bias in value estimation, leading to
systematic overestimation of.action values. This'phenomenon was first identified by Thrun and
Schwartz [11] and has since beenextensively validated in reinforcement learning literature. Specif-
ically, when the Q-function contains estimation errors—due to function approximation, limited
data, or stochastic transitions—the térm max, Q(s;11,a) captures not only the true optimal ac-
tion value but also amplifies noisy or high-variance estimates.

The overestimation problem.degrades sample efficiency and may lead the agent to converge
to a suboptimal policy. Im“dynamic energy systems characterized by fluctuating demand and
intermittent renewable sources,/inaccurate value assessments can trigger unnecessary control ac-
tions—such as excessive grid power purchases during peak pricing or inefficient cycling of energy
storage units—thereby increasing operational costs and accelerating component degradation.

5.5 Proposed Framework: PER-Dueling-DDQN

To address the aforementioned limitations, this study proposes an integrated deep reinforcement
learning architecture that combines multiple advanced techniques: Prioritized Experience Replay,
Dueling Network streams, and Double DQN mechanisms, collectively referred to as PER-Dueling-
DDQN. This framework improves learning performance through three complementary dimensions:
network ‘architecture design, target value computation, and experience utilization efficiency.

13



5.5.1 Dueling Network Architecture

The proposed dueling network architecture decomposes the standard Q-value head into.two
separate streams: a state-value stream V(s) and an advantage stream A(s,a). This structural
disentanglement enables the network to learn more nuanced representations of the environment’s
underlying dynamics. The state-value function V(s) estimates the expected return from state
s regardless of the selected action, reflecting the intrinsic desirability of being in.that-state./ In
contrast, the advantage function A(s, a) quantifies how much better or worse a particular action
a is compared to the average action in state s.

These components are combined to form the overall Q-value estimate:

Q(s,a) =V(s)+ A(s,a) — ’A|ZAS(I (27)

The subtraction of the mean advantage term ensures identifiability-of.the decomposition, prevent-
ing ambiguity between V (s) and A(s,a). Without such normalization, multiple combinations of
V(s) and A(s,a) could yield identical Q-values, destabilizing-training*and impairing generaliza-
tion. Empirical studies [12] have demonstrated that dueling networks achieve faster convergence

State Value-Function

Input Layer Hidden Layer V(s{o,p)
Q Values

O Q(s,alc,a,ﬁ)
9

o o

State S

seree
Refia]
|
00

Advantage Function 2
Input Layer Hidden Layer A(s,alo,0) < )

()
Q)

X
O

Figure 2: Architecture of PER-Dueling-DDQN
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and improved policy quality compared to standard DQN, particularly in environments with sparse
rewards and complex state dependencies. By sharing representation across value and advantage
streams, the model reduces redundancy and enhances parameter efficiency, enabling more robust
learning from limited interaction data.

In this architecture, the Q-value is obtained by combining two distinct network outputs:

14



e State-value network V(s | o, 8): a one-dimensional output that evaluates the overall value of
being in a given state s.

e Action-advantage network A(s,a | o, «): a |A| dimensional output that evaluates the relative
advantage of each action a in state s.

The final Q-value is expressed as:

Q(s,alo,a,0)=V(s|o,p)+ |A(s,a | o,a) — |7{| Z A(s,d | gec) (28)

a’€eA

Where o denotes the shared parameters of the two deep neural networks (DNNs); while o and
B denote the independent parameters of the advantage and value netweorks, respeetively. Thus,
the full parameter set of the D3QN is given by 6 = {0, «, }. Subtracting the-mean advantage
ensures that the advantage function has zero mean across all actions, thereby-removing redundant
degrees of freedom and improving stability. Consequently, the-dueling structure.reduces noise and
instability during iterative updates. In summary, the double-network design (decoupling action
selection from target Q-value estimation) and the dueling.structure (improving Q-value decompo-
sition) jointly enhance the accuracy and robustness of Q=learning-compared to the conventional
DQN.

5.5.2 Prioritized Experience Replay (PER)

Instead of sampling experiences uniformly from the. replay buffer, prioritized experience re-
play selects transitions with larger temporal=difference‘errors more frequently. This prioritization
ensures that the agent focuses on high-error (i‘e., more informative) experiences, accelerating con-
vergence and improving performance.

— Current State 8”4

Provides target Q

Environment Target Network
. s . (S, a,) Periodically updates O
Chooses initial action
Action A ——
Experience storage Evaluation Network
Experience Replay Buffer
Updates 0) Outputs Q(S,, a,)
Sample important experiences based on TD error
Sample batches (8. a. 1. S..) » Loss Funtion «——

pf'()l’l(lﬂ\‘ r

Figure 3: Prioritized Experience Replay (PER)
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5.6 Training Process

The training objective is to minimize the total operating cost of the microgrid through contin-
uous interaction between the agent and the environment. The agent learns to predict the action-
value function Q(s, a) by balancing exploration and exploitation until the Q-values converge. The
training procedure consists of the following five steps:

Step 1: Initialization

The Q-network is initialized with weights. The output layer corresponds to the number of
discretized actions. The target value is defined as:

Qtarget =r+7- maXQ(Slv a/) (29>

Step 2: Action Discretization

Since the original action space is continuous (e.g., MT output, ESS charging/discharging, DR
response), it is discretized to fit the Q-learning framework:

1. Define the action range for each dimension k: [min zy, maz- ).

2. Choose a discretization interval Axy.

w

. Compute the number of discrete actions:

Max T, — Min Ty
X, = 1 30
k Ay + (30)

4. Generate discrete actions:
X =munm xp +Ar-1 (i=0,1,...,2p, — 1) (31)
Step 3: Action Selection

The agent selects an” action ay using an e-greedy strategy:

Grandom (exploration) with probability €
ar =
! argmax, Q(S;, a;0) (exploitation) with probability 1 — e

This balances exploration (searching wider action space) and exploitation (using the best-known
action). The value of € decays over training to gradually shift from exploration to exploitation.

Step 4:“Environment Interaction
The chosen action is executed in the environment, leading to state transition.
Ciotal = Cur + Crss + Cpr

Experiences are stored in the replay buffer, and prioritized replay is applied to improve sample
efficiency.
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Step 5: Parameter Update
The Q-network parameters 6 are updated via SGD:

1. Mini-Batch Sampling
Sample a batch {S;, as, ¢, Syy1} from the replay buffer.

2. Compute target Q-value

The discounted total future reward that can be obtained after executing the action is-ealcu-
lated by:

Qtarget =1+ v m(?XQ(StJrlu al; g)
3. Compute current predicted Q-value
Qpred = Q(St7 Ay, 0)

4. Compute the loss function and minimize the mean squared error (MSE):

N
1
L(G) = N Z'2:1:(ng‘ﬂw’get,i X Qpred,i)z (32>
Where N is the batch size.
5. Update parameters:
0 = 0=n VL) (33)

6. Update the target network.

6 Coordinated Optimal Scheduling Based on Stackelberg
Game and DDPG Algorithm

6.1 System Architecture

The considered distribution network architecture comprises a single Distribution System Opera-
tor (DSO) managing a radial feeder with multiple interconnected microgrids (MGs). Bi-directional
power and communication-flows‘exist between the DSO and each MG. The DSO can purchase elec-
tricity from the main grid and exchange power with MGs based on operational needs.

In this system, the DSO acts as the leader, guiding the behavior of MGs through Stackelberg
game strategies to achieve global optimal scheduling. Each MG serves as a follower, adjusting its
operational strategy. according to the DSO’s decisions to reach local optimality. Furthermore, the
Deep. Deterministic Policy Gradient (DDPG) algorithm is introduced to optimize the interaction
progcess between the DSO and MGs, enhancing the overall efficiency and stability of the system.

Figure 4illustrates the schematic diagram of the system architecture, where the DSO interacts
with. multiple MGs via energy flow and information flow. Each MG includes distributed energy
resources such as photovoltaic (PV), wind turbines (WT), energy storage systems (ESS), and
micro-turbines (MT). By coordinating the operation of these devices, the DSO effectively manages
the entire distribution network.

17



Algorithm 1 Per Dueling DDQN (D3QN)

1: Randomly initialize the evaluation network parameters 6
2: Initialize target network parameters § — 6
3: for (episode =1): E do
4: Reinitialize the environment state
5 for (time stept =0): T do
6: Obtain environment status
7: Choose action a; based on strategy 7
8 Calculate the immediate reward r; and obtain the new environment state
9: Store experience in the experience replay buffer
10: if the experience replay pool experience ; number minibatch sample capacity (Minibatch
Size) then
11: Prioritize experience replay sampling from the experience replay-pool
12: if t =T then
13: qr = Ty
14: else
15: G =1+ max Q(Spy1, A1)/ Q
16: end if
17: Calculate the loss function L(0)
18: Update the current network’s parameters ¢
19: Update network parameters every:C rounds
20: end if
21: end for
22: end for
— Energy Flow
b Main Grd e Information Flow
i1 DSO
PV WT PV WT PV WT

N/ N/ N/
VAR /N 7N
S MT

ESS MT ESS MT ES
‘MGl MG2 MGk

Figure 4: System Architecture
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6.2 Upper-Level Optimization Model
6.2.1 Objective Function

The objective function aims to minimize the total operating cost for the Distribution/System
Operator (DSO) at time ¢, denoted as Cpso+. This cost comprises three key components: the cost
of purchasing electricity from the wholesale market, the net cost of transactions with.microgrids,
and the cost of energy losses in the distribution lines.

min Cpsot+ = Cpso1t + Cpso2t + Cpsosy (34)
Where:

e CUpsoa, is the cost of purchasing power from the upper-level grids
e CUpso2. is the net cost of energy transactions with all connected microgrids.

e CUpsos;: is the cost of active power losses in the distribution network:

1) Cost of Power Purchased from Main Grid:
This cost is determined by the product of the electricity price Ciiaingria set by the wholesale
market, the purchased power P,,qingrids, and the time interval At.

C(DSO,l,t = Cmaingrid,t : Pmaingm'd,t AL (35>

By optimizing these three components, the DSO:can effectively reduce its operational costs and
enhance the economic efficiency of the entire-distribution system. Moreover, rational planning and
management of energy transactions with mierogrids not‘only decrease reliance on the main grid but
also promote the utilization of renewable energy sources, contributing to sustainable development
goals.

2) Net Cost of Transactions with Microgrids:

This represents the net monetary-flow between the DSO and N microgrids. The DSO incurs
a cost when it purchases power from a mierogrid i at the price Cysgs,i. Conversely, it generates
revenue when it sells power to a,microgrid.¢ at the price Cygp,it. The net cost is the sum of all
purchases minus the sum of all sales across all microgrids.

N
Cpso2t = Z(CMGs,i,t - Pygsit — Cumanit - Pucnir) - At (36)
i=1
By optimizing transactions with microgrids, the DSO can more effectively manage its energy
supply and«demand balance, reduce unnecessary cost expenditures, and enhance overall economic
efficiency. Additionally; rational pricing strategies can encourage active participation from micro-
grids, eollectively promoting the sustainable development of the distribution system.
3).Cost of Network Losses:
Thefinancial/impact of active power losses P, across all N branches in the distribution
network is_calculated.

N
CDSO,B,t = Cmaingm’d,t : (Z Ploss,j,t) - At (37)
j=1

Network loss costs reflect energy losses during power transmission, which have a direct impact
on the DSO’s operational costs. By adopting advanced technologies and management measures,
network losses can be effectively reduced, improving power transmission efficiency. This further
lowers operational costs and enhances system performance.
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6.2.2 Power Flow and Network Constraints
(1) Voltage Equation

(7"]2‘ + x?)(Pj%t + Q?,t)
V2

Jit

Vi, =V —2(riPy + 2;Q54) +

(38)

This equation demonstrates how the voltage magnitude changes from node j to fnode j+1 along
branch j, taking into account the impact of branch resistance r;, reactance x;, and the injected
active power P;; and reactive power ();; at node j. By analyzing the voltage-equation, a deeper
understanding of the voltage distribution patterns in power systems can_belgained, providing
theoretical support for optimizing grid operations and improving power supply quality.

(2) Active Power Equation

2 2
Py = Py — TjLQQN — Djt1g (39)
Vi
This equation reflects the active power balance along branch j. Studying the active power
equation helps to understand the characteristics of energy transmission'in’ power systems, which
is crucial for rational planning of power dispatching and.ensuring the safe and stable operation of
the grid.
(3) Reactive Power Equation

2 2

Qj—i—l,t = Qj,t - mg% T Aj1t (40)

it

This equation describes the reactive power balance state: The role of reactive power in power
systems cannot be overlooked as it direetly affects woltage levels and system stability. In-depth
research on the reactive power equation can effectively enhance the operational efficiency and

reliability of power systems, laying a solid foundation for achieving the goals of smart grids.

6.3 Lower-Level Optimization Model
6.3.1 Objective Function

The objective of each microgridz is'to minimize its total operational cost at time ¢:

min Cycir = Cuvcoie + Omc it + Cucs,it (41)

Where the.cost’components are defined as follows:
(1) Energy Trading Cost with DSO

Cucrit = (Cucsit - Pucsit — Cucoit - Pucri) - At (42)

Where Cyasir and Chraeie are electricity prices, Purgs,ir and Paae,i¢ are electricity quantities
for different transaction directions, and At is the time interval. By optimizing energy trading with
the DSO, the microgrid can effectively reduce operational costs and enhance economic benefits.

(2) Micro-turbine Operation Cost

Cyvcait = (a+b- Pyr,q) - At (43)

Where a and b are cost coefficients, and Py, is the output power of the micro-turbine. Proper
configuration of the micro-turbine’s operating parameters can significantly reduce fuel consumption
and maintenance costs, thereby lowering overall operational costs.
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(3) Energy Storage Operation Cost

P 18,1
Cymcsit = Crss - (Pehait - Neha + —:; YAt (44)
dis

Where Cggg is the energy storage cost coefficient, Py, and Py ;¢ are charging and discharging
powers, and 7)., and 74, are charging and discharging efficiencies. Through optimized management
of the energy storage system, efficient utilization of electricity can be achieved, further reducing
the operational costs of the microgrid.

6.3.2 Decision Variables

o Pyt Output power of the micro-turbine.
® Pipait, Paisii: Charging and discharging powers of the energy storage system.

® Purrgs,its Prce,ir: Power exchange with the DSO.

6.3.3 Constraints

(1) Power Balance Constraint

The total power from the micro-turbine, photovoltaie<(PV.), wind turbine (WT), and energy
storage charging/discharging should balance the load and ,transaction power. This constraint
ensures the energy supply-demand balance within.the microgrid; which is fundamental for main-
taining stable operation.

Pryris + Pevie + Pwrit — Penaiw™t Paisin = Ploadit + Prcsit — Pyt (45)

By precisely controlling the power output of each generation unit and storage device, effective
responses to load fluctuations and changes in the external power market can be achieved, enhancing
the self-sufficiency and economie efficiency of the microgrid.

(2) Micro-turbine Operation Constraint

The output power of the micro-turbine-should be within the minimum and maximum limits to
ensure safe and stable operation.

min PMT S PMT,i,t S max PMT (46)

Reasonably setting:the operating range of the micro-turbine can prevent overloading or ineffi-
cient operation, extending the equipment’s lifespan and reducing maintenance costs. (3) Energy
Storage Power Constraint

The charging and_discharging powers of the energy storage system should be within the mini-
mum and maximum limits to ensure safe operation and prevent overcharging or over-discharging.

min Prgs < Pepeir < max Ppgg, 0 < Py < max Pggg (47)

Properly setting the power range of the energy storage system can effectively extend the battery
life, improve overall efficiency, and enhance system reliability.

(4) Energy Storage SOC Constraint

The state of charge (SOC) of the energy storage system should be maintained within the
minimum and maximum limits to ensure normal operation and prevent excessive charging or
discharging.

Egss,it
max EESS

min SOC' < < max SOC (48)
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The SOC update formula is described as:

Pdis i
Fgssiit1 = Erpssit + Neha - Pehajip - At — e LAt (49)
dis

By precisely controlling the SOC, the use of the energy storage system can be optimized,
improving the energy management efficiency of the microgrid.

6.4 Network Constraints

(1) Branch Power Loss
The active power loss of branch j at time ¢t is:

P2+ Q3
Ploss,j,t =Tt % (5())
jit

(2) Node Voltage Constraint
The voltage at node j at time ¢ should be within the allowable range:

min V' <V, < maxV (51)

(3) Branch Power Constraint
The active power on branch j at time ¢ satisfies:

0 S Pj,t S max Pline,j (52>

Where max Py ; is the maximum transmission power o6f the distribution network feeder. This
constraint ensures the safe and stable operation of the grid, preventing overloading and potential
faults.

(4) Electricity Price Constraint

The electricity price for tramsactions between the distribution network and microgrid @ is

bounded:

minCuyai < Onenir < Cugsic < max Cuya (53)

Where min Cj¢3 and max Cipg; are the minimum and maximum electricity prices for trans-
actions between the network and microgrid ¢. Reasonably setting the price range can promote fair
trading and protect the interests of all parties involved.

6.5 Stackelberg Game Framework

The" interaction between the Distribution System Operator (DSO) and multiple microgrids
(MGs)-is formulated as a Stackelberg game, where the DSO acts as the leader and the MGs are
the followers. The DSO determines energy trading prices and dispatch decisions, while each MG
optimizes itsloeal operation strategy based on the DSO’s decisions.

6.5.1 Sets of Participants
® Ypso: Sets of DSOs

e vy Sets of microgrids indexed by 7 € vy
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6.5.2 Strategy Sets

The DSO decides the buying and selling electricity prices at time t:

Xpsotr = f(Cucsit: Crucnitli € puc) (54)

Where: Cigs,ir represents the electricity selling price from the Distribution System Operator
(DSO) to microgrid ¢, while Cysgpi¢ denotes the electricity buying price from microgrid i to” the
DSO. The time step index t ranges from 1 to T, tracking transactions at different time points:

Each microgrid adjusts its power scheduling decisions based on these price signals to. minimize
operational costs and maximize utility. Specifically, the strategy set X, ;¢ for microgrid ¢ at time
t includes several components:

Xncin = {Putits Penayiits Paisits Prcs,ips Prcuint (55)
Where:

e Pyt Internal generation within the microgrid.

® Pipqii: Charging power.

Pis,i+: Discharging power.

Phrgs,iv: Electricity sold to the DSO.

Phrrayii: Electricity purchased from the DSO.

6.5.3 Stackelberg Game Model Construction

We construct a Stackelberg game model with centralized coordination and decentralized control.

(1) Dynamic Process

The Distribution System Operator (DSO) formulates electricity prices strategy, while micro-
grids (MGs) adjust their operation strategies.. Through iterative convergence, the system reaches
equilibrium. This dynamie, process ensures that the system can achieve optimal configuration
under constantly changing.market conditions, thereby realizing effective resource allocation and
utilization.

(2) Key Components

The game model aggregates core elements to form a complete decision-making system.

U= {dpso, dmc:Xpsor, {Xmaitlt € dmct, Upsos, {Umcitli € dmalt} (56)

Where ¢pso and ¢y are participant sets (defined in section 6.5.1), Xpso+ and Xy are
strategy sets (defined insection 6.5.2), and Upso+ and Ui+ are utility functions.

(3) Coordinated Mechanism

Centralized Coordination: The DSO aggregates information from all microgrids to formu-
late pricesstrategies that match the overall grid status. This centralized coordination mechanism
ensures.global optimization, enabling each microgrid to make decisions within a unified framework,
thus. enhancing the efficiency and stability of the entire system.

Decentralized Control: Each microgrid independently adjusts its operation strategy based
on the price information provided by the DSO, aiming to minimize operational costs and maximize
benefits. This decentralized control mechanism grants microgrids a certain degree of autonomy,
allowing them to flexibly respond to local demands and resource changes.
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By combining centralized coordination and decentralized control, the Stackelberg game model
achieves a balance between global optimization and local flexibility, providing strong support for
the efficient operation of power systems.

(4) Utility Function

In the bi-level optimal dispatch model of the distribution network and microgrids, the ‘utility
functions represent the economic interests of different participants. Since each participant aims.to
minimize operational costs, maximizing utility is mathematically equivalent to minimizing these
costs. Therefore, the utility functions are expressed as the negative of the respective cost functions.

i) Utility Function of DSO (Upso.t)

It represents the interests of the Distribution System Operator (DSO). The maximization of its
utility is equivalent to the minimization of operation cost. The operation cest, of the/distribution
network includes the cost of purchasing electricity from the main grid, network loss'cost,etc. The
expression is:

Upsor = —Fpsox (57)

where Fpso, is the operation cost of the distribution network at time 2.

ii) Utility Function of Microgrids (Unc,it)

It represents the interests of the Microgrid (MG). The'maximization of utility corresponds to
the minimization of its own operation cost. The operation‘cost of'the microgrid includes the fuel
cost of the micro-turbine, the depreciation cost of energy storage; the transaction cost with the
distribution network, etc. The expression is:

UMc,it= — vz (58)

where fyc.i+ is the operation cost of microgrid.i‘at.time t.

The interaction among multi-agents is promoted by the utility function, following the process of
"distribution network formulates price strategy —»microgrid responds with strategy — distribution
network evaluates results”. This mechanism ensures that while each participant pursues its own
interests, it also contributes to the overall.optimization and stable operation of the system.

iii) Stackelberg Equilibrium

In the context of hierarchical energy management between a Distribution System Operator
(DSO) and multiple Microgrids (MGs), the strategic interaction is modeled as a Stackelberg game,
where the DSO acts as the leadervand the MGs as followers. The solution concept of this non-
cooperative game-is-known as‘the.Stackelberg equilibrium, defined as a strategy profile from which
no participant can benefit by unilaterally altering its decision, given that the followers respond
rationally to.the leader’s.action.

At equilibrium, the DSO, first commits to a pricing strategy, characterized by the electricity
purchase price Cagp,e and sale price Chrgsis for each microgrid ¢ at time ¢. Each MG, upon
receiving these price signals, independently solves its local optimization problem to determine
an optimal operational schedule X7}, ; ,—comprising controllable variables such as Py (micro-
turbine output), Pepai s, Puisit (energy storage power), and power exchange terms Prgp.it, Prcs,it-
This decision maximizes its utility Upgit = —fmc.it, where fargi+ denotes the operational cost,
subject to physical and operational constraints.

Anticipating the rational responses of all MGs, the DSO formulates its pricing policy X754, to
maximize its own utility Upso: = —Fpso, where Fpgo represents system-level costs including
grid proecurement and losses. This sequential decision process is mathematically captured by a
bilevel optimization framework, formally expressed as:
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max  Upso: = —Fpso,(Xpso; {Xyais |1 € duac}) (59a)

Xpso,t
s.t.  Network constraints: Viym < V; < Vipay, Vi €N (59b)
Cycrit, Crucs,it € [Cmin, Cinax)s Vi € ¢y (59c)
For each i € ¢na, Xyrg,y sOlves:
X%g?it Unmac,it = —fucit(Xnvcie, Xpsoy)
st Penaie < Py Puaisiy < Py~ (59d)

1

Eiv1 = Eiy + NenaPenayit — Ngie Patis,it
min max

Pyr < Puriy < Puyr

Here, the upper-level problem (1a)—(1c) corresponds to the DSO’ strategic decision-making,
while the lower-level problems (1d)—(1e) represent the decentralized. responses of individual MGs,
parameterized by the leader’s announced prices. The Stackelberg equilibrium_is attained when a
fixed point (Xpg0.4, {Xirg.e}) is reached, such that bothulevels simultaneously satisfy optimality
conditions.

6.6 Solution via Policy-Based Deep-Reinforcement Learning

Given the computational complexity and non-convex nature ofthe bilevel optimization problem,
an analytical solution is often intractable, especially in large-scale or uncertain environments. To
address this challenge, we adopt a policy-based Deep Reinforcement Learning (DRL) framework,
specifically the Deep Deterministic Policy.Gradient (DDPG) algorithm, to approximate the optimal
pricing policy for the DSO.

The interaction between the: DSO and the MGs is formulated as a Markov Decision Pro-
cess (MDP), where the DSO functions‘as the learning agent. The state space S encompasses
system-wide observables, including load profiles, renewable generation forecasts, voltage levels,
and historical price signals. The action space A is defined by the DSO’s pricing vector Xpgo .
The reward at each timestep.is designed as r, = Upgoy+, aligning the agent’s objective with the
system’s economic performance.

Crucially, the MGs’ responses are treated as part of the environment dynamics, either through
simulation or embedded optimization modules. This allows the DRL agent to learn an implicit
reaction function without explicit modeling of follower objectives, thereby reducing dependence
on precise knowledge of‘internal MG cost structures. The DDPG algorithm, leveraging actor-
critic architecture and. experience replay, enables stable learning of continuous control policies
in high-dimensional spaces, making it well-suited for real-time, adaptive energy management in
distribution networks.

6.6.1 Markov. Decision Process Construction

The. Markov Decision Process (MDP) framework defines the state space, action space, and
reward functions for both the Distribution System Operator (DSO) and microgrids.

(1) State Space

As the leader in the game, the DSO’s state space reflects the market environment and the
expected power trading information submitted by microgrids:

Spsos = {Prcis- - Prcits Cmaingrids t (60)
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Where:

e Pycii (i =1,2,... k) represents the expected transaction power submitted by microgrid ¢
at time ¢.

® Crgingrids 1s the wholesale market transaction electricity price at time t.

As the follower in the game, the microgrid’s state space must include the deecision-feedback
from the distribution network and the operating status of internal equipment to support strategy
response. Its expression is:

Suvcit = {Cumas.it, Cucvits Pevits Pwrits Poadit, SOCi} 1 € k (61)
Where:

o Chgs,it and Chree.ir represent the selling and buying prices of microgrid ¢ at time ¢, respec-
tively.

e Ppy, and Py, represent the photovoltaic and wind turbine generation powers of microgrid
¢ at time t, respectively.

® DPioadi+ represents the load demand of microgrid i/at time ¢

e SOC;; represents the state of charge of the energy storage system of microgrid ¢ at time ¢.

By defining these state spaces, a comprehensive reflection ‘of the market environment and oper-
ational states of both the DSO and microgrids at _different time points can be achieved, providing
a solid foundation for subsequent action selec¢tion and reward calculation.

(2) Action Space

The Distribution System Operatory(DSO) determines the buying and selling prices for electric-
ity trading with each microgrid:

Apsor = {Cmesiiiov - Omcs it Cricvigs - - Crch it} (62)

Each microgrid decides. internal equipment operation (e.g., microturbine generation, battery
charging/discharging) and expected transaction power with the DSO:

Apcit = {Purit, Ppssit} (63)

(3) Reward Functions
The DSO- aims to minimize .operational costs while ensuring grid-safe operation. Its reward
function incorporates both eperational costs and penalty terms for constraint violations:

rpsotr = —(Cpsor + Cpsopent) (64)
Where:

o Cpsoy represents the base operational cost of the network at time ¢.
o CUpsopent is the penalty cost for violating operational constraints; it aggregates penalties for
voltage violations and line overloads:
CDSO,pen,t = wlfv + w?fline (65)

wy and wy are weight coefficients for voltage and line overload violations, respectively. f,
and fi;,. are penalty functions triggered by voltage limits and line load exceeding capacity.
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For each microgrid, the reward function is expressed as:

rMG,i,t = _<CMG,i,t + CMG,pen,i,t) 1€ k (66)
Where:

e C.iy is the base operational cost for violating microgrid-specific constraints.

® CriGopen,iyt 18 the penalty cost:

CMG,pen,i,t = UlfSOC,i + UZfex,i (67>

v; and vy are weight coefficients for SOC violation and trading excess. fsocy and fe
are penalty functions activated by SOC out of safe range and power exchange exceeding
contracted limits.

6.6.2 Deep Deterministic Policy Gradient (DDPG) Algorithm

To solve the continuous decision-making problem in the bi-level ‘Stackelberg game framework,
this work adopts the Deep Deterministic Policy Gradient (DDPG) algorithm.

(1) Leader-Follower Interaction

As illustrated on the left side of the figure, the leadersagent (DSO) determines its action a; pso,
which corresponds to the electricity trading prices Chgs,i¢ and Chregpie. The follower agents
(Microgrids, MGs) observe these price signals along with their local states — such as photovoltaic
generation Ppy;;, wind turbine output Pygz;:; and load demand Pqq;: — and compute their
optimal response actions aysq -

For each time step:

1. The DSO sets price strategies a; pso-

2. MGs optimize their internal scheduling strategies ayg . accordingly.

3. MGs return their decisions and expected transaction power Pysgsi¢ and Pyrap,i+ to the DSO.
4. Both the DSO and MGs update their states spso++1 and syg4+1 and corresponding reward.

This iterative interaction enables the system to gradually converge to a Stackelberg equilibrium.

(2) Experience Replay and Neural Network Training

The middle section of-the figure illustrates how the DDPG algorithm employs an experience
replay buffer. At each time step, the transition tuple (s, a¢, 74, s¢11) is stored in the buffer. Both
the DSO and MG agents sample mini-batches from this buffer to update their neural networks.
Each/agent ‘maintains two networks: A current network for generating real-time actions and a
target network that.is updated to stabilize training.

(3) Actor-Critic Structure

On the right side of the figure, the DDPG framework adopts an actor-critic architecture:

Thesactor network (policy network) takes the current state s; as input and outputs a deter-
ministic action ay.

The critic network (value network) evaluates the Q-value Qy(s;, a;), representing the expected
cumulative reward.
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Figure 5: Deep Deterministic Policy Gradient (DDPG) algorithm)

6.6.3 Network Architecture

In our DDPG-based leader-follower framework, each agent implements a four-network archi-
tecture: a current policy network (Actor) m(s|6,),a current value network (Critic) m(s|6g), plus
structurally identical target networks m(s|0;) and‘@(s]6g). The target networks use delayed (soft)
parameter updates and serve to stabilize temporal-difference targets during training.

The input layer and hidden layer use ReLU.activation, while the output layer uses tanh acti-
vation.

The proposed framework adopts a dual-role Actor-Critic structure with dual-target networks,
carefully designed activation functions, and a deterministic policy to enhance training stability
and performance.

(1) Actor Network

Current Policy Network: Interacts with the environment to output optimal actions. Takes
the environmental state vec¢tor as-input and outputs deterministic actions a; = w(S¢|0,).

Target Policy: Network: Takes the next state S;;1 as input and outputs the action for the
next time step apy; =7 (S 1(0x).

(2) Critic Network

Current Critic' Network: The current critic network evaluates the action output by the
policy network and provides gradient information for policy optimization.

The input is the ‘environment vector S; and the output action of the current policy network
ar =7 (SHb0x).The output is the Q value Q(S, at|fg).

Target Critic Network: The input is the next state S;;; and the next action output by the
target policy. network a,,; = 7(S;41]0x).

The output is the target Q value Q(Syi1, 7(Sie1]0x)100)-

6.6.4 Training Process

Step 1: Parameter Initialization
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At the beginning of the training process, the parameters of the policy network 6, and value
network 6 are randomly initialized.

Op 0, g« g (68)

0r.pso < {0rmc,i € k} (69)
i€k} (70)

0q.0s0, {0g.mci
Step 2: Action Selection
At each time step ¢, the DSO observes the current environment state S; pso and selects an action
a; pso using its deterministic policy network. The selected action influences thesystem and updates
the corresponding microgrid (MG) states S;;me. Then, the follower agents independently: select
their own actions a;; a based on their local observations. After executing-these actions, both
leader and follower agents receive instantaneous rewards 7, pso and 7,4 m¢, and the-environment
transitions to the next states. The following transition tuples are stored into the-experience replay
buffer:
{St.pso, at,pso, rt,pso, St+1,086 } (71)
{Siema, Gignnas it ma, S, ) (72)
Step 3: Gaussian Noise Injection
To encourage sufficient exploration during training, Gaussian noise'is’added to the deterministic
action output by the actor network.

At = 7Tt<St|07r) + N (73)

where m;(S¢|0,) denotes the output of the policy metwork at time step t. m(S;|6,) denotes the
output of the policy network at time step t.
The Gaussian noise N follows a normal distribution with mean 0 and variance o7:

N ~N(0]o7) (74)
where 0, = ©7¢*, O represents'the.initial exploration variance, and £ is the decay rate.
Step 4: Current Network Update
The minimum loss function is defined as: L(fg) = E[q: — Q(St, a:|6g)]?
where ¢ = 1 + v max Q(Sp+1, T(S+1107)]00)
The parameter 6 is updated using gradient descent to minimize the loss function. The update
formula is:

g + 0 —1oVe,L(0g) (75)

where 7¢is theilearning rate of the value network.
Vi, L(0q) is'the gradient of the loss function, approximated using the function below:

%Z Vo, Q(Sto ar)la; = 7(Si/0,)] (76)

Here, F is.the number of samples used for estimation. V,,Q(S;, a;) represents the gradient of
the Q value from; the value network, indicating the direction that maximizes Q. Vy_m(S;) denotes
the gradients of'the policy network.

Step 5: Soft Update of Target Networks

0,70, +(1—7)0, (77)
@Q%T@Q—F(l—T)gQ (78)

Where 7 < 1, meaning the update is carried out in the direction to the greatest extent possible.
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7 Simulation Verification

7.1 Simulation Parameter Settings

The simulation is conducted on the IEEE 33-bus distribution system, which serves as.a bench-
mark for evaluating the performance of the proposed control strategy. The main parameters and
configurations are carefully selected to ensure a realistic and comprehensive test environment. The
system base voltage is set at 12.66 kV, while the base capacity is 10 MVA. To maintain stable
operation, the permissible voltage range is defined between 0.95 p.u. and 1.05 p.u., ensuring-that
the voltage levels remain within acceptable limits under various operating conditions.

Three microgrids are integrated into the system, with their connection nodes located at buses
12, 23, and 28. These microgrids incorporate a diverse array of components, including wind
turbines, photovoltaic (PV) systems, micro gas turbines, energy storage.systems, and electrical
loads. This configuration allows for a detailed analysis of the interactions betweenrdifferent energy
sources and the overall grid stability. It is assumed that the @perational constraints and cost
coefficients of the three microgrids are identical, simplifying the comparative analysis while still
providing valuable insights into the system’s behavior.

For the control strategy, two deep neural networks (DNN-A and DNN-C) are employed, each
consisting of an input layer, hidden layers, and an output: layer.. All layers are fully connected,
with each hidden layer containing 256 neurons. This-architecture ensures sufficient complexity to
capture the intricate dynamics of the system. The.control framework is based on the Deep Deter-
ministic Policy Gradient (DDPG) algorithm, which is well-suited for continuous action spaces and
can effectively handle the challenges posed by the multi-agent environment. The training param-
eters are meticulously tuned to optimize the learning process and achieve optimal performance in
the simulation.

This setup provides a robust foundation for verifying the effectiveness of the proposed con-
trol strategy, enabling a thorough evaluation of:itscapabilities in managing complex distribution
systems with multiple microgrids.

Table 2: “Parameters of DDPG

Parameter Value
Actor.network learning rate n™ 0.0001
Criti¢ network learning rate n% 0.0005
Actor network noise decay rate £ 0.001
Critienetwork discount factor ~ 0.9
Target network soft update coefficient 7 0.001
Experience replay buffer capacity B 10000
Experience replay mini-batch sample size F' 256
Maximum training episodes F 500

7.2+ Training Process Analysis

The evolution of cumulative reward during the offline training phase of the Deep Deterministic
Policy. Gradient (DDPG) algorithm is presented in Figure 6, alongside comparative results from
the standard Deep Q-Network (DQN) and its variant, Dueling-DQN. In the early training phase,
the agent incrementally acquires knowledge of the environmental dynamics through interaction,
enabling progressive refinement of its decision-making policy via parameter updates in the under-
lying neural networks. This iterative process facilitates convergence toward an optimal control

30



strategy.

As illustrated in the learning curves, Dueling-DQN exhibits a pronounced improvement in ¢u-
mulative reward after approximately 150 episodes, followed by stabilization, suggesting effective
decoupling of state-value and advantage estimation in its architecture. In contrast, DDPG demon-
strates a delayed but substantial performance leap around the 250th episode, ultimately achieving
the highest asymptotic reward across all evaluated methods. The standard DQN, while exhibiting
steady improvement, converges to a suboptimal policy, as evidenced by its lower final'reward. This
comparative analysis underscores the superiority of DDPG in continuous control tasks, particularly
in capturing nuanced action-value relationships and maintaining long-term performance stability.
The abrupt performance gain observed in DDPG likely signifies the successful.internalization of
critical system dynamics—such as temporal dependencies in energy supply and demand—and the
subsequent refinement of control policies through policy gradient updates.

Cumulative Reward Evolution During Training

——— DDPG

200 4 —— Dueling-DQN
—— DQN

Cumulative Reward

500 P

-800

T T T T
0 100 200 300 400 500
Episode Number

Figure 6: Cumulative Reward Evolution During Training

7.3 Online Operation Performance

To assess the real-time.operational efficacy of the trained model, the optimized control strat-
egy was deployed using a representative 24-hour operational dataset encompassing realistic load
and renewable generation.profiles. The resulting power trajectories for the three interconnected
microgrids, (MG1; MG2,’and MG3) are depicted in Figure.7 and Figure.8, illustrating the model’s
ability to-manage inherent uncertainties in wind and solar generation while meeting time-varying
load-demands:

The results demonstrate that the proposed Stackelberg-based deep reinforcement learning
framework enables effective coordination between the distribution system operator and distributed
microgrid entities. Energy storage systems within each microgrid are strategically operated to ab-
sorb surplus renewable generation during periods of high production and discharge during supply
deficits or peak demand intervals, thereby enhancing local energy autonomy and reducing reliance
on external grid support. Furthermore, the temporal alignment between generation, storage, and
consumption reflects a coherent optimization of economic and operational objectives.
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Figure 7: The resulting power trajectories for the three interconnected microgrids

Additionally, the convergence behavior of the agent’s performance metric over successive train-
ing episodes is shown in Figure.9, where a consistent upward trend followed by stabilization in-
dicates the attainment of a robust and generalizable pelicy. »This convergence suggests that the
agent has successfully learned to balance exploration and exploitation, adapting to dynamic grid
conditions without requiring explicit system*models or re-optimization at each time step. The
integration of hierarchical decision-making with imodel-free reinforcement learning thus enables
scalable, adaptive, and computationally efficient.energy management in multi-agent distribution
networks.

The operation of energy storage systems (ESS) within the three microgrids plays a pivotal role
in enhancing system flexibility and ensuring supply-demand balance under fluctuating renewable
generation and load conditions. As illustrated in the power profiles, the ESS units are actively
engaged in temporal energy shifting=-strategically storing excess energy during periods of high
renewable output and low demand, ‘and releasing stored energy during generation deficits or peak
consumption intervals. This dynamic'dispatch mechanism effectively mitigates power imbalances
at the point of common coupling, reduces reliance on external grid support, and contributes to
voltage and frequency stability within the local networks.

Moreover, the coordinated charging and discharging cycles across MG1, MG2, and MG3 reflect
an optimized utilization of distributed storage resources in response to both local and system-wide
signals. The.control strategy enables predictive scheduling based on forecasted generation and load
patterns, while’also accommodating real-time deviations through fast-responding reinforcement
learning decisions. By leveraging the storage assets as controllable power sources or sinks, the
microgrids achieve a higher degree of energy autonomy and resilience against intermittency.

The temporal distribution of ESS operation also reveals the economic rationality embedded
in the'learned policy. Charging predominantly occurs during off-peak hours or high-generation
periods when electricity prices or opportunity costs are lower, whereas discharging is scheduled
to coincide with high-price or high-demand intervals, thereby minimizing operational costs and
maximizing economic benefits for each microgrid participant. This price-responsive behavior,
autonomously learned through the hierarchical reinforcement learning framework, aligns individual
microgrid objectives with the overall network-level optimization goals, such as loss minimization
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and load flattening.

Furthermore, the depth and duration of charge/discharge events are modulated to preserve
battery health and operational constraints, including state-of-charge limits and ramping capa-
bilities. The resulting ESS dispatch profile demonstrates not only effective power balancing but
also adherence to technical feasibility, reflecting a well-generalized policy that accounts for.both
dynamic performance and long-term sustainability. This intelligent coordination underscores the
potential of data-driven, multi-agent control architectures in enabling scalable and efficient energy
management in modern distribution systems with high penetration of distributed energy resources.
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Figure8: The charging and discharging power of the energy storage systems (ESS) in MG1, MG2,
and MG3

The performancetrajectory over the training process in Figure.9 exhibits a consistent upward
trend followed by asymptotic stabilization, indicating the progressive refinement and eventual
convergence of the control policy. This behavior reflects the agent’s successful learning of the un-
derlying system dynamics, including the stochasticity of renewable generation, load fluctuations,
and operational constraints of energy storage and power exchange. The converged policy demon-
strates robust generalization, enabling adaptive decision-making under diverse operating conditions
without reliance on explicit re-optimization. The smooth and stable convergence characteristics
suggest effective training with minimal oscillation or performance degradation, attributable to well-
designed algorithmic components such as experience replay, target networks, and reward shaping.
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The resulting policy supports real-time, model-free execution with low computational latency,
while the hierarchical framework facilitates coordinated decision-making among multiple entities,
reflecting the emergence of an effective and scalable control strategy for distributed energy systemss:
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Figure 9: Learning progress

The cumulative reward trajéctories.of the leader (distribution network operator) and the fol-
lower agents (microgrids MG1,/ MG2, and MG3) illustrate the strategic interaction inherent in
the hierarchical control framework. In/the early training stages, significant fluctuations are ob-
served in the reward profilesiof allragents, indicative of an exploratory phase where policies are
repeatedly adjusted in response to evolving system conditions and inter-agent interactions. These
variations arise from the coupled decision-making structure, in which the leader issues coordina-
tion signals—such asprice incentivesor power exchange targets—while the followers optimize their
local operations subject to‘these-constraints. As training proceeds, the amplitude of oscillations
diminishes, and the reward sequences converge toward steady values, suggesting that the system
reaches a stabletoperating regime. This convergence reflects a consistent alignment between the
leader’s coordination strategy and the followers’ response behaviors, resulting in a coherent con-
trol strueture that simultaneously satisfies individual and system-wide objectives, such as cost
efficiency,/demand satisfaction, and network stability.

Concurrently, the training loss dynamics of the actor and critic networks provide insight into the
numerical stability and learning efficacy of the underlying reinforcement learning mechanism. The
critic loss decreases rapidly and remains at a low level, indicating accurate and consistent estimation
of the'value function, which is crucial for guiding policy updates. In contrast, the actor loss initially
fluctuates due to policy exploration but gradually increases and stabilizes, reflecting a systematic
shift toward control policies that yield higher long-term returns. This behavior is consistent with
the objective of maximizing cumulative reward through iterative policy improvement. The eventual
stabilization of both losses, with minimal divergence, demonstrates a well-balanced interaction
between policy evaluation and policy optimization. The convergence characteristics confirm the
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robustness of the learning process in a high-dimensional, continuous control setting, supported by
architectural and algorithmic choices such as target networks, experience replay, and appropriate
regularization. The overall training behavior validates the framework’s capacity to derive effective;
decentralized control strategies for multi-agent energy systems through data-driven optimization.
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Figure 10: The cumulative rewards,of the leader and the followers

8 Online Operation Analysis

The proposed prioritized dueling double deep Q-network (Per Dueling-DDQN) framework
demonstrates significant advantages over conventional methods in the context of multi-microgrid
energy managementy particularly in terms of operational economy, computational efficiency, pri-
vacy preservation, and robustness under uncertainty. In economic performance, the method
achieves a cost-effective scheduling strategy by leveraging the hierarchical structure of the Stack-
elberg game, which enables the distribution system operator (DSO) to guide microgrid behaviors
through incentive-based signals such as energy pricing or power exchange targets. Compared to
standard deep Q-network (DQN) approaches, the dueling architecture enhances value estimation
accuracy by decoupling state value and action advantage functions, thereby facilitating more pre-
cise policy evaluation and improved decision quality. This refinement leads to superior long-term
economic outcomes, as the agent learns to balance immediate operational costs with future sys-
tem statesunder stochastic renewable generation and load variations. When benchmarked against
traditional“mathématical programming techniques—such as mixed-integer second-order cone pro-
gramming (MISOCP) and model predictive control (MPC)—the proposed method demonstrates
enhanced economic efficiency, particularly in dynamic environments where re-optimization fre-
quency and model inaccuracies limit the performance of model-based approaches.

From a computational standpoint, the framework enables real-time decision-making with min-
imal online computational burden, a critical requirement for fast-varying power systems. Tra-
ditional optimization methods typically require solving complex, non-convex problems at each
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decision interval, resulting in substantial computational latency that hinders scalability and re-
sponsiveness. In contrast, the deep reinforcement learning approach shifts the computational load
to an offline training phase, where the policy is learned through interaction with a simulated.envi-
ronment. Once trained, the policy can be deployed online with negligible inference time, allowing
for immediate responses to changing grid conditions without iterative solving or reliance on pre-
cise system models. This model-free characteristic further enhances practicality, as it eliminates
the need for accurate parameterization of system dynamics, which are often difficult-to obtain in
real-world applications.

A key innovation of the proposed framework lies in its distributed architecture; which inherently
supports privacy-preserving coordination. Conventional centralized methodsssuch as MISOCP re-
formulations of equilibrium problems, necessitate full access to private operational data—including
generation costs, load profiles, and storage constraints—from all participating microgrids; raising
significant concerns regarding data confidentiality and operational autonomy. In contrast, the
Stackelberg-based DRL framework operates on a signal-based interaction mechanism: only high-
level coordination signals, such as energy prices and power exchange setpoints,.are exchanged be-
tween the DSO and microgrids, while sensitive local informationremains isolated within individual
agents. This design aligns with practical regulatory and.commercial constraints in decentralized
energy markets, where entities are unwilling or unable to.share proprietary/data. The integration
of experience replay with prioritized sampling further enhances learning efficiency and stability,
enabling the agent to focus on high-impact transitions and accelerate convergence. The resulting
policy demonstrates strong generalization capabilities, maintaining.robust performance under di-
verse and uncertain operating conditions, including sudden load changes, renewable intermittency,
and equipment variability. These attributes collectively establish the framework as a scalable,
adaptive, and operationally viable solution-for real-time energy management in multi-microgrid
systems.

9 Discussion

This study presents a hierarchical, disttibuted optimization framework that effectively addresses
the challenges of coordination, privacy; and uncertainty in multi-microgrid systems by integrating
Stackelberg game theory with deep reinforcement learning. The method successfully models the
strategic interaction between the‘distribution system operator and microgrids as a leader—follower
game, enabling decentralized décision-making while ensuring alignment between local and system-
wide objectives. By eliminating the need for full information exchange, the approach preserves
data privacy and reduces communication overhead, making it suitable for practical deployment in
heterogeneoustand independently operated energy networks. Furthermore, the model-free nature
of the algorithm allows it«to adapt to complex, non-linear system dynamics without relying on
explicit*mathematical models, thereby enhancing robustness in the face of modeling inaccuracies
and environmental stochasticity.

Despite these” advancements, several avenues exist for further strengthening the framework.
First, as system scale increases, the dimensionality of the state space grows significantly, po-
tentially leading to slower convergence and instability during training. Incorporating advanced
feature extraction techniques, such as autoencoders or principal component analysis, or employing
dimensionality reduction methods could improve learning efficiency and enable scalability to larger
networks with numerous distributed energy resources. Second, the current formulation assumes
simplified behavioral models for flexible loads and distributed generation units. More sophisticated
modeling of demand elasticity, storage degradation, and diverse resource dynamics would better
capture the true operational flexibility of microgrids and lead to more realistic and effective control
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strategies. Third, the transferability of the learned policy across different network topologies or op-
erational regimes remains limited. Integrating transfer learning or meta-learning techniques could
enable the agent to rapidly adapt to new environments or configurations with minimal retraining;
thereby enhancing generalization and reducing deployment costs. Additionally, incorporating risk-
sensitive objectives or robust optimization layers could further improve resilience under extreme
uncertainty or adversarial conditions.

10 Conclusion

This study proposes a novel hierarchical energy management framework for multi-microgrid
systems by combining Stackelberg game theory with a deep reinforcement, learning architecture
based on Per Dueling-DDQN. The approach models the distribution system operator as a leader
and multiple microgrids as followers, capturing the strategic interplay inherent in decentralized
power systems. Through this structure, the method achieves coerdinated optimization of energy
scheduling while respecting the autonomy and privacy of individual emtities. " Extensive simu-
lations demonstrate that the proposed framework outperforms conventional methods—including
standard DQN, MISOCP, and MPC—in terms of operational economy, computational efficiency,
and adaptability to uncertain environments. By enabling real-tiie, model-free decision-making
with minimal online computation, the approach is well=suited for dynamic grid operations charac-
terized by high renewable penetration and fluctuating demand. The distributed design ensures that
sensitive operational data remain localized, with only high-level coordination signals exchanged
between layers, thus addressing critical privacy and scalability challenges in modern energy sys-
tems. Future enhancements through advanced state  representation, refined resource modeling,
and transfer learning are expected to further-dmprove the method’s practicality and robustness.
Overall, this work highlights the potential of integrating game-theoretic principles with deep re-
inforcement learning to develop intelligent, scalable, and resilient control strategies for the next
generation of distributed power sSystems.
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2024,
® Head of Publicity Department of the Student Union in 2023
® Co-founded the Girls” Basketball Club of SSBC with G8 English Teacher
® Harp palyer in the orchestra at school
HOBBIES SELF EVALUATION
® Basketbal ® A free spirit with a open mind and kind heart
® Traveling ®  Excellent academic performance in school
® Playing Chess&Puzzles ® Gifted in mathematics o
®. Hap ® Easy-going and congenial, with a strong sense of responsibility and
® Drawing good team-spirit.
@ Reading ®  Active in school and social activities with strong communication

skills and organizational capability.
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Haiyang Wen (Serena)

=1 Education

2011-2015 University of Pittsburgh, Pittsburgh, PA USA
o Bachelor of Science in Mathematics

o Bachelor of Science in Economics

® Working Experience

2022.8-current
Vanke Shanghai School, Pudong

Mathematics Teacher & Homeroom Teacher & AP Assistant

e CIE IGCSE Mathematics Teaching for Grade 9.and Grade 10.
o Mathematics o |IB DP Mathematics AA Teaching for Grade 11 and Grade 12.
e Physics e AP Precalculus, Calculus AB/BC, Computer Science, Statistics Teacher.

e AP Coordinator duties.
e Math Competition guidance: AMC10, AMC12, ARML and Euclid.
Homeroom teacher duties.

[ ]

2021.8-2022.8

ULink Shanghai International School

Mathematic§ &Physics TEdcher

CIE IGCSE, Pure Mathematics; Mechanics and Further Mathematics.
e Math Competition guidance: AMC10, AMC12 and Euclid.

e MAT and STEP preparation.

Skillset

e Fluent English in
writing and

speaking 201
V%V%Consulting (Shanghai) Cp.,Ltd

AP CalculuS AB & Calculus BC; Pure Math and Further Math; IB
Application & Interpretation (11-12 grade); IB Analysis &
Approachés (11-12 grade); A Level AS & A2 Math; Computing for
acadentic purpose

o Developing the first-year college preparation course: Introduction to Python and
Introduction to Java.

e~ Tutoring majority computer science examinations, such as AP/IGCSE Computer
Science, covering Primitive Types, Using Objects, Boolean Expressions and if
Statement, Iteration, Writing Classes, etc.

2016.03-2019.11

Wholeren Education LLC (Pittsburgh, PA USA)
Senior Math & Physics & Computer Science Instructor

e 3-years tutored experience in sophomore, junior and senior math courses and
computing courses around the U.S Universities.

e Developing computing lesson plans for high school curriculum and college.
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