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Abstract

We investigate the geometric and topological properties of 2-knots embedded inwa four-
dimensional real space. Starting from the fundamental groupwof the complement of an
embedded 2-sphere in R*, we provide an intuitive geometric interpretationrand analyze how
local immersion structures of surfaces influence this group. This viewpoint is extended
to complements of general 2-knots, where we establish its invariance under Reidemeister
moves (R-moves), illustrated by the spun trefoil knot. Emphasis is placed on the geometric
meaning of algebraic invariants: we examine the.interplay between 2-knot diagrams, the
Alexander polynomial, and the Alexander matrix, interpreting the latter via the associated
chain complex. We also study the geemetric.implications/of relator substitutions, clarify
the relationship between the Burau representation and the Alexander matrix, and outline

potential applications of these structures in both/mathematics and applied contexts.
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1 Introduction

Knot theory is a fundamental area of topology that studies embeddings of manifolds in higher-
dimensional spaces. Classical one-dimensional knot theory investigates embeddings of S in.$2,
while 2-knot theory is the natural higher-dimensional generalization concerning embeddings. of
52 in S§*. This field connects multiple branches of mathematics, including algebraic topology,
combinatorial group theory, and low-dimensional topology, and holds potential ‘applications
in topological quantum computation, molecular structure analysis, image compression, and
more. However, existing research on 2-knots has largely focused on algebraicor combinaterial
approaches (e.g., Carter—Saito’s algebraic methods), with relatively less emphasis on geometric
intuition.

In the study of 2-knots, the fundamental group of the knot complement is a-crucial invariant.
Yet, its geometric meaning—especially its relation to local immersion structures=~remains insuf-
ficiently explored and is primarily interpreted algebraically, such as‘in Garter—Saito’s work [3].
Current methods for computing invariants like the Alexander polynomial‘mostly rely on alge-
braic derivations, making it challenging to intuitively understand their'behavior under isotopies
and Roseman-type Reidemeister moves (R-moves). Therefore, thisresearch aims to establish an
analytical framework that bridges algebraic invariants with geometric constructions, addressing
this gap.

This paper adopts a constructive and geometrically intuitive approach to 2-knot theory,

presenting the following main contributions:

(1) Provide a geometric interpretation of the fundamental group of the 2-knot complement

based on oriented crossing data.
(2) Prove the invariance of this fundamental group under R-moves.
(3) Derive a skein-form Alexander polynomial for 2-knots.

(4) Analyze the effect ‘of relation substitutions on the Alexander matrix and establish its

connection with'the Burau representation of braid groups.

(5) Explore the extension to multi-component 2-knots (links) and their applications in quan-

tum’computation-and cryptography.

The structure of this paper is as follows: Section 2 reviews preliminaries including 2-knots,
fundamental groups, Fox calculus, and Alexander invariants; Section 3 surveys related previous
works-and their ‘connection to this study; Section 4 presents the main theorems and proofs,
including geometric interpretations of the fundamental group, its invariance, and properties of
the Alexander‘matrix; Section 5 discusses applications in topological quantum computation and

cryptography; Section 6 concludes with a summary and future research directions.

2 Preliminaries

Definition 2.0.1 (2-Knot). Consider the embedding of the 2-sphere S? in R*. From this we

deduce that a 2-knot is connected, orientable, and has one componet, genus zero.



Here we use the definition of 2-knot diagram in [13]

Definition 2.0.2 (Generic Projection). Define the map 7 : R* — R3 by

(z,y,2,w) = (z,y, 2).

If all points in 7(K) are regular points, double points, triple points or branch points, then mw(K)
is called generic. We denote by Dp(K), Tp(K), and Bp(K) the sets of double points, triple

points, and branch points respectively.

Definition 2.0.3 (2-Knot Diagram). Suppose 7x : K — R3 and let p € Dp(K). The preimage
77]_(1 (p) contains two points p_ and p4 satisfying w(ps) > w(p—_). We call p= the lower point of
p and py the upper point of p.

Define A_(K) as the closure of the set of all lower points. -Let./N be-a neighborhood of
A_(K) as illustrated. The diagram of K is then given by

D(K)=n(K)— n(int N).

In the diagram D(K), the lower disk near each double point is divided into two halves,
where the double points on the lower and upper disks are/depicted by solid and dashed lines

respectively, as shown in Figure 1.

g ==N

lower upper

Figure.l: Illustration adapted from [13].

If t € Tp(K), then 771 (t) = {t1, tastz} ~with w(ty) < w(tz) < w(ts).

The points t1, ts, t3 are‘called the lower; middle, and upper points of t, respectively. The disks
containing these three points are/correspondingly called the lower, middle, and upper disks of
t. In the diagram D(K), the.middle and lower disks are divided into four and two regions

respectively, as illustrated in Figure 2.

bottom N middle top

Figure 2: Illustration adapted from [13].

If b € Bp(K); then
7k (b) = {b},

and b'is an endpoint of a double point arc, as illustrated in Figure 3.
The elements of a 2-knot diagram are called sheets, and the sheet number refers to the number
of sheets in the 2-knot diagram. We define the sheet number of a 2-knot as the minimal sheet

number among all its possible 2-knot diagrams.



positive negative

Figure 3: Illustration adapted from [13].

Definition 2.0.4 (Roseman moves). From Roseman’s study [12], we know that the ambient
isotopies between closed surfaces can be categorized into seven types of moves, asillustrated
in Figures 4 and 5. These seven moves are called (Roseman’s) Reidemeister moves, and:are
denoted by R. It is known that if there exists a composition of R-moves'between two closed

surfaces, then they are ambient isotopic.
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Figure 4: Illustration adapted from [12].
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Figure 5: Tllustration adapted from [12].

Definition 2.0.5 (fundamental group). Let X be a topological space with a fixed base point
p. A loop is a continuous map

v:[0,1] = X

such that v(0) = (1) = p. Consider, the homotopy class [y] of v in X. The concatenation of
two loops f and g is defined as:

F2t) z€[0,1/2]
g2t —1) z€[1/2,1]

(f *g)(t)=

It is clear that.the homotopy class/[f * g] depends only on the homotopy classes [f] and [g].
Therefore, we can define asbinary operation. * : 71 (X, p) x m (X, p) — 71(X, p) by concatena-
tion.

Furthermore, we can construct the identity element and inverses, and prove associativity.
Hence, the set of homotopy classes of loops based at p forms a group under the operation x,
called the fundamental group of X with base point p, denoted by

(X, p).

Definition 2.0.6 (Free group). A group G is called a free group if there exists a subset S C G
suceh that every element of G can be uniquely expressed as a product of elements of .S and their
inverses, where two elements in G are distinct unless they are equal by the group axioms (i.e.,
reductions involving an element and its inverse). Such a group G is denoted by Fyg, and the

elements of S are called the generators (or factors) of Fg. The cardinality of S is called the



rank of Fg.
Given two groups A and B, their free product A x B is the free group generated by the
elements of both A and B.

Here we present the most basic statement; proofs and detailed discussions can be found in
[7].
Theorem 2.0.7 (Seifert—Van Kampen’s Theorem). Let X be the union of two open séts U,V C
X satisfying:

1. U and V are path-connected,

2. UNYV is also path-connected,

3. X,U,V, and UNV share a common base point.

Then the fundamental group of X is the amalgamation of the fundamental groups of U and V
over UNV, i.e.,
T (X) = m (U) « w1 (V)N

where N is the identification of m (U NV) in m(U) *m (V).

Definition 2.0.8 (Fox Differential). This involves translating the knot group relations into
derivatives, which are used to study group representationsrand invariants in topology. The
specific operations are as follows:
01 0x 0
-0 Y

%_ 5 %:L ’8_5:0 lfy?éxa

Definition 2.0.9 (Alexander matrix). Given a 2-knot K in the space. Set:

4
m(R%= K) = (x1,29,...,Zp|r1,72,. .., Tn—1)
Let
ory .. O
ox1 oz
M= :
ory .. Oraoa
0T 0zn

The Alexander matrix A is the result of M when we abelianize the group 1 (R* — K).

Definition 2.0.10 (Alexander polynomial).
Ak (t) = ged(det A;(t)).

(Here we define det(A;(t)) € R[t, ¢t ])
where A;(t) denotes the (n — 1) x (n — 1) matrix obtained by deleting the i-th row from A.

10



Definition 2.0.11 (Artin representation of braid group). We can represent braid group in free

group form with isomorphism ¢ : B,, — Aut(F,)

Ti — Ty,
Do) : { wiat 1 i
i) -y Ti+1 L1 TiLit1,

xj—xj, forj#i,i+1.

Definition 2.0.12 (Burau representation). Here we only consider the reduced.case. A linear
representation of the braid group is given by an isomorphismp : B, — G Ly (Z[t,t_l]) defined

on the generators o; by

where I denotes the k x k identity matrix.

3 Literature review

In the early 20th century, topology gradually emerged as an important branch of mathemat-
ics. Knot theory, as one of its core research areas, was fundamentally shaped by Alexander’s
introduction of the Alexander polynemial in 1928;.laying the groundwork for knot invariants
.

From the 1980s through the‘early 21st century; the study of 2-knots (2-dimensional knots)
began to flourish, with research directions broadly divided into two categories: one focusing on
visualization and geometric representations-of 2-knots, exemplified by Shin Satoh and Dennis
Roseman, and the other ontalgebraic descriptions, represented by Seiichi Kamada. Moreover,
scholars such as J. Scott-Carter.and Masahico Saito developed a systematic theoretical frame-
work bridging these approaches.

In 1998, Roseman introduced the original formulation of Reidemeister-type moves for sur-
faces in four dimensions.[12]. Subsequently, Carter and Saito systematically organized Roseman
moves and explored-the relations between 2-knot diagrams and the fundamental groups of their
complements in [3]. In-1994, Kamada and Ferndndez-Acuna respectively established founda-
tional theories characterizing 2-knot groups in [9] and [4], providing theoretical bases for later
works by Damiani, Kddar, and others.

The relationship between 2-knot diagrams and fundamental groups of their complements
proposed-in this paper is consistent with the results of Carter and Saito [3], but emphasizes a
more visual and constructive approach, aiming to offer a more intuitive and operational inter-
pretation. Furthermore, our proof concerning the connection between the Burau representation
and the Artin representation adopts a linear algebra perspective, contrasting with the group
isomorphism approach used in [2], thereby demonstrating a different proof strategy and view-

point.
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4 Main Results

4.1 Geometric Interpretation of the Fundamental Group

Lemma 4.1.1. m(SY) = Z, m(S") =0 forn>2.
For a detailed proof of this lemma, see [7], pp. 3840 and p. 44.

Before discussing the geometric meaning of the fundamental group of R* — K, it is-helpful

to understand what the fundamental group is under the most general condition (the sphere).
Lemma 4.1.2. m; (R4 — SQ) =7

Proof. Since R* — 52 is homotopy equivalent to S* — {p} U S? with p ¢ 82, and S* < {p} US? is
homotopy equivalent to the wedge sum SV S! (where V denotes the'wedge sumy; i.e.; S® and

S1 intersecting at a point), we have
m (R* = %) 2 m (S v ST)-
By Seifert—Van Kampen’s Theorem, it follows that
m (8% v SY) 2 mS*)k i (7).

Since
m(S™) =0 Vne Non >1,

we conclude
Vin) (R4 — 52) < 71'1(51)

I

Z.

O]

Lemma 4.1.3. Under the preservatiom.of the immersion structure, any graph can be regarded

as an enclosing trace.

Proof. Given an immersion 'f : §% 9 M, of the 2-sphere, the self-intersection set ¥ C S? par-
titions the'sphere. After cutting along ¥, the sphere S? \ ¥ decomposes into several connected
components;each homeomorphic to a sphere with holes (i.e., a sphere with finitely many open
disks removed). This structure is illustrated in Figure 6.

Moreover, the existence of ambient isotopies allows each sphere to be moved to different posi-

tionsywhich completes the proof. ]

Consequently, we obtain a new representation. Although this representation may not effec-

tively: help, us visualize 2-knots, it aids in understanding their algebraic structure.

Lemma 4.1.4. For 2-knots with only double points, if we consider connectivity as the criterion,

then the 2-knot can be represented as o tree.

12
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Figure 6: Illustration adapted from [§].

Proof. If there exists a cycle, then the genus is nonzero. Moreover; we observe that the leaves
of the tree are homeomorphic to S?\ D, where D is an open disk, and-other points are homeo-
morphic to S? \ (D1 U D3), where Dy, Do are open disks with Dy N Dy =), O

Proposition 4.1.5. (]R4 — (S1 X y—am’s)) 7.

Proof.
m (R* — (8" x yraxis)) 2 m (R® £ SHXR) Zay(R? — S') x m(R) X Z x 0 = Z.

O]

~

Based on the conclusion of*Lemma 4.1,2:7 (R* — 52) = 1,(S'). We may construct this

using an oriented circle:

Theorem 4.1.6 (Geometric Meaning of m(R* — S?)). The oriented linking number k between
loops and surfaces determines the elements in the fundamental group mi (R* — S?) of the com-

plement space.
For convenience in the subsequent proof, we provide here a coordinate description.

Theorem 4.1:7.. In R* with coordinates (z,y,z,w), consider an orientable loop a passing

through an orientable surface s. That is, there exist four points pig, Pis, P2a, P2s Satisfying

(xp1a7 Ypias zpla) = (xpls s Ypiss st)a (xp2a y Ypaas sza) = (xpzsa Ypass Zp2s)'

Ifpjs andpj, have the same orientation, then w(p;s) < w(pja); if they have opposite orientation,
then, w(pjs) > w(pjq). We denote this relation by .

This situation is illustrated in Figure 7:
The statement for a~' is the opposite: if the orientations are the same, then w(pjs) > w(pja),

and if the orientations are opposite, then w(pjs) < w(pja).

13
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Figure 8: Left:A, Right:B

Proof. Suppose, for the sake oficontradictions that A and B share the same enclosing trace.
Consider the segment joining pis.and pa,, and let 7 denote its projection onto s. Since «a is a

continuous oriented loop, and either

w(p1s). < w0 (Pra) A w (p2s) < w (P2a)

or

w (pls) > w (pla) A w (pQS) >w (p?a) ;

there must exist a point p on a; such that

w(pi) = w (7 (pi))-

It. follows that, within the corresponding homotopy, there exist embeddings carrying A into
both $24.8! and S? U S'. This would imply that S? v S' and S? U S! are homeomorphic, a

contradiction. Therefore, our assumption is false, and the claim is established. ]

With the geometric interpretation of 71 (R* — S?) established, we can further explore the

geometric meaning of surface immersions.

Theorem 4.1.8 (Local Geometric Meaning of Surface Immersions.). If, in a 2-knot K, there

14



exist local structures s;, s;, si as shown in Figure 9, then in m (R* — K) there is the relation

-1

j = €.

Qg o Ozlzl a

T

|
P

Figure 9

Proof. We now let K be the local structure of the Figure 9 and discuss its relation to the space
R*. Without loss of generality, we place the 2-knot, without double points in the subspace w = 0,
and send the neighborhood of each double: point to w*=_& with £ < 0. Furthermore, we can
homotope this 2-knot so that it has a thickness e; > 0in'the,(x, y, z)-directions, and a thickness
€2 > 0 (interval) in the w-direction.

Consider the spaces
A=A{(z,y,z,w) | x,y,z,w ERpw> k—~e}, B={(zr,y,z,w)|z,y,zweR, w<k}.
From Lemma 4.1.2, Lemma 4.1.4; and Seifert—Van Kampen’s Theorem, we know
T(A — K) = (q, o, o).
We also observe that
m(B) =20, m(ANDB)isarank 1 free group.
The elements of 71 (AN B) are of the form

1

(e 717X ePate} !

i
which correspond to the identity e in m(B). Therefore,

7T1(R4 - K) = 7T1(A U B) = 7T1(A) * 7T1(B)/N = <ai, ay, ak)/(akaiaglaj_l).
O

We now proceed to examine the types of relators that arise from triple points and branch

15



points.

Theorem 4.1.9 (The effect of branch points on the fundamental group of the complement
space of a 2-knot). In a 2-knot K, the structure of branch points does not correspond directly

to any relators in m (R4 - K ) .

\

Figure 10

Proof. We decompose the structure of the branch points along the double point arcs into three
parts as shown in Figure 11 (yellow, green, and blue) for analysis. Move the blue part K} along
the w-direction so that w(K}) < €1, move the yellow part K, so that w(K,) > ez, where €; > e,
and the green part K, is‘the intersection of the yellow and blue parts, i.e., w(K,) € (€2, €1).
Under this setup,.analyzing the/complement spaces of these three structures and applying

Seifert—Van Kampen’s Theorem yields
1 (R4 — (Kb U Ky)) 3 T ((RS X (w < 61)) — Kb) * T ((Rg X (w > 62)) — Ky)/<aibai_y1>.

Since

12

(! ((R3 x(w<e))—Ky) 2Z, m ((]R?’ x (w>e)) - Ky) 27,

we have
m (R = (Ky UK,)) 2 Z+Z/{oa;,) = Z.

O]

In'simple terms, since the fundamental groups of the blue and yellow regions are identified
as equivalent via the identification in the green region, their elements correspond.
From an intuitive perspective, we can regard the double point arcs with branch points as

self-intersecting double point arcs.

16
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Figure 11

Theorem 4.1.10 (The effect of triple points on the fundamental’ group of the complement
space of a 2-knot). In a 2-knot K, the structure of triple points does not directly correspond to
relators in my (]R4 — K) .

NN

Figure 12

Proof. Here, we label each disk in this construction as shown in Figure 13:
In the structure of a triple point, we classify the double point arcs. Since the double point
arcs intersecting the middle and top disks can be moved sufficiently high along the w-direction,

we can simplify the situation using Seifert—Van Kampen’s Theorem to reduce it to the case in

17
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S,
Figure 13

Theorem 4.1.8 and obtain the same conclusion. {Therefore, we focus on the double point arcs
intersecting the bottom disk, as well as those intersecting the middle and top disks.

The neighborhood of the bottom disk s homeéomotphic to R* — A x (w-axis), where A
(see Figure 14) is two intersecting loops (viewing the double point arcs with branch points as

self-intersecting double point arcs). From Léemma 4.1.5 and Theorem 4.1.8, we deduce
4t (R4 < A x (weaxis)) X Z«Z*ZL

(as illustrated in Figure 15): Corresponding back to the entire space, we obtain the following

A

Figure 14

Figure 15
tenwrelators:
aaaiagla,zl, aaajaglal_l, amaia;llaj_l, anakarjlafl,
anaaaiaglaglal_l, anakaglaaoaj_lagl, amaiaglaglal_la;l, amaglaglaglaaaj,

18



1 1

- -1 -1 -1
a; , QaQy QO O

aaamaia;nlcy;
and combined with the relator from the top and middle disks:

aaamagla; L
We know that six of these relators can be derived from the other four by combination (e.g.;
substituting a; = amaia,jll into aaajozglozfl yields aaamaia,jllaglafl).
Therefore, when computing the fundamental group of the complement space with triple

point structure, it suffices to consider only the relators arising from the double point arcs. © [

Intuitively, paths in the triple point structure can all be expressed as combinations of four
basic paths. From the above Seifert—Van Kampen’s Theorem, Theorems 4.1.8,4..1.9, and 4.1.10
we deduce the following property:

Proposition 4.1.11. For a 2-knot K, the fundamental group of the complement R* — K can
be presented in the form

(R — K) 2 (o, . . ., an)/(akaiaglaj_1>

for some triple (i, j, k).

Proof. Decompose the complement of K /dnto.finitely-many connected, open regions
A17A27 Ry, 7A’m7

so that each region contains the neighberhood of aicollection of (pairwise) nonconnected double-
point arcs. Apply Seifert-Van Kampen’s Theorem successively to glue these regions together.
When two distinct regions A; and A; meet along a disk sy, the identification in the intersection
produces the relator

-1
akiak]’ )

which, by the original identification, represents the identity element in the glued group.

Hence all relators coming .from identifications between different regions are of the form
akia,;jl and impose nonew restrictions beyond those identifications. It follows that it suffices to
consider only the relations internal to each region 71(A;). By Theorems 4.1.8, 4.1.9 and 4.1.10
(which analyzesthe local contributions of double points, branch points and triple points), each
local fundamental group admits a presentation generated by meridional elements aq,..., a,
with relations of the form
-1

ozkoz@-a,;laj

Gluing 'these local presentations together along the trivial identifications yields a global

presentation of the form
4 ~ -1 -1
TR = K) = (o, ..., an) [{agoiay, o))

for some triple (i, j, k), as claimed. O

19



This proposition allows us to compute the fundamental group of the complement directly

from the 2-knot diagram.

Property 4.1.12 (m; (]R4 - K ) is an invariant of the 2-knot K under R-moves.). Proof. Qi

Figure 16

We know in the fundamental group on the left side:

-1 -1 _
apo; oy o = e,

«; can be expressed as

o = aglajozk.

Therefore,

12

(R — A) 71,0

(O ooy Q13 Q1,5 - iy Q) [ (C) = 7r1(]R4 — B),

(0, .oy T, Q15 e s an>/<akaia;10f

1

where C' denotes other relations.
QQ .

Figure 17
According to'the’above logic, in 7 (R* — A) we have
_ -1
Qj = (67109 NS

and similatly in 71 (R* — B),

o = a;laiak = oy,

thus we conclude that
m(R* — A) = 1 (R* — B).

20



Qs :

N 2 N A

Figure 18

<ai7akvajaalaallaal“aal'”>
-1 -1 -1 -1 -1 -1 -1 =1 -1 -1
/<akaiak a, -, OélOékOél,, Qg al/ajal,, aj s almakal, Qe ogo; oy >

By substituting «y/, o, and ag, we obtain:
-1 _41
<ai,ak,aj,al>/<04kai% @ >

For Q3, Q4, and g, by the properties-of branch/points in Theorem 4.1.9, we know the
fundamental groups before and after the meves arethe same.

Since the case of €27 is more complicated, we/analyze it via the structure: it corresponds to
multiple triple points, so by the conclusion of+Theorem 4.1.10, the fundamental group remains
unchanged.

O

Below, we provide an example:

Figure 19: spun trefoil knot. (Illustration adapted from [§].)
Example 4.1.13 (spun trefoil knot).

m (]R4 — K) ~ (aq, a9, as, a4>/(a1a3a2_1a3_1, alaglal_lag, a2a21a51a3>
= (qg, ag)/ (asanay agay tag)

a=az'ay, b=a3 = ={(a,b|d®="b%

21



4.2 Alexander Polynomial of 2-Knots

Proposition 4.2.1. For any 2-knot K (an embedded S?) in R?,
H|(R* - K) = 7.
Proof. From Proposition 4.1.11 we have a presentation

(R = K) 2 (a,... ,an>/<akaia;1aj_l, coo)

Passing to the abelianization (recall Hy(X) = n8P(X)), each relator of the form akaiaglail =e

becomes, in additive/abelian notation,
ak—i—ai—ak—aj:O =  a; = aj.

Hence every relation of this type identifies the corresponding abelian‘generators. By Lemma
4.1.4 the connectivity of the underlying diagram (viewed as a tree) ensures that all generators

a1, ..., o, are identified in the abelianization. Therefore
PR — K) 2 (ay,...,a0)a/(ar="ag = -~ =an) = (a) = Z.

Consequently,
Hi(R* — K)y= riP(R* < K) = 7.

(One can give an explicit isomorphism+by sending éach meridional class «; to the generator
1eZ.) O

We note that directly abelianizing the‘fundamental group leads to excessive simplification.
Therefore, to study the chain.complex of the 2-knot complement, we introduce the concept of
Fox derivatives, which extend the group to a ring. This approach avoids the problem of over-
simplification caused by relators during abelianization. Next, we will discuss the Alexander
matrix and Alexander.polynomial.in'more detail. Furthermore, from the proof of Proposition
4.2.1, we know that by applying Fox derivatives to any relator and then abelianizing, one obtains
a single-variable Laurent polynomial with integer coefficients, i.e., an element of Z[t,t1].

We now define a map P to capture the effect of the Fox derivative after abelianization.

Definition 4.2.2. Define a map
P:R(aq,...,0p) — Z[t,t7Y

such that

and for all u,v € R(ay,...,qn),

P(u+v) = P(u) + P(v).
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First, we compute the relation obtained from the previously derived relator akaialzlaj

after applying the Fox derivative followed by abelianization:

Proposition 4.2.3. For the 2-knot relator akaialzlafl

T applying the Fox derivative followed

by abelianization yields the following equalities:

» a(akaialzlaj—l) i t’ P a(akaialzlo{;l) _ t, P 8(Oékaial;1aj_l) -
o, ooy da;

Proof. We compute:

=1—- oo
3ak 1k
-1 -1
INagaioy a; )
= Ok,
8C¥i
-1 -1
INagaioy a; ) K
= —po0g A
Oaj Wk

Thus, applying the map P, we have:

-1 -1
P (8(%%% Qj )) a1l

(90[]g

-1 -1
P (8(akaiak o )) /)

8041'

Next, we proceed to.prove thé uniqueness of the Alexander polynomial for 2-knots.

Theorem 4.2.4. For.a 2-knot, the Alexander polynomial satisfies
[ Ak (#)] = [ged (det (A(t)))| = [det (Ai(1))],

(Here we define det(Ay(t)) € R[t,t71])

where the absolute valué notation is defined as follows:

P(t),  if the leading coefficient of P(t) > 0,
—P(t), if the leading coefficient of P(t) < 0.

[P(t)] =

Proof.. Note that the sum of each row is zero, i.e.,

n

Zvi =0.

i=1
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Without loss of generality, consider the relationship between A;(¢) and A;(t):

() V9
V2 . :
|det (Ay(t))| = |det | : || = |det vﬁZ;;?vi = |det | —vy || = |det (A; ()}
o :
Up, Un
Therefore,
|det (A1 (2))] = [det (A2(2))] = - - - = [det (An(2))],

which implies
|Ak ()] = [ged (det (A;(t)))[ = |det (4;(£))]

Hence, we conclude that for each 2-knot quandle, there exists a unique Alexander polyno-

mial.

O
Next, we proceed to discuss the Alexander polynomial of 2-knots in the skein form:

Theorem 4.2.5. The skein relation for the Alerander polynomial of 2-knots is given by:

A(Sy) — 5D = (t “1A(So).

AR

Figure 20

where:

Proof~Without loss of generality, assume the three planes are si, 2, s3. From this, we obtain

the following matrices:

1 U1 1 1 V1 0 U1 1 0
—t vy -1 —t v 0 vo 0 1
t Uy 0 t (75} 1 u; 0 —1
M(S+) =] -1 wuy 0 , M(S,) =|-1 wuy -1 , M(SO) =lu 1 O
0 0 0 0 0
N : N N
0 0 0 0 0 0
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where vy, vo, u1, uo are vectors and N is a matrix.

Consider the matrices A; obtained by deleting the same row from each M(-), and denote
the corresponding reduced matrix N; replacing .

We observe that

1 v 1
—t vy -1
toup 1 u1 + v
det(A;(S4)) —det(A;(S-)) =det | =1 w2 —1 [ =(¢—1)-det [ ug
0 ... 0 N;
N
0 0
and
vy 1 0
vo 0 1
up 0 -1 ug 0
det(A;(S0)) =det [uz 1 07 f =detf uy +1,
0 N;
N :
0~ 0

Thus, for each A;, the relation
det(AZ(S+)) — det(Al(S,)) == (t — 1) : det(AZ(SO))

always holds.

4.3 Transformations of the Alexander Matrix

Theorem 4.3.1. Suppose that an’ element «; of the fundamental group of the knot or 2-knot
complement is replaced once by a relation element s;, expressed as an element u. Then, for

other elements tn thel Alexander matriz, the following transformation holds:

0 . .
xkq—>xkq+xiq-P(8u> (k#iNqg#7).
o,

Proof. Define
deg(a;) =1, deg(e) =0, deg(uv) = deg(u)+ deg(v).

Notice that each relation element sj satisfies deg(s;) = 0. If from s; we derive a; = u (e.g.

alagal‘lozgl — a3 = alagafl or o = OégOQOé;l), then

deg(u) — deg(a;) = deg(sk) =0 = deg(u) = 1.
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Let sil be the relation obtained after substituting a; by u in s,. Consider the Fox derivative

P 85;
<(%«k>

By the Leibniz rule for Fox derivatives,

O(wv)  Ow N w@
dgi  0Oyi 99;’

we separate the part of ay, outside u, denoted by «j. Since deg(u) = deg(au), wehave

88& asq
r (aa;) =P <aak> |

Next, consider the part of «y inside u, denoted by Si. Since deg(u) = deg(e;) and applying

the Leibniz rule again, we find that P (%) can be expressed as a multiple’of P ((%“k) , and

the multiple is exactly P (g%) .

Hence,
0s' 0s Ou
98¢\ _ g Ou

P<55k) P(aai)P<3ﬁk)'
Therefore,
ds, Osy ds} D84 dsq ou
P () =" (m;) 2 (ga) =)+ (o) 7 (o)
Q.E.D. 0

Here, we can explain this from geometric.and graph-theoretic perspectives. Consider oy, as a
path, where the multiplication of elements corresponds to the concatenation of paths, and each
relation corresponds to a‘loop. The term P (%) calculates how many paths are traversed
before each occurrenee of ‘ay, or a,;l in the path v.

When «; is replaced by wu, this,.corresponds to substituting a; by u in the original relation.
Therefore, when recalculating P (%), besides considering the original paths, one must also
account for occurrences of «g.and a,;l in u, as well as how many paths are traversed before
occurrences of a; and ai_l in the original path.

Hence, the abave conclusion follows.

Nextywe discuss the relationship between the Artin representation of the braid group and the
Alexander matrix.

Remark. /Artin representation

T; — Ty,
. -1
0@+ Titl > Ly TiTiq1,

xj vz, forj#i,i41.
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Theorem 4.3.2 (Isomorphism of Artin representation on the Alexander matrix).

aib—>U§(A)
I, 0 0;_1
. 0o ¢! ) 10
= ; : A+
1 1—¢t 0 1

0 . In_i1 0

Due to the Artin representation

Ti > Tit1,

. —1
Oi+ \ Tigl > Ty 1 TiTiq1,

jAii+ 1

T i—>l‘j,

)

Proof. Consider the row vectors of the Alexander matrix as vy, vo, ...

Op—i—1

we observe the homomorphism ¢ : B, = GLy, (Z[t,t™'])-defined by

v =t i 4+ (0,...,0, 1,410, .. 50),
01—t~ 1 o0,..

‘P(O'i) Py Vig1 (1 — til)UiJrl —+v; + (0, . Q3

Vj > Uy, j# i, 04 1.

(There are n — 1 zeros preceding the =1 in the vector (O, ..

the vector (0,...,0,1,—¢7,0,...,0).)

.,0,—1,t710,...

'70)7

Hence, the corresponding matrix transformation can be constructed as:

ai(A4)
I 0 0i—1
) 0o t! .
= N . A +
1 T=¢t
0 ) ¢ 0

Here we notice that:

Iy e 0

O til . _
1 1-—¢t! ' B

0 . I i1

(

1—-¢ 1

t

0

)

In—i1

-1

,0) and the 1 in

Op—i—1

The matrix on the right is the isomorphism corresponding to o; in the Burau representation.

Here, we examine the relationship between the Burau representation and the Alexander matrix.
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Proposition 4.3.3 (Relation between Alexander matrix and Burau representation). Define

Li1 0
A . 1—-¢t 1
0i i = :
t 0
0 I—ia
If
k k
H O‘ij — H Az]
Jj=1 j=1
and
k
H O-ZJ = Ugl (0-22 ( (O-;k (0)) )) I
j=1

then we have

j=1
Proof. Define
o 051 0
b . 10
Sk = H Aigr; ;o So=Ty Di={_% ( )
=1 01
0 . Op—i1
Note that: .
oy (el () )= 30 (5,0, — 5,1,
j=1
and

A M1, -D;)=1,-D;.

We prove this by mathematical induction:
-For k=1,
S$1Di, — Dy + I, = Sh,

which holds.

-“Assume/that for k = m,
ZSjDij — Sj_lDij + I, = S
j=1
holds.

- For Kk = m + 1, we have:

> 8;Di, — S;1D;; + I, = S,
J=1
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which is equivalent to

m
—SmDim+1 + Z SjDij - Sj—lDij + I, = Sm(In - Dim+1),
j=1
equivalently,
m
—SmD; S;D;. —S;_1D;. + 1, = S, A7 (I, — D;
m zm+1+z 7 7—1 z]-+ n — POm im+1< n 2m+1)7

Jj=1

which implies
m
—Sle'erl + Z SjDij — ijlDij + 1, = m+1(In - Dim+1)>
7=1

and so
m—+1

Z SiDi; — Sj—1Di; + Iy = Sm1.
=1

Thus, by mathematical induction, for all k£ € N,

!/ /
oi, (o, (... iy

k
=1

k
() ) = 37 (S50 =85 +DX)) = 5k =
Jj=1 j

O]

Next, we extend to the case of 2-knots./We know that the Artin representation of the loop

braid group of 2-knots is given by:

(
Ty b—>2Ti41,

Y 4 -1
0@ N Titd F Ty 1 TiTiq1,

(T g for j #£i,i+ 1,

T = Tit1,

Pit\ Tit1 = Ti,

| %j T for j i1+ 1,

€T — xi_l,
T; -
xj vz, forj#i.
It.is easy to see that p; corresponds to a permutation matrix, which does not affect our
previous proofs. Moreover, if f(P(t)) = kP(t), then f is an involution if and only if k = +1,

and clearly neither satisfies this condition. Therefore, it is impossible to represent 7; linearly.

29



4.4 Situation with multiple knots(link)

Previously, we discussed examples involving a single knot or 2-knot. Here, we aim to study the
way multiple knots or 2-knots are linked together, and connect this to the theories introduced
above.

First, we note that after abelianization, the conditions in the previously stated theorem no
longer hold. As a result, we obtain a multivariable Laurent polynomial with integer coefficients;
which makes the computations more complicated.

Below, we consider the effect of the linking of two 2-knots on the Alexander. matrix. We

know this will be a function of two variables, and thus we need to redefine(the.function P:

Definition 4.4.1. Define a map P’ : R({al, o antU{p, .. .,6m}) . Z[t, t~ 1 a,u= 1t satis-
fying:
Pl(a;)=t, P'(Bj)=u, P'(1)=A1,

and Vw,v € R({a1,...,an} U{B1,...,Bm}),
P'(wv) = P'(vw) = P'(w) “P(v),

P'(w+v) = P'(w)+tP (v).

We denote the elements generated by the two knots as (), (8)/",, and consider the

commutation relation in the fundamental group of the'complement:
|
Sq= PR By

Then the Fox derivatives evaluated by. P’ give:

Js
/ q)\ _
P(@a)_l’
(95 _,,
P<aﬂk =u—1,

(954 _
p(2n) -

Since the variables differ, the previous proof for the uniqueness of the Alexander polynomial

no denger holds; requiring separate treatment. Moreover, to preserve the independence of the
two'knots, the skein form of the Alexander polynomial becomes more complicated and difficult
to handle:

We want to/determine, purely from the braid group, which element belongs to which knot. We

poserthe following problem:

Problem 4.4.2. Define the permutation p; = (1,2,...,i+1,4,...,n). how can we calculate the

number of cyclic permutations in H?:l pi; ¢

This problem, according to [14], does not have a closed-form formula.

Next, we discuss the case where we know to which knot each element belongs: Let z;, ;41
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satisfy P'(x;) =t, P'(z;+1) = u. Note that
v:B, = GL, (Z[t,til,u, uil])
and
vir o+ 0+ 40— 1w + (v + 0+ 40,
p(i) = Quip1 = 1=t +o; 0+ 4+0+1 7140+ +0,
vj = vy, for j#i,i+1,

so we have

oi(A)
Iy 0 0;_1 0 0;_1 oo 0
) 0 -1 . ) 1 ) : 1
= : v : A+ : 0 : — : 0
1 1—¢1 0 1 0 1
0 I—i1 0 0p—it1 0 - Op—i_1

However, since P'(x;) = u, P'(x;11) = t, it is not so straightforward to derive the Alexander

matrix directly from the braid group.

5 Applications

Knot theory, although an abstract field, has a variety of applications in the real world. These in-
clude medical imaging, such as constructing dynamic surfaces from MRI data, high-dimensional
data analysis in data science, and the'study of melécular structures in materials science.One of
the hottest research areas is undoubtedly. the @analysis of quantum computation in topological
quantum field theory.

In the literature [6], it is mentioned that pairs of Fibonacci anyons can be created in vacuum.

When two anyons fuse, the.outcomes may be:
e annihilation'back to the vacuum;,
e combination into a new’ anyon.

When two anyons annihilate, we denote the state as |0), and when they combine, as |1).
To compute the positions after anyon exchanges in a 241 dimensional world, we can represent

the exchange paths by/braid groups, as illustrated in the figure. The article mentions that we
(o )
o

Figure 21: Tllustration adapted from [6].

-—/

can construct braids to simulate arbitrary quantum circuits. Compared to other computational
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methods that require local data, topological quantum computation depends only on the topology
of the braids, making the computation results less susceptible to local disturbances.
At the end of the article, the authors also propose the idea of replacing knots with 2-knots,

and mention that the computations involved are related to the fundamental group.

Besides the above, we introduce another application: cryptography.
In [5, 1], two different encryption methods were proposed based on distinct invariants and
problems. Here, we present a different encryption approach.

In the previous theory, we discussed the Alexander matrix of knot braid‘groups and the
general calculation of the Alexander matrix. However, as mentioned in [L0};.it is impossible to
derive the braid group of a knot solely from its fundamental group or.quandle. We propose to

develop this problem as the core of an encryption scheme.

6 Conclusion

In this work, we examined the relationship between 2-knot.diagrams and thefundamental groups
of their complements, emphasizing the role of associated invariants.and properties. We extended
our discussion to the Alexander matrix, braid groups, and loop braid groups, establishing con-
nections among different invariants and interpreting these connections from both geometric and
algebraic perspectives.

Our approach aims to provide a more fundamental and intuitive framework—via 2-knot
diagrams and graph-theoretic methods—for interpreting invariants and properties of 2-knots.
This framework is intended to serve.as'a teachablerand'simulatable mathematical model, thereby
lowering the entry barrier for understanding 2-knets and their invariants.

Future directions include the study of multiple interlinked knots and the exploration of
further relationships between invariants, such.as those involving the Hecke algebra and the Jones
polynomial, together with their geometric interpretations. These developments will contribute

to a more comprehensive and accessible understanding of knot theory.
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