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Dimensions via Smale Horseshoe

Ruotian Yang
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Abstract

We construct, for any dtarget > 0, a subset of a Euclidean space with Haus-
dorff dimension dtarget. The fractional part is realized by a linear, symmetric
two-strip Smale horseshoe on [0, 1]2 with expansion λ > 2 (horizontal contrac-
tion 1/λ), C1+α-smoothed off the invariant set; in this model the invariant set
has dimension D(λ) = 2 ln 2/ lnλ, a continuous, strictly decreasing map with
range (0, 2). The integer part follows from dimH(A× [0, 1]n) = dimH(A) + n.
We briefly recall the needed tools and give explicit examples.

Keywords: Hausdorff Dimension, Smale Horseshoe, Dynamical Systems, Con-
structive Proof, Fractal Geometry
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1 Introduction

In classical Euclidean geometry, the dimension of a set is a non-negative integer,
adequately describing smooth subsets, polyhedra, and other regular objects. How-
ever, sets generated by iterative processes in dynamical systems, such as invariant
sets under specific maps, often exhibit intricate self-similar or self-affine structures
that defy integer-dimensional classification. These sets, characterized by scaling be-
haviors across multiple scales, necessitate a generalized notion of dimension that
can take non-integer values. While some dynamical systems may produce integer-
dimensional sets, such as periodic orbits, our focus is on complex sets with fractal
properties. The development of fractal geometry and geometric measure theory pro-
vides a rigorous framework to assign real-valued dimensions to such sets, enabling
precise quantification of their complexity in metric spaces.

The foundation for generalized dimensions was established by Hausdorff in his
seminal 1918 paper [3], introducing Hausdorff measure and dimension. By defining
a measure based on coverings with sets of arbitrary diameter, Hausdorff formalized
fractional dimensions for any set in a metric space. This framework, refined by Abram
Besicovitch and others, is sometimes called the Hausdorff-Besicovitch dimension [2].
Initially theoretical curiosities, non-integer dimensional sets gained prominence with
dynamical systems theory, which provided systematic mechanisms for their genera-
tion.

In 1967, Smale’s survey outlined the horseshoe mechanism: a surface diffeomor-
phism that stretches, folds, and re-inserts a rectangle to create a totally disconnected
hyperbolic invariant set (a “horseshoe”) [10]. This provided a clean bridge between
chaotic dynamics and fractal geometry. In parallel, dissipative models with so-called
strange attractors—notably the Hénon map and the Lorenz flow—motivated quan-
titative notions of complexity via fractal dimensions; here rigorous results primarily
concern existence (e.g., [1] for Hénon; [11] for Lorenz), while most reported dimension
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1 Introduction 4

values are numerical or refer to non-Hausdorff notions. The Kaplan–Yorke formula
[5] is a widely used conjectural estimate from Lyapunov exponents. By contrast,
for uniformly hyperbolic sets such as horseshoes, thermodynamic formalism yields
rigorous formulas: on surfaces, Mañé proved the additivity

dimH(Λ) = ds + du,

where ds/u are given by pressure equations [6, 13]. In our linear two-strip model this
reduces to ds = du = ln 2/ lnλ.

To construct sets with higher dimensions, the behavior of Hausdorff dimension
under Cartesian products is essential. Classical results, going back to Marstrand,
provide bounds rather than a general identity: for Borel (or analytic) sets A ⊂ Rm

and B ⊂ Rn,

dimH(A×B) ≥ dimH(A)+dimH(B) and dimH(A×B) ≤ dimH(A)+dimB(B),

see Falconer [2, Ch. 7, Product formulae 7.2–7.3]; cf. [7]. Equality need not hold
in general. However, since dimH([0, 1]

n) = dimB([0, 1]
n) = n, Falconer [2, Cor. 7.4]

yields the identity dimH(A × [0, 1]n) = dimH(A) + n, which is the only product
case we will use (formalized below as Theorem 2.8 and Corollary 2.9). In parallel,
Moran and Hutchinson formalized the dimension of self-similar sets via the Moran–
Hutchinson equation under the open set condition [4, 8]. These tools enable precise
dimension computations in dynamical and geometric contexts.

This paper synthesizes these concepts to constructively prove that any positive
real number dtarget > 0 can be the Hausdorff dimension of a set in a metric space. The
main theorem (Theorem 3.2) decomposes dtarget into an integer part n = ⌊dtarget⌋ and
a fractional part dfrac ∈ [0, 1). The fractional part is realized by tuning the expansion
parameter of a Smale horseshoe map, whose invariant set’s dimension is a continuous
function on (0, 2) (Proposition 3.1). The integer part is contributed by a Euclidean
hypercube [0, 1]n. The final set, formed as their Cartesian product, has its dimension
verified by the product rule (Theorem 2.8). Explicit examples for dimensions like√
2, π, and a near-boundary case are provided, alongside a discussion of alternative

dynamical generators, emphasizing the horseshoe’s simplicity and explicit parameter
dependence.

This paper is organized as follows. Section 2 reviews the essential concepts of
Hausdorff measure, dimension, self-similar sets, and the Smale horseshoe map. Sec-
tion 3 presents the main theorem, proving the tunability of the horseshoe’s invariant
set dimension and constructing sets with arbitrary positive dimensions. Section 4
provides explicit constructions for specific dimensions, including typical non-integer
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2 Preliminaries 5

and near-boundary cases. Section 5 discusses alternative fractal generators and po-
tential extensions, highlighting the method’s modularity and future research direc-
tions.

2 Preliminaries

This section reviews the essential concepts from geometric measure theory and dy-
namical systems that underpin the main construction of this paper. We introduce
the definitions and key results for Hausdorff measure and dimension, the dimension
theory of self-similar sets generated by iterative maps, and the Smale horseshoe map
with its hyperbolic invariant set. These tools provide the mathematical framework to
construct sets with arbitrary positive real Hausdorff dimensions. The primary refer-
ence for standard definitions and results is the comprehensive textbook by Falconer
[2].

2.1 Hausdorff Measure and Dimension

Hausdorff measure and dimension give a rigorous way to assign real-valued dimen-
sions to sets in metric spaces, including invariant sets in dynamical systems.

Definition 2.1 (Hausdorff outer measure). Let S ⊂ Rk, d ≥ 0, and δ > 0. The
δ-approximate d-dimensional Hausdorff outer measure is

Hd
δ(S) = inf

{ ∞∑
i=1

(
diamUi

)d
: S ⊆

∞⋃
i=1

Ui, diamUi ≤ δ
}
.

The d-dimensional Hausdorff measure is

Hd(S) = sup
δ>0

Hd
δ(S) = lim

δ↓0
Hd

δ(S).

We use the unnormalized version (no dimensional constants), which does not affect
the value of the Hausdorff dimension.

The definition above is standard in fractal geometry. Alternative formulations,
such as the spherical Hausdorff measure, include a normalizing constant (e.g., cd =
πd/2/Γ(d/2+1)) to align with Lebesgue measure in integer dimensions. Since this pa-
per focuses on Hausdorff dimension, where constant factors do not affect the critical
exponent, the simpler form suffices.
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2 Preliminaries 6

Definition 2.2 (Hausdorff dimension). The Hausdorff dimension of S is the thresh-
old at which the Hausdorff measure drops from ∞ to 0:

dimH(S) = inf{d ≥ 0 : Hd(S) = 0} = sup{d ≥ 0 : Hd(S) = ∞}.

These definitions allow non-integer dimensions for sets such as Cantor-like invari-
ant sets generated by hyperbolic maps. For example, countable sets have dimH = 0,
whereas any n-dimensional set with positive Lebesgue measure in Rn has dimH = n.

2.2 Dimension of Self-Similar and Product Sets

To compute the Hausdorff dimension of fractal sets generated by iterative maps, such
as the invariant set of the Smale horseshoe, we rely on the theory of self-similar sets.
This framework, pioneered by Moran and formalized by Hutchinson, provides explicit
formulas for dimensions under specific conditions [4, 8]. We first define self-similar
sets and present a key result for their dimension calculation.

Definition 2.3 (Box-counting dimensions). Let E ⊂ Rk be bounded and let N(E, ε)
denote the minimal number of closed balls of radius ε needed to cover E. The upper
and lower box-counting dimensions (also called Minkowski dimensions) are

dimB(E) = lim sup
ε→0

logN(E, ε)

log(1/ε)
, dimB(E) = lim inf

ε→0

logN(E, ε)

log(1/ε)
.

If the two coincide we write dimB(E) for their common value. Always dimH(E) ≤
dimB(E) ≤ dimB(E).

Definition 2.4 (Packing measure and packing dimension). Let E ⊂ Rk, s ≥ 0,
δ > 0. Define the packing premeasure

Ps
δ (E) = sup

{∑
i

(
diamBi

)s
: {Bi = B(xi, ρi)} pairwise disjoint closed balls, xi ∈ E, ρi ≤ δ

}
,

where diamBi = 2ρi.

Put Ps
0(E) = limδ→0Ps

δ (E) and define the s-dimensional packing measure

Ps(E) = inf
{∑

j

Ps
0(Ej) : E ⊂

⋃
j

Ej

}
.

The packing dimension is

dimP (E) = inf{s : Ps(E) = 0} = sup{s : Ps(E) = ∞}.

References: Falconer [2, §3.4, eqs. (3.22)–(3.25)].
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2 Preliminaries 7

Definition 2.5. A set E ⊂ Rk is self-similar if it is the unique non-empty compact
set satisfying E =

⋃N
i=1 Si(E), where each Si : Rk → Rk is a contracting similarity

with scaling ratio ri ∈ (0, 1).

The dimension of such sets can be determined under a geometric constraint.
The following proposition, named after [4, 8], provides a precise formula when the
similarities satisfy a separation condition.

Proposition 2.6 (Moran–Hutchinson formula under the open set condition (OSC)).
Let E =

⋃N
i=1 Si(E) be a self-similar set generated by contracting similarities with

ratios ri ∈ (0, 1). If the open set condition (OSC) holds (i.e., there exists an open set
O ⊂ Rk such that

⋃N
i=1 Si(O) ⊂ O with disjoint images), the Hausdorff dimension

dimH(E) = d is the unique solution to the Moran–Hutchinson equation
∑N

i=1 r
d
i = 1.

If all ratios are equal, ri = r, then d = lnN
ln(1/r)

.

Proposition 2.7 (OSC self-similar sets: equality of dimensions). Let E ⊂ Rk be a
self-similar set generated by similarities with ratios ri ∈ (0, 1) satisfying the open set
condition (OSC), and let s be the unique solution of

∑
i r

s
i = 1. Then

dimH(E) = dimB(E) = dimB(E) = dimB(E) = s,

and moreover 0 < Hs(E) < ∞.

References: Falconer [2, Ch. 9, Thm. 9.3, eqs. (9.9),(9.11)]; see also Hutchinson [4,
§5.2].

This result is critical for analyzing the Smale horseshoe’s invariant set, which
decomposes locally into self-similar Cantor sets along stable and unstable direc-
tions. To construct sets with higher dimensions, we need a mechanism to combine
lower-dimensional components. The following theorem, a standard result in fractal
geometry, addresses the dimension of Cartesian products.

Theorem 2.8 (Product bounds). Let A ⊂ Rm and B ⊂ Rn be Borel (or analytic)
sets. Then

dimH(A×B) ≥ dimH(A) + dimH(B),

dimH(A×B) ≤ dimH(A) + dimB(B).

References: Falconer [2, Ch. 7, Product formulae 7.2–7.3].

Corollary 2.9. For any set A ⊂ Rm and any integer n ≥ 0,

dimH

(
A× [0, 1]n

)
= dimH(A) + n.
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2 Preliminaries 8

Proof. By Theorem 2.8,

dimH(A× [0, 1]n) ≥ dimH(A) + dimH([0, 1]
n) = dimH(A) + n.

For the upper bound, Theorem 2.8 gives

dimH(A× [0, 1]n) ≤ dimH(A) + dimB([0, 1]
n) = dimH(A) + n,

since dimB([0, 1]
n) = n. Hence equality holds.

References: Falconer [2, Ch. 7, Product formulae 7.2–7.3, Cor. 7.4].

Proposition 2.10 (Product additivity for OSC self-similar Cantor sets). Let Cri ⊂
R (i = 1, 2) be two-map self-similar Cantor sets with common ratios ri ∈ (0, 1

2
)

satisfying the open set condition. Then

dimH

(
Cr1 × Cr2

)
= dimH(Cr1) + dimH(Cr2), dimH(Cri) =

ln 2

ln(1/ri)
.

Proof. By the Moran–Hutchinson formula and Proposition 2.7, each Cri satisfies
dimH(Cri) = dimB(Cri) =

ln 2
ln(1/ri)

. For arbitrary Borel (or analytic) sets A,B one has

the general product bounds (Falconer [2, Ch. 7, Product formulae 7.2–7.3]):

dimH(A×B) ≥ dimH(A) + dimH(B), dimH(A×B) ≤ dimH(A) + dimB(B).

Applying these with A = Cr1 and B = Cr2 and using dimB(Cr2) = dimH(Cr2) gives
dimH(Cr1×Cr2) ≤ dimH(Cr1)+dimH(Cr2). Together with the lower bound we obtain
equality.

References: product bounds — Falconer [2, Ch. 7, Product formulae 7.2–7.3];
equality for OSC self-similar sets — Falconer [2, Ch. 9, Thm. 9.3].

Corollary 2.11. As r1, r2 ∈ (0, 1
2
) vary, the map

(r1, r2) 7−→ dimH(Cr1 × Cr2) =
ln 2

ln(1/r1)
+

ln 2

ln(1/r2)

is continuous with range (0, 2).
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2 Preliminaries 9

2.3 The Smale Horseshoe and the Invariant Set

The Smale horseshoe map, a cornerstone of hyperbolic dynamical systems, provides
the primary mechanism for generating fractal sets in our construction. Its invariant
set, characterized by a Cantor-like structure, serves as a tunable fractal component
whose Hausdorff dimension can be precisely controlled. We first define the horseshoe
map and its action on a compact region.

Definition 2.12. The Smale horseshoe map f : S → S is a diffeomorphism on a
compact region S ⊂ R2 (e.g., the unit square [0, 1]2). It stretches S in one direction
(typically vertical) with expansion factor λ > 1, contracts in another (typically
horizontal) with factor µ ∈ (0, 1), and folds the resulting set back into S. For a
symmetric linear horseshoe with N = 2 strips, we set µ = 1/λ.

This map’s hyperbolic dynamics generate a complex invariant set under iteration.
The next definition formalizes this set, which is critical for our dimension-tuning
strategy.

Definition 2.13. The invariant set Λ of the Smale horseshoe map f is the set of
points that remain in S under all forward and backward iterations:

Λ =
⋂
k∈Z

fk(S).

For a hyperbolic horseshoe, Λ is a Cantor set with a local product structure, home-
omorphic in a neighborhood to the Cartesian product of two Cantor sets Cs and Cu

in the stable (contracting) and unstable (expanding) directions, respectively.

Standing assumptions (H) for the model horseshoe. We fix the square S =
[0, 1]2 and consider a (piecewise affine) two-strip horseshoe f̃λ : S → S with vertical
expansion λ > 2 and horizontal contraction µ = 1/λ < 1

2
, such that:

(H1) f̃λ(S) ∩ S is the disjoint union of two vertical rectangles V0, V1 ⊂ S, each of
width µ and height 1, whose horizontal projections are [0, µ] and [1 − µ, 1];
hence the strips are strictly disjoint (equivalently, with r := µ = 1/λ, 2r < 1,
i.e. λ > 2).

(H2) f̃−1
λ (S)∩S is the disjoint union of two horizontal rectangles H0, H1 ⊂ S, each of
height µ and width 1, with vertical projections [0, µ] and [1−µ, 1] (equivalently,
2r < 1 with r = 1/λ, i.e. λ > 2).
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2 Preliminaries 10

Figure 1: A geometric illustration of the Smale Horseshoe map. The map f stretches,
contracts, and folds a square, while the inverse map f−1 performs the reverse op-
eration, revealing the fractal structure. (Credit: XaosBits, licensed under FAL.
Source: Wikimedia Commons, https://commons.wikimedia.org/w/index.php?

curid=9034592)

(H3) (Smoothing supported off the invariant set) There exists an open neighbor-
hood U ⊂ S of the hyperbolic set Λλ and a C1+α diffeomorphism fλ defined
on a neighborhood of S such that: (i) fλ = f̃λ on U (hence, on Λλ and a
neighborhood of it the dynamics and derivatives coincide with those of the
piecewise-affine model f̃λ); (ii) outside U we replace the corners of f̃λ by a
C1+α smoothing that folds the elongated image back into S without creating
overlaps across the two Markov branches. In particular, the two-branch Markov
structure and the derivative data relevant to the invariant set are unchanged.

(H4) The hyperbolic invariant set Λλ =
⋂

k∈Z f
k
λ (S) is a saddle-type horseshoe with

local product structure.

Remark 2.14 (Parameter regime). For the one-dimensional slice IFS on (0, 1) the
open set condition already holds for λ ≥ 2 (equivalently r = 1/λ ≤ 1

2
); see Lemma 2.16(i).

In the two-dimensional horseshoe, however, we shall work throughout with λ > 2
so that the two branch rectangles in (H1)–(H2) are strictly separated (i.e., 2r < 1),
avoiding boundary contact at λ = 2 and yielding a clean two-symbol Markov par-
tition. This choice is geometric; the slice-IFS OSC at λ = 2 is not needed in our
construction.

Lemma 2.15 (Smoothing off Λλ preserves slice IFS and pressure data). Under (H1),
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2 Preliminaries 11

(H2), (H3), we have fλ = f̃λ on a neighborhood U ⊃ Λλ. Consequently, the one-
dimensional first-return maps on local stable/unstable foliations of Λλ coincide with
those of the piecewise-affine model f̃λ, yielding the same two-map similarity IFS with
common ratio r = 1/λ and the same open set condition. Equivalently, the Hölder
potentials φs = log ∥Dfλ|Es∥ and φu = log ∥Dfλ|Eu∥ on Λλ agree with those of f̃λ,
hence the associated pressures are identical.

Proof. By (H3), fλ = f̃λ on an open neighborhood U of Λλ. All local (un)stable
plaques and their first-return maps are contained in U . Therefore the induced slice
dynamics, the two similarity maps with ratio r = 1/λ, the open set condition, and
the thermodynamic potentials restricted to Λλ are exactly those of f̃λ.

Lemma 2.16 (OSC for slice IFS and the role of the strict gap). Let r = 1/λ.
Consider the two-map IFS on (0, 1) given by S0(x) = rx and S1(x) = rx+ (1− r).

(i) (Slice IFS & OSC) For r ≤ 1
2
(equivalently λ ≥ 2) we have S0(O), S1(O) ⊂ O

and S0(O) ∩ S1(O) = ∅ with O = (0, 1), so the open set condition holds. In
particular, at r = 1

2
the two images are the disjoint open intervals (0, 1

2
) and

(1
2
, 1).

(ii) (Strict gap for a 2D horseshoe) To obtain a two-branch horseshoe in
S = [0, 1]2 with disjoint Markov rectangles (a strictly positive separation),
we impose 2r < 1, i.e. λ > 2. This ensures a clean symbolic dynamics and
uniform hyperbolicity on the invariant set. Hence, throughout the paper we
work under λ > 2.

Proof. For the slice IFS take O = (0, 1). Then S0(O) = (0, r) and S1(O) = (1− r, 1)
are disjoint open intervals whenever r ≤ 1

2
(equivalently λ ≥ 2), so the OSC holds;

at r = 1
2
they meet only at x = 1

2
in the closure, not in O. For the two-dimensional

horseshoe, (H1)–(H2) ensure the two branch rectangles are strictly disjoint precisely
when 2r < 1 (i.e. λ > 2), which yields a clean Markov partition and uniform hy-
perbolicity; hence throughout we assume λ > 2 for the 2D model, even though the
slice-IFS OSC already holds at λ = 2.

The local product structure of Λ is a key feature. In the general C1+α surface case,
Mañé [6] proved the additivity dimH(Λ) = ds+du, where ds, du are given by pressure
equations from thermodynamic formalism. In our linear symmetric two-strip model,
each slice is self-similar, so the formula reduces to dimH(Λ) = dimH(Cs)+dimH(Cu).
This property, combined with the parameter dependence of λ, enables the precise
tuning of dimH(Λ) in our main proof, as detailed in Section 3.
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3 Main Result and Constructive Proof 12

3 Main Result and Constructive Proof

With the foundational tools from geometric measure theory and dynamical systems
established in Section 2, we now present the core results of this paper. Our objective
is to construct sets with any positive real Hausdorff dimension through a systematic
approach. The key insight is to leverage the Smale horseshoe map as a tunable fractal
generator, producing an invariant set whose dimension can be precisely controlled
within the interval (0, 2). This fractal component is then combined with a Euclidean
component via the Cartesian product to achieve the desired dimension. We begin
by proving the tunability of the horseshoe’s invariant set dimension, followed by the
main theorem constructing sets for arbitrary positive dimensions.

3.1 Tunability of the Horseshoe Invariant Set Dimension

We establish that the Smale horseshoe map can generate an invariant set with any
Hausdorff dimension in (0, 2) by adjusting its expansion parameter. This result is
pivotal for constructing the fractal component required by the main theorem.

Proposition 3.1. Under the standing assumptions (H) for a linear, symmetric two-
strip horseshoe with λ > 2 and µ = 1/λ < 1

2
, the invariant set Λλ of the C1+α

diffeomorphism fλ satisfies

dimH(Λλ) = D(λ) =
2 ln 2

lnλ
.

Consequently, for any dfrac ∈ (0, 2) there exists λ = 41/dfrac > 2 such that dimH(Λλ) =
dfrac.

Proof. Consider the linear, symmetric two-strip family {f̃λ} on S = [0, 1]2 under
(H1)–(H2) with λ > 2 and µ = 1/λ < 1

2
. By (H3) we take a C1+α diffeomorphism

fλ that coincides with f̃λ on a neighborhood of Λλ; hence, by Lemma 2.15, the slice
IFS (two similarities with ratio r = 1/λ) and the OSC are unchanged on Λλ.

The invariant set Λλ is hyperbolic with local product structure (e.g. [9, Thm. 4.3]),
and fλ is C1+α. By Mañé’s additivity on surfaces [6], dimH(Λλ) = ds + du, and by
Lemma 2.15 together with Proposition 2.6 the stable/unstable slice dimensions are
ds = du = ln 2

lnλ
. Hence D(λ) = 2 ln 2

lnλ
.

By Lemma 2.16 and Lemma 2.15, both stable/unstable slices are two-map self-
similar sets with common ratio r = 1/λ satisfying the OSC, so by Proposition 2.6
we compute ds = dimH(Cs) and du = dimH(Cu).
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3 Main Result and Constructive Proof 13

(1). Stable Dimension (ds): The set Cs is formed by N = 2 similarities of
common ratio r = 1/λ < 1

2
; hence, by Proposition 2.6,

ds = dimH(Cs) =
lnN

ln(1/r)
=

ln 2

lnλ
.

(2). Unstable Dimension (du): Similarly,

du = dimH(Cu) =
lnN

ln(1/r)
=

ln 2

lnλ
.

Summing the dimensions, we obtain the total dimension as a function of λ:

D(λ) = ds + du =
ln 2

lnλ
+

ln 2

lnλ
=

2 ln 2

lnλ
.

Continuity. Since lnλ is continuous and strictly positive on (2,∞), the map λ 7→
1

lnλ
is continuous there. Hence D(λ) = 2 ln 2 · (lnλ)−1 is continuous on (2,∞).

Monotonicity. A direct derivative computation shows

D′(λ) =
d

dλ

(2 ln 2
lnλ

)
= − 2 ln 2

λ(lnλ)2
< 0 (λ > 2),

so D is strictly decreasing on (2,∞).

Range. The endpoint limits are

lim
λ→2+

D(λ) =
2 ln 2

ln 2
= 2, lim

λ→∞
D(λ) =

2 ln 2

∞
= 0.

Because the domain (2,∞) is open, the value 2 is not attained (only approached as
λ → 2+), and 0 is only a limit as λ → ∞. Combining the strict monotonicity with
these limits yields

D
(
(2,∞)

)
= (0, 2).

Since we adopt λ > 2 for strict separation (Remark 2.14), the value 2 is not
attained and only appears in the limit λ → 2+.
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3 Main Result and Constructive Proof 14

Solving for λ (existence and uniqueness). Given any target dfrac ∈ (0, 2),
the intermediate value theorem and strict monotonicity imply there exists a unique
λ0 ∈ (2,∞) such that D(λ0) = dfrac. Solving

dfrac =
2 ln 2

lnλ0

⇐⇒ lnλ0 =
2 ln 2

dfrac
⇐⇒ λ0 = exp

(2 ln 2
dfrac

)
= 4 1/dfrac .

Note that dfrac < 2 implies λ0 > 41/2 = 2, so indeed λ0 ∈ (2,∞), and as dfrac → 0+

we have λ0 → ∞.

Therefore, for this λ0 the horseshoe map fλ0 yields an invariant set Λλ0 with
dimH(Λλ0) = dfrac. Moreover, by the branch-preserving smoothing condition (H3)
together with Lemma 2.15, the slice IFS and their contraction ratio r = 1/λ are
unchanged by smoothing near the two branches; hence the above formula for D(λ)
coincides with that of the piecewise-affine model and is unaffected by the smoothing
step. This completes the proof.

3.2 Construction of Any Positive Real Hausdorff Dimension

Having established the tunability of the Smale horseshoe’s invariant set dimension in
Proposition 3.1, we now construct a set with any positive real Hausdorff dimension.
The proof combines the fractal component from the horseshoe with a Euclidean
component via the Cartesian product, leveraging the dimension product rule.

Theorem 3.2. For any positive real number dtarget > 0, there exists a set S such
that its Hausdorff dimension satisfies dimH(S) = dtarget.

Proof. Let dtarget > 0 be the desired Hausdorff dimension. We construct the set S in
four explicit steps.

(1). Dimension Decomposition: Decompose dtarget into its integer part n =
⌊dtarget⌋ and fractional part dfrac = dtarget−n. By definition, n ≥ 0 is an integer, and
dfrac ∈ [0, 1).

(2). Fractal Component: Construct a set M ⊂ R2 with dimH(M) = dfrac.
(2.1). If dfrac = 0, let M = {p} ⊂ R2 be a singleton, so dimH(M) = 0 by the
definition of Hausdorff dimension. (2.2). If dfrac ∈ (0, 1), note that (0, 1) ⊂ (0, 2).
By Proposition 3.1, there exists a Smale horseshoe map fλ with invariant set M =
Λλ ⊂ R2 such that dimH(M) = dfrac, achieved by setting λ = 41/dfrac .
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4 Examples 15

(3). Integer Component: Construct a set E ⊂ Rn with dimH(E) = n. (3.1).
If n = 0, let E = {q} ⊂ R0 be a singleton (where R0 denotes a point), so dimH(E) =
0. In this case, S = M × E ∼= M . (3.2). If n > 0, let E = [0, 1]n ⊂ Rn, the
n-dimensional unit hypercube, with dimH(E) = n (cf. [2]).

(4). Combination and Verification: Define the final set S = M ×E ⊂ R2+n.
By Corollary 2.9 with E = [0, 1]n, the Hausdorff dimension is:

dimH(S) = dimH(M) + dimH(E) = dfrac + n = dtarget.

This construction produces a set S with the desired dimension, completing the
proof.

The embedding space R2+n ensures the Cartesian product is well-defined, but its
dimension does not affect dimH(S). Alternative embeddings or choices of M and E
may alter topological properties, as discussed in Section 5.

4 Examples

To illustrate the constructive proof of Theorem 3.2, this section provides explicit
constructions of sets with specific Hausdorff dimensions, showcasing the versatility
of the four-step method outlined in Section 3. We first present examples for typical
non-integer dimensions

√
2 and π, demonstrating the Smale horseshoe’s tunability

for moderate fractional parts (Subsection 4.1). We then analyze the expansion pa-
rameter λ’s behavior and construct a near-boundary example for a dimension close to
an integer, highlighting the method’s performance under extreme dynamical tuning
(Subsection 4.2). These examples illustrate the method’s flexibility across a range of
target dimensions.

4.1 Construction of Sets with Specific Dimensions

We present two detailed constructions, applying the method of Theorem 3.2 to tar-
get dimensions

√
2 and π. A summary table compares the key parameters of each

construction.

(1). Construction for dtarget =
√
2:

(1.1). Dimension Decomposition: Compute the integer part n = ⌊
√
2⌋ = 1 and

fractional part dfrac =
√
2− 1.
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4 Examples 16

(1.2). Fractal Component: Since dfrac ∈ (0, 1) ⊂ (0, 2), apply Proposition 3.1
to construct a Smale horseshoe map fλ with invariant set M = Λλ ⊂ R2 such that
dimH(M) =

√
2− 1. From Proposition 3.1, set

λ = 4
1√
2−1 .

(1.3). Integer Component: For n = 1, let E = [0, 1] ⊂ R1, the unit interval, with
dimH(E) = 1.

(1.4). Combination and Verification: Form S = M ×E ⊂ R3. By Corollary 2.9,

dimH(S) = dimH(M) + dimH(E) = (
√
2− 1) + 1 =

√
2.

(2). Construction for dtarget = π:

(2.1). Dimension Decomposition: Compute the integer part n = ⌊π⌋ = 3 and
fractional part dfrac = π − 3.

(2.2). Fractal Component: Since dfrac ∈ (0, 1) ⊂ (0, 2), apply Proposition 3.1
to construct a Smale horseshoe map fλ with invariant set M = Λλ ⊂ R2 such that
dimH(M) = π − 3. Set

λ = 4
1

π−3 .

(2.3). Integer Component: For n = 3, let E = [0, 1]3 ⊂ R3, the unit cube, with
dimH(E) = 3.

(2.4). Combination and Verification: Form S = M ×E ⊂ R5. By Corollary 2.9,
dimH(S) = dimH(M) + dimH(E) = (π − 3) + 3 = π.

Parameter dtarget =
√
2 dtarget = π

Integer Part (n) 1 3

Fractional Part (dfrac)
√
2− 1 π − 3

Expansion Rate (λ) 4
1√
2−1 4

1
π−3

Fractal Component (M) Λλ ⊂ R2 Λλ ⊂ R2

Integer Component (E) [0, 1] ⊂ R1 [0, 1]3 ⊂ R3

Final Set (S = M × E) ⊂ R3 ⊂ R5

Hausdorff Dimension (dimH(S))
√
2 π

Table 1: Summary of constructions for dimensions
√
2 and π.
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4 Examples 17

4.2 Parameter Analysis and Near-Boundary Example

The examples in Subsection 4.1, constructing sets with non-integer dimensions
√
2

and π, illustrate the Smale horseshoe’s ability to tune the fractal component for
moderate fractional dimensions. Here, we analyze the behavior of the expansion
parameter λ and provide a near-boundary (i.e., near-integer) example for dtarget =
3.01 to demonstrate the method’s performance when the fractional part is very small.

From Proposition 3.1, the dimension of the Smale horseshoe’s invariant set is
D(λ) = 2 ln 2/ lnλ. In our construction we only need fractional parts in (0, 1), in
which case we set λ = 41/dfrac so that D(λ) = dfrac. Over this range, λ is strictly
decreasing in dfrac, with λ → ∞ as dfrac → 0+ and λ → 4+ as dfrac → 1−. Thus,
small fractional parts are the genuinely expensive regime (requiring extremely large
unstable expansion), while fractional parts close to 1 correspond to moderate values
of λ near 4.

To illustrate this behavior, we construct a set with dtarget = 3.01, whose fractional
part is dfrac = 0.01.

Construction for dtarget = 3.01:

(1). Dimension Decomposition: Compute the integer part n = ⌊3.01⌋ = 3 and
the fractional part dfrac = 3.01− 3 = 0.01.

(2). Fractal Component: Since dfrac = 0.01 ∈ (0, 1), apply Proposition 3.1 to
construct a Smale horseshoe map fλ with invariant set M = Λλ ⊂ R2 such that
dimH(M) = 0.01. Set

λ = 4
1

0.01 = 4100 = 2200 ≈ 1.6× 1060.

The set M is a Cantor-like set, totally disconnected with zero Lebesgue measure (cf.
[9, §4.3]).

(3). Integer Component: For n = 3, let E = [0, 1]3 ⊂ R3, the unit cube, with
dimH(E) = 3.

(4). Combination and Verification: Form S = M × E ⊂ R5. By Corollary 2.9,

dimH(S) = dimH(M) + dimH(E) = 0.01 + 3 = 3.01.

The resulting set S combines a Cantor-like fractal with a 3-dimensional Euclidean
component, embedded in R5.

This near-integer example requires extreme tuning of λ: here λ = 4100 ≈ 1.6 ×
1060, reflecting a very strong unstable expansion when the fractional part dfrac is tiny.
This highlights the true dynamical cost of approaching an integer dimension in our
construction.
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5 Other Methods and Generalizations 18

5 Other Methods and Generalizations

The constructive proof in Section 3 and the examples in Section 4 demonstrate
a systematic method to achieve any positive real Hausdorff dimension using the
Smale horseshoe map as a tunable fractal generator. This section explores alternative
approaches to generate the fractal component and discusses the broader implications
of the construction. We first examine other systems capable of producing fractal sets
with tunable dimensions, highlighting the modularity of our framework. Then, we
reflect on the method’s generality and potential extensions within dynamical systems
and geometric measure theory.

5.1 Alternative Fractal Generators

The construction in Theorem 3.2 is modular: the fractional component need not be
produced by a horseshoe. Other parameter–dependent fractals can be used, provided
we can control their Hausdorff dimension on a target interval. When the desired
dimension exceeds the integer dimension of the ambient space, we simply increase
the ambient dimension; in practice we take Rm with m ≥ ⌈dtarget⌉. Concretely,
when dfrac ∈ (0, 1) one may work in Rn+1 with a 1D fractal factor ×[0, 1]n, while for
dfrac ∈ [1, 2) one may work in Rn+2 with a 2D fractal factor ×[0, 1]n.

Self-similar Cantor sets (OSC). A versatile replacement of the horseshoe is
the generalized two-map Cantor set Cr ⊂ R: start with [0, 1] and, at each step,
remove the open middle interval of length 1 − 2r, keeping two intervals of length
r ∈ (0, 1

2
). This self-similar set satisfies the open set condition (OSC), and the

Moran–Hutchinson formula yields

dimH(Cr) =
log 2

log(1/r)
, 0 < HdimH(Cr)(Cr) < ∞ [2, 4, 8].

As r ↑ 1
2
, dimH(Cr) ↑ 1, so (0, 1) is covered continuously. Hence for any dfrac ∈ (0, 1)

we may take
r = 2−1/dfrac ∈

(
0, 1

2

)
, dimH(Cr) = dfrac,

and use M = Cr as the fractional component in Theorem 3.2.

To cover (0, 2) with purely self-similar factors, consider a product Cr1 ×Cr2 ⊂ R2

with ri ∈ (0, 1
2
). Since each 1D factor is an OSC self-similar set, one has dimH = dimB

for each factor [2, Thm. 9.3]. Combining this with the general product bounds [2,
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5 Other Methods and Generalizations 19

Eq. (7.6) and Eq. (7.7)] yields the equality

dimH

(
Cr1 × Cr2

)
= dimH(Cr1) + dimH(Cr2) =

log 2

log(1/r1)
+

log 2

log(1/r2)
.

Therefore the range (0, 2) is obtained continuously by varying (r1, r2). In particular,
for any dfrac ∈ (1, 2) one can choose dimH(Cr1) = dimH(Cr2) =

1
2
dfrac (e.g., r1 = r2 =

2−2/dfrac), so that dimH(Cr1 × Cr2) = dfrac. This 2D Cantor product can replace the
horseshoe component M when a 1D Cantor factor does not suffice.

Chaotic attractors as numerical substitutes. Chaotic attractors from other
dynamical systems also offer parameter–dependent fractals. For the Hénon map
f(x, y) = (1−ax2+y, bx), there are foundational rigorous results on chaotic dynamics
and SRB-type behavior [1], but we do not rely on a rigorous Hausdorff-dimension for-
mula; reported “dimension values” in the literature are typically numerical estimates
(and in practice may refer to information/correlation/Kaplan–Yorke dimensions).
For the classical Lorenz system (σ, ρ, β) = (10, 28, 8/3), numerical studies also report
fractal-dimension estimates near 2 (often around 2.06); see, e.g., Viswanath [12] for
an analysis of fractal properties of the Lorenz attractor. These systems thus provide
numerically tunable alternatives to the horseshoe, but, unlike the explicit formula in
Proposition 3.1, they do not furnish an analytic dimension function covering the full
(0, 2) range.

5.2 Generalizations and Future Directions

The alternative generators in Subsection 5.1 illustrate the modularity of our con-
struction, allowing flexibility in the fractal component. Here, we explore broader
generalizations, leveraging iterated function systems (IFS) as a general framework
for fractal generation, and discuss topological properties and future research direc-
tions in dynamical systems and geometric measure theory.

The construction in Theorem 3.2 relies on the additive property of Hausdorff
dimensions under Cartesian products (Theorem 2.8). This approach extends be-
yond the Smale horseshoe and the alternatives in Subsection 5.1. Any parameter-
dependent IFS producing a fractal set with a continuous dimension function over a
sufficient range can replace the horseshoe. For example, an IFS with variable con-
traction ratios in Rm can generate fractal components with dimensions in (0, k) for
some k > 0 (cf. [4]). Combining such a component with a Euclidean set in Rn

extends the method to dimensions beyond (0, 2), provided the dimension function’s
continuity is verified.
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5 Other Methods and Generalizations 20

The topological properties of the constructed sets offer another avenue for gener-
alization. The Smale horseshoe’s invariant set Λλ is a Cantor set, totally disconnected
with zero Lebesgue measure [9]. The final set S = M × E inherits properties from
its components; for instance, modifying E to a fractal set with integer dimension,
under conditions ensuring Borel set properties, preserves dimH(S) while altering con-
nectedness or compactness [2]. Analyzing the Hausdorff measure of S at its critical
dimension could further elucidate its geometric structure.

Future research could investigate the uniqueness of the constructed sets. While
Theorem 3.2 ensures existence, comparing sets generated by different systems (e.g.,
Smale horseshoe versus Hénon map) for the same dimension may reveal variations
in symbolic dynamics or stability [9]. Extending the construction to non-Euclidean
metric spaces, such as hyperbolic manifolds, could also enhance its applicability in
dynamical systems. These directions highlight the synergy between fractal geometry
and chaotic dynamics, opening new paths for studying sets with prescribed dimen-
sions.
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