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The Geometric Properties of 2-Knot Immersions and

Their Effects on Invariants

HUANG PO-HSIANG

August 14, 2025

Abstract

We investigate the geometric and topological properties of 2-knots embedded in a four-

dimensional real space. Starting from the fundamental group of the complement of an

embedded 2-sphere in R4, we provide an intuitive geometric interpretation and analyze how

local immersion structures of surfaces influence this group. This viewpoint is extended

to complements of general 2-knots, where we establish its invariance under Reidemeister

moves (R-moves), illustrated by the spun trefoil knot. Emphasis is placed on the geometric

meaning of algebraic invariants: we examine the interplay between 2-knot diagrams, the

Alexander polynomial, and the Alexander matrix, interpreting the latter via the associated

chain complex. We also study the geometric implications of relator substitutions, clarify

the relationship between the Burau representation and the Alexander matrix, and outline

potential applications of these structures in both mathematics and applied contexts.

Keywords:2-knot theory, fundamental group, Fox calculus, Alexander invariant.
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1 Introduction

Knot theory is a fundamental area of topology that studies embeddings of manifolds in higher-

dimensional spaces. Classical one-dimensional knot theory investigates embeddings of S1 in S3,

while 2-knot theory is the natural higher-dimensional generalization concerning embeddings of

S2 in S4. This field connects multiple branches of mathematics, including algebraic topology,

combinatorial group theory, and low-dimensional topology, and holds potential applications

in topological quantum computation, molecular structure analysis, image compression, and

more. However, existing research on 2-knots has largely focused on algebraic or combinatorial

approaches (e.g., Carter–Saito’s algebraic methods), with relatively less emphasis on geometric

intuition.

In the study of 2-knots, the fundamental group of the knot complement is a crucial invariant.

Yet, its geometric meaning—especially its relation to local immersion structures—remains insuf-

ficiently explored and is primarily interpreted algebraically, such as in Carter–Saito’s work [3].

Current methods for computing invariants like the Alexander polynomial mostly rely on alge-

braic derivations, making it challenging to intuitively understand their behavior under isotopies

and Roseman-type Reidemeister moves (R-moves). Therefore, this research aims to establish an

analytical framework that bridges algebraic invariants with geometric constructions, addressing

this gap.

This paper adopts a constructive and geometrically intuitive approach to 2-knot theory,

presenting the following main contributions:

(1) Provide a geometric interpretation of the fundamental group of the 2-knot complement

based on oriented crossing data.

(2) Prove the invariance of this fundamental group under R-moves.

(3) Derive a skein-form Alexander polynomial for 2-knots.

(4) Analyze the effect of relation substitutions on the Alexander matrix and establish its

connection with the Burau representation of braid groups.

(5) Explore the extension to multi-component 2-knots (links) and their applications in quan-

tum computation and cryptography.

The structure of this paper is as follows: Section 2 reviews preliminaries including 2-knots,

fundamental groups, Fox calculus, and Alexander invariants; Section 3 surveys related previous

works and their connection to this study; Section 4 presents the main theorems and proofs,

including geometric interpretations of the fundamental group, its invariance, and properties of

the Alexander matrix; Section 5 discusses applications in topological quantum computation and

cryptography; Section 6 concludes with a summary and future research directions.

2 Preliminaries

Definition 2.0.1 (2-Knot). Consider the embedding of the 2-sphere S2 in R4. From this we

deduce that a 2-knot is connected, orientable, and has one componet, genus zero.

6

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



Here we use the definition of 2-knot diagram in [13]

Definition 2.0.2 (Generic Projection). Define the map π : R4 → R3 by

π(x, y, z, w) = (x, y, z).

If all points in π(K) are regular points, double points, triple points or branch points, then π(K)

is called generic. We denote by Dp(K), Tp(K), and Bp(K) the sets of double points, triple

points, and branch points respectively.

Definition 2.0.3 (2-Knot Diagram). Suppose πK : K → R3 and let p ∈ Dp(K). The preimage

π−1
K (p) contains two points p− and p+ satisfying w(p+) > w(p−). We call p− the lower point of

p and p+ the upper point of p.

Define Λ−(K) as the closure of the set of all lower points. Let N be a neighborhood of

Λ−(K) as illustrated. The diagram of K is then given by

D(K) = π(K)− π(intN).

In the diagram D(K), the lower disk near each double point is divided into two halves,

where the double points on the lower and upper disks are depicted by solid and dashed lines

respectively, as shown in Figure 1.

Figure 1: Illustration adapted from [13].

If t ∈ Tp(K), then π−1|K(t) = {t1, t2, t3} with w(t1) < w(t2) < w(t3).

The points t1, t2, t3 are called the lower, middle, and upper points of t, respectively. The disks

containing these three points are correspondingly called the lower, middle, and upper disks of

t. In the diagram D(K), the middle and lower disks are divided into four and two regions

respectively, as illustrated in Figure 2.

Figure 2: Illustration adapted from [13].

If b ∈ Bp(K), then

π−1|K(b) = {b},

and b is an endpoint of a double point arc, as illustrated in Figure 3.

The elements of a 2-knot diagram are called sheets, and the sheet number refers to the number

of sheets in the 2-knot diagram. We define the sheet number of a 2-knot as the minimal sheet

number among all its possible 2-knot diagrams.
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Figure 3: Illustration adapted from [13].

Definition 2.0.4 (Roseman moves). From Roseman’s study [12], we know that the ambient

isotopies between closed surfaces can be categorized into seven types of moves, as illustrated

in Figures 4 and 5. These seven moves are called (Roseman’s) Reidemeister moves, and are

denoted by R. It is known that if there exists a composition of R-moves between two closed

surfaces, then they are ambient isotopic.

Figure 4: Illustration adapted from [12].
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Figure 5: Illustration adapted from [12].

Definition 2.0.5 (fundamental group). Let X be a topological space with a fixed base point

p. A loop is a continuous map

γ : [0, 1] → X

such that γ(0) = γ(1) = p. Consider the homotopy class [γ] of γ in X. The concatenation of

two loops f and g is defined as:

(f ∗ g)(t) =

f(2t) x ∈ [0, 1/2]

g(2t− 1) x ∈ [1/2, 1]

It is clear that the homotopy class [f ∗ g] depends only on the homotopy classes [f ] and [g].

Therefore, we can define a binary operation. ∗ : π1(X, p)× π1(X, p) → π1(X, p) by concatena-

tion.

Furthermore, we can construct the identity element and inverses, and prove associativity.

Hence, the set of homotopy classes of loops based at p forms a group under the operation ∗,
called the fundamental group of X with base point p, denoted by

π1(X, p).

Definition 2.0.6 (Free group). A group G is called a free group if there exists a subset S ⊆ G

such that every element of G can be uniquely expressed as a product of elements of S and their

inverses, where two elements in G are distinct unless they are equal by the group axioms (i.e.,

reductions involving an element and its inverse). Such a group G is denoted by FS , and the

elements of S are called the generators (or factors) of FS . The cardinality of S is called the
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rank of FS .

Given two groups A and B, their free product A ∗ B is the free group generated by the

elements of both A and B.

Here we present the most basic statement; proofs and detailed discussions can be found in

[7].

Theorem 2.0.7 (Seifert–Van Kampen’s Theorem). Let X be the union of two open sets U, V ⊆
X satisfying:

1. U and V are path-connected,

2. U ∩ V is also path-connected,

3. X,U, V, and U ∩ V share a common base point.

Then the fundamental group of X is the amalgamation of the fundamental groups of U and V

over U ∩ V , i.e.,

π1(X) ∼= π1(U) ∗ π1(V )/⟨N⟩,

where N is the identification of π1(U ∩ V ) in π1(U) ∗ π1(V ).

Definition 2.0.8 (Fox Differential). This involves translating the knot group relations into

derivatives, which are used to study group representations and invariants in topology. The

specific operations are as follows:

∂1

∂x
= 0,

∂x

∂x
= 1,

∂y

∂x
= 0 if y ̸= x,

∂(uv)

∂x
=

∂u

∂x
+ u

∂v

∂x
,

∂x−1

∂x
= −x−1.

Definition 2.0.9 (Alexander matrix). Given a 2-knot K in the space. Set:

π1(R4 −K) = ⟨x1, x2, . . . , xn|r1, r2, . . . , rn−1⟩

Let

M =


∂r1
∂x1

· · · ∂rn−1

∂x1
...

. . .
...

∂r1
∂xn

· · · ∂rn−1

∂xn


The Alexander matrix A is the result of M when we abelianize the group π1(R4 −K).

Definition 2.0.10 (Alexander polynomial).

∆K(t) = gcd(detAi(t)).

(Here we define det(Ai(t)) ∈ R[t, t−1])

where Ai(t) denotes the (n− 1)× (n− 1) matrix obtained by deleting the i-th row from A.

10
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Definition 2.0.11 (Artin representation of braid group). We can represent braid group in free

group form with isomorphism ϕ : Bn → Aut(Fn)

ϕ(σi) :


xi 7→ xi+1,

xi+1 7→ x−1
i+1xixi+1,

xj 7→ xj , for j ̸= i, i+ 1.

Definition 2.0.12 (Burau representation). Here we only consider the reduced case. A linear

representation of the braid group is given by an isomorphismρ : Bn → GLn

(
Z[t, t−1]

)
defined

on the generators σi by

ρ(σi) =


Ii−1 0(

1− t 1

t 0

)
0 In−i−1

 ,

where Ik denotes the k × k identity matrix.

3 Literature review

In the early 20th century, topology gradually emerged as an important branch of mathemat-

ics. Knot theory, as one of its core research areas, was fundamentally shaped by Alexander’s

introduction of the Alexander polynomial in 1928, laying the groundwork for knot invariants

[1].

From the 1980s through the early 21st century, the study of 2-knots (2-dimensional knots)

began to flourish, with research directions broadly divided into two categories: one focusing on

visualization and geometric representations of 2-knots, exemplified by Shin Satoh and Dennis

Roseman, and the other on algebraic descriptions, represented by Seiichi Kamada. Moreover,

scholars such as J. Scott Carter and Masahico Saito developed a systematic theoretical frame-

work bridging these approaches.

In 1998, Roseman introduced the original formulation of Reidemeister-type moves for sur-

faces in four dimensions [12]. Subsequently, Carter and Saito systematically organized Roseman

moves and explored the relations between 2-knot diagrams and the fundamental groups of their

complements in [3]. In 1994, Kamada and Fernández-Acuña respectively established founda-

tional theories characterizing 2-knot groups in [9] and [4], providing theoretical bases for later

works by Damiani, Kádár, and others.

The relationship between 2-knot diagrams and fundamental groups of their complements

proposed in this paper is consistent with the results of Carter and Saito [3], but emphasizes a

more visual and constructive approach, aiming to offer a more intuitive and operational inter-

pretation. Furthermore, our proof concerning the connection between the Burau representation

and the Artin representation adopts a linear algebra perspective, contrasting with the group

isomorphism approach used in [2], thereby demonstrating a different proof strategy and view-

point.
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4 Main Results

4.1 Geometric Interpretation of the Fundamental Group

Lemma 4.1.1. π1(S
1) ∼= Z, π1(S

n) ∼= 0 for n ≥ 2.

For a detailed proof of this lemma, see [7], pp. 38–40 and p. 44.

Before discussing the geometric meaning of the fundamental group of R4 −K, it is helpful

to understand what the fundamental group is under the most general condition (the sphere).

Lemma 4.1.2. π1
(
R4 − S2

) ∼= Z

Proof. Since R4−S2 is homotopy equivalent to S4−{p}∪S2 with p /∈ S2, and S4−{p}∪S2 is

homotopy equivalent to the wedge sum S3 ∨ S1 (where ∨ denotes the wedge sum, i.e., S3 and

S1 intersecting at a point), we have

π1
(
R4 − S2

) ∼= π1
(
S3 ∨ S1

)
.

By Seifert–Van Kampen’s Theorem, it follows that

π1
(
S3 ∨ S1

) ∼= π1(S
3) ∗ π1(S1).

Since

π1(S
n) ∼= 0 ∀n ∈ N, n > 1,

we conclude

π1
(
R4 − S2

) ∼= π1(S
1) ∼= Z.

Lemma 4.1.3. Under the preservation of the immersion structure, any graph can be regarded

as an enclosing trace.

Proof. Given an immersion f : S2 ↬ M, of the 2-sphere, the self-intersection set Σ ⊂ S2 par-

titions the sphere. After cutting along Σ, the sphere S2 \Σ decomposes into several connected

components, each homeomorphic to a sphere with holes (i.e., a sphere with finitely many open

disks removed). This structure is illustrated in Figure 6.

Moreover, the existence of ambient isotopies allows each sphere to be moved to different posi-

tions, which completes the proof.

Consequently, we obtain a new representation. Although this representation may not effec-

tively help us visualize 2-knots, it aids in understanding their algebraic structure.

Lemma 4.1.4. For 2-knots with only double points, if we consider connectivity as the criterion,

then the 2-knot can be represented as a tree.
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Figure 6: Illustration adapted from [8].

Proof. If there exists a cycle, then the genus is nonzero. Moreover, we observe that the leaves

of the tree are homeomorphic to S2 \D, where D is an open disk, and other points are homeo-

morphic to S2 \ (D1 ∪D2), where D1, D2 are open disks with D1 ∩D2 = ∅.

Proposition 4.1.5. π1
(
R4 −

(
S1 × y-axis

)) ∼= Z.

Proof.

π1
(
R4 −

(
S1 × y-axis

)) ∼= π1
(
(R3 − S1)× R

) ∼= π1(R3 − S1)× π1(R) ∼= Z× 0 ∼= Z.

Based on the conclusion of Lemma 4.1.2: π1
(
R4 − S2

) ∼= π1(S
1). We may construct this

using an oriented circle:

Theorem 4.1.6 (Geometric Meaning of π1(R4 − S2)). The oriented linking number k between

loops and surfaces determines the elements in the fundamental group π1(R4 − S2) of the com-

plement space.

For convenience in the subsequent proof, we provide here a coordinate description.

Theorem 4.1.7. In R4 with coordinates (x, y, z, w), consider an orientable loop a passing

through an orientable surface s. That is, there exist four points p1a, p1s, p2a, p2s satisfying

(xp1a , yp1a , zp1a) = (xp1s , yp1s , zp1s), (xp2a , yp2a , zp2a) = (xp2s , yp2s , zp2s).

If pjs and pja have the same orientation, then w(pjs) < w(pja); if they have opposite orientation,

then w(pjs) > w(pja). We denote this relation by α.

This situation is illustrated in Figure 7:

The statement for α−1 is the opposite: if the orientations are the same, then w(pjs) > w(pja),

and if the orientations are opposite, then w(pjs) < w(pja).

13
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Figure 7

Figure 8: Left:A, Right:B

Proof. Suppose, for the sake of contradiction, that A and B share the same enclosing trace.

Consider the segment joining p1a and p2a, and let τ denote its projection onto s. Since a is a

continuous oriented loop, and either

w (p1s) < w (p1a) ∧ w (p2s) < w (p2a)

or

w (p1s) > w (p1a) ∧ w (p2s) > w (p2a) ,

there must exist a point p on ai such that

w (pi) = w (τ (pi)) .

It follows that, within the corresponding homotopy, there exist embeddings carrying A into

both S2 ∨ S1 and S2 ∪ S1. This would imply that S2 ∨ S1 and S2 ∪ S1 are homeomorphic, a

contradiction. Therefore, our assumption is false, and the claim is established.

With the geometric interpretation of π1(R4 − S2) established, we can further explore the

geometric meaning of surface immersions.

Theorem 4.1.8 (Local Geometric Meaning of Surface Immersions.). If, in a 2-knot K, there
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exist local structures si, sj , sk as shown in Figure 9, then in π1(R4 −K) there is the relation

αk αi α
−1
k α−1

j = e.

Figure 9

Proof. We now let K be the local structure of the Figure 9 and discuss its relation to the space

R4. Without loss of generality, we place the 2-knot without double points in the subspace w = 0,

and send the neighborhood of each double point to w = k with k < 0. Furthermore, we can

homotope this 2-knot so that it has a thickness ϵ1 > 0 in the (x, y, z)-directions, and a thickness

ϵ2 > 0 (interval) in the w-direction.

Consider the spaces

A = {(x, y, z, w) | x, y, z, w ∈ R, w > k − ϵ2}, B = {(x, y, z, w) | x, y, z, w ∈ R, w < k}.

From Lemma 4.1.2, Lemma 4.1.4, and Seifert–Van Kampen’s Theorem, we know

π1 (A−K) = ⟨αi, αj , αk⟩.

We also observe that

π1(B) ∼= 0, π1(A ∩B) is a rank 1 free group.

The elements of π1(A ∩B) are of the form

αiαkα
−1
i α−1

j ,

which correspond to the identity e in π1(B). Therefore,

π1(R4 −K) ∼= π1(A ∪B) ∼= π1(A) ∗ π1(B)/N ∼= ⟨αi, αj , αk⟩
/
⟨αkαiα

−1
k α−1

j ⟩.

We now proceed to examine the types of relators that arise from triple points and branch

15
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points.

Theorem 4.1.9 (The effect of branch points on the fundamental group of the complement

space of a 2-knot). In a 2-knot K, the structure of branch points does not correspond directly

to any relators in π1
(
R4 −K

)
.

Figure 10

Proof. We decompose the structure of the branch points along the double point arcs into three

parts as shown in Figure 11 (yellow, green, and blue) for analysis. Move the blue part Kb along

the w-direction so that w(Kb) < ϵ1, move the yellow part Ky so that w(Ky) > ϵ2, where ϵ1 > ϵ2,

and the green part Kg is the intersection of the yellow and blue parts, i.e., w(Kg) ∈ (ϵ2, ϵ1).

Under this setup, analyzing the complement spaces of these three structures and applying

Seifert–Van Kampen’s Theorem yields

π1
(
R4 − (Kb ∪Ky)

) ∼= π1
(
(R3 × (w < ϵ1))−Kb

)
∗ π1

(
(R3 × (w > ϵ2))−Ky

)
/⟨αibα

−1
iy ⟩.

Since

π1
(
(R3 × (w < ϵ1))−Kb

) ∼= Z, π1
(
(R3 × (w > ϵ2))−Ky

) ∼= Z,

we have

π1
(
R4 − (Kb ∪Ky)

) ∼= Z ∗ Z/⟨αibα
−1
iy ⟩ ∼= Z.

In simple terms, since the fundamental groups of the blue and yellow regions are identified

as equivalent via the identification in the green region, their elements correspond.

From an intuitive perspective, we can regard the double point arcs with branch points as

self-intersecting double point arcs.

16
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Figure 11

Theorem 4.1.10 (The effect of triple points on the fundamental group of the complement

space of a 2-knot). In a 2-knot K, the structure of triple points does not directly correspond to

relators in π1
(
R4 −K

)
.

Figure 12

Proof. Here, we label each disk in this construction as shown in Figure 13:

In the structure of a triple point, we classify the double point arcs. Since the double point

arcs intersecting the middle and top disks can be moved sufficiently high along the w-direction,

we can simplify the situation using Seifert–Van Kampen’s Theorem to reduce it to the case in

17
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Figure 13

Theorem 4.1.8 and obtain the same conclusion. Therefore, we focus on the double point arcs

intersecting the bottom disk, as well as those intersecting the middle and top disks.

The neighborhood of the bottom disk is homeomorphic to R4 − A × (w-axis), where A

(see Figure 14) is two intersecting loops (viewing the double point arcs with branch points as

self-intersecting double point arcs). From Lemma 4.1.5 and Theorem 4.1.8, we deduce

π1
(
R4 −A× (w-axis)

) ∼= Z ∗ Z ∗ Z

(as illustrated in Figure 15). Corresponding back to the entire space, we obtain the following

Figure 14
Figure 15

ten relators:

αaαiα
−1
a α−1

k , αaαjα
−1
a α−1

l , αmαiα
−1
m α−1

j , αnαkα
−1
n α−1

l ,

αnαaαiα
−1
a α−1

n α−1
l , αnαkα

−1
n αaα

−1
j α−1

a , αmαiα
−1
a α−1

n α−1
l α−1

a , αmα−1
a α−1

k α−1
n αaαj ,
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αaαmαiα
−1
m α−1

a α−1
l , αaα

−1
m αjαmα−1

a α−1
k

and combined with the relator from the top and middle disks:

αaαmα−1
a α−1

n .

We know that six of these relators can be derived from the other four by combination (e.g.,

substituting αj = αmαiα
−1
m into αaαjα

−1
a α−1

l yields αaαmαiα
−1
m α−1

a α−1
l ).

Therefore, when computing the fundamental group of the complement space with triple

point structure, it suffices to consider only the relators arising from the double point arcs.

Intuitively, paths in the triple point structure can all be expressed as combinations of four

basic paths. From the above Seifert–Van Kampen’s Theorem, Theorems 4.1.8, 4.1.9, and 4.1.10

we deduce the following property:

Proposition 4.1.11. For a 2-knot K, the fundamental group of the complement R4 −K can

be presented in the form

π1(R4 −K) ∼= ⟨α1, . . . , αn⟩/⟨αkαiα
−1
k α−1

j ⟩

for some triple (i, j, k).

Proof. Decompose the complement of K into finitely many connected, open regions

A1, A2, . . . , Am,

so that each region contains the neighborhood of a collection of (pairwise) nonconnected double-

point arcs. Apply Seifert-Van Kampen’s Theorem successively to glue these regions together.

When two distinct regions Ai and Aj meet along a disk sk, the identification in the intersection

produces the relator

αkiα
−1
kj ,

which, by the original identification, represents the identity element in the glued group.

Hence all relators coming from identifications between different regions are of the form

αkiα
−1
kj and impose no new restrictions beyond those identifications. It follows that it suffices to

consider only the relations internal to each region π1(Ai). By Theorems 4.1.8, 4.1.9 and 4.1.10

(which analyze the local contributions of double points, branch points and triple points), each

local fundamental group admits a presentation generated by meridional elements α1, . . . , αn

with relations of the form

αkαiα
−1
k α−1

j .

Gluing these local presentations together along the trivial identifications yields a global

presentation of the form

π1(R4 −K) ∼= ⟨α1, . . . , αn⟩/⟨αkαiα
−1
k α−1

j ⟩

for some triple (i, j, k), as claimed.
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This proposition allows us to compute the fundamental group of the complement directly

from the 2-knot diagram.

Property 4.1.12 (π1
(
R4 −K

)
is an invariant of the 2-knot K under R-moves.). Proof. Ω1 :

Figure 16

We know in the fundamental group on the left side:

αkα
−1
i α−1

k αj = e,

αi can be expressed as

αi = α−1
k αjαk.

Therefore,

π1(R4 −A) ∼= ⟨α1, . . . , αi−1, αi, αi+1, . . . , αn⟩/⟨αkαiα
−1
k α−1

j , C⟩
∼= ⟨α1, . . . , αi−1, αi+1, . . . , αn⟩/⟨C⟩ ∼= π1(R4 −B),

where C denotes other relations.

Ω2 :

Figure 17

According to the above logic, in π1(R4 −A) we have

αj = α−1
k αiαk,

and similarly in π1(R4 −B),

αj = α−1
k αiαk = αj′ ,

thus we conclude that

π1(R4 −A) ∼= π1(R4 −B).
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Ω5 :

Figure 18

⟨αi, αk, αj , αl, αl′ , αl′′ , αl′′′⟩

/
〈
αkαiα

−1
k α−1

i , αlαkα
−1
l′′ α

−1
k , αl′αjα

−1
l′′ α

−1
j , αl′′′αkα

−1
l′ α−1

k , αl′′′αiα
−1
l α−1

i

〉
By substituting αl′ , αl′′ , and αl′′′ , we obtain:

⟨αi, αk, αj , αl⟩/
〈
αkαiα

−1
k α−1

i

〉
.

For Ω3, Ω4, and Ω6, by the properties of branch points in Theorem 4.1.9, we know the

fundamental groups before and after the moves are the same.

Since the case of Ω7 is more complicated, we analyze it via the structure: it corresponds to

multiple triple points, so by the conclusion of Theorem 4.1.10, the fundamental group remains

unchanged.

Below, we provide an example:

Figure 19: spun trefoil knot. (Illustration adapted from [8].)

Example 4.1.13 (spun trefoil knot).

π1
(
R4 −K

) ∼= ⟨α1, α2, α3, α4⟩/⟨α1α3α
−1
2 α−1

3 , α1α
−1
3 α−1

1 α2, α2α
−1
4 α−1

2 α3⟩
∼= ⟨α2, α3⟩/⟨α3α2α

−1
3 α2α

−1
3 α2⟩

a = α−1
3 α2, b = α3 =⇒ ∼= ⟨a, b | a3 = b2⟩
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4.2 Alexander Polynomial of 2-Knots

Proposition 4.2.1. For any 2-knot K (an embedded S2) in R4,

H1(R4 −K) ∼= Z.

Proof. From Proposition 4.1.11 we have a presentation

π1(R4 −K) ∼= ⟨α1, . . . , αn⟩/⟨αkαiα
−1
k α−1

j , . . . ⟩.

Passing to the abelianization (recallH1(X) ∼= πab
1 (X)), each relator of the form αkαiα

−1
k α−1

j = e

becomes, in additive/abelian notation,

ak + ai − ak − aj = 0 =⇒ ai = aj .

Hence every relation of this type identifies the corresponding abelian generators. By Lemma

4.1.4 the connectivity of the underlying diagram (viewed as a tree) ensures that all generators

α1, . . . , αn are identified in the abelianization. Therefore

πab
1 (R4 −K) ∼= ⟨a1, . . . , an⟩ab/⟨a1 = a2 = · · · = an⟩ ∼= ⟨a⟩ ∼= Z.

Consequently,

H1(R4 −K) ∼= πab
1 (R4 −K) ∼= Z.

(One can give an explicit isomorphism by sending each meridional class αi to the generator

1 ∈ Z.)

We note that directly abelianizing the fundamental group leads to excessive simplification.

Therefore, to study the chain complex of the 2-knot complement, we introduce the concept of

Fox derivatives, which extend the group to a ring. This approach avoids the problem of over-

simplification caused by relators during abelianization. Next, we will discuss the Alexander

matrix and Alexander polynomial in more detail. Furthermore, from the proof of Proposition

4.2.1, we know that by applying Fox derivatives to any relator and then abelianizing, one obtains

a single-variable Laurent polynomial with integer coefficients, i.e., an element of Z[t, t−1].

We now define a map P to capture the effect of the Fox derivative after abelianization.

Definition 4.2.2. Define a map

P : R(α1, . . . , αn) → Z[t, t−1]

such that

P (αi) = t, P (1) = 1,

and for all u, v ∈ R(α1, . . . , αn),

P (uv) = P (u) · P (v),

P (u+ v) = P (u) + P (v).
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First, we compute the relation obtained from the previously derived relator αkαiα
−1
k α−1

j

after applying the Fox derivative followed by abelianization:

Proposition 4.2.3. For the 2-knot relator αkαiα
−1
k α−1

j , applying the Fox derivative followed

by abelianization yields the following equalities:

P

(
∂(αkαiα

−1
k α−1

j )

∂αk

)
= 1− t, P

(
∂(αkαiα

−1
k α−1

j )

∂αi

)
= t, P

(
∂(αkαiα

−1
k α−1

j )

∂αj

)
= −1.

Proof. We compute:
∂(αkαiα

−1
k α−1

j )

∂αk
= 1− αkαiα

−1
k ,

∂(αkαiα
−1
k α−1

j )

∂αi
= αk,

∂(αkαiα
−1
k α−1

j )

∂αj
= −αkαiα

−1
k α−1

j .

Thus, applying the map P , we have:

P

(
∂(αkαiα

−1
k α−1

j )

∂αk

)
= 1− t,

P

(
∂(αkαiα

−1
k α−1

j )

∂αi

)
= t,

P

(
∂(αkαiα

−1
k α−1

j )

∂αj

)
= −1.

Next, we proceed to prove the uniqueness of the Alexander polynomial for 2-knots.

Theorem 4.2.4. For a 2-knot, the Alexander polynomial satisfies

|∆K(t)| = |gcd (det (Ai(t)))| = |det (Ai(t))| ,

(Here we define det(Ai(t)) ∈ R[t, t−1])

where the absolute value notation is defined as follows:

|P (t)| =

P (t), if the leading coefficient of P (t) > 0,

−P (t), if the leading coefficient of P (t) < 0.

Proof. Note that the sum of each row is zero, i.e.,

n∑
i=1

vi = 0.
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Without loss of generality, consider the relationship between A1(t) and Ai(t):

|det (A1(t))| =

∣∣∣∣∣∣∣∣det

v2
...

vn


∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



v2
...

vj +
∑n

i=2
i ̸=j

vi

...

vn



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣
det



v2
...

−v1
...

vn



∣∣∣∣∣∣∣∣∣∣∣∣∣
= |det (Aj(t))| .

Therefore,

|det (A1(t))| = |det (A2(t))| = · · · = |det (An(t))| ,

which implies

|∆K(t)| = |gcd (det (Ai(t)))| = |det (Ai(t))| .

Hence, we conclude that for each 2-knot quandle, there exists a unique Alexander polyno-

mial.

Next, we proceed to discuss the Alexander polynomial of 2-knots in the skein form:

Theorem 4.2.5. The skein relation for the Alexander polynomial of 2-knots is given by:

∆(S+)−∆(S−) = (t− 1)∆(S0),

where:

Figure 20

Proof. Without loss of generality, assume the three planes are s1, s2, s3. From this, we obtain

the following matrices:

M(S+) =



1 v1 1

−t v2 −1

t u1 0

−1 u2 0

0 . . . 0
... N

...

0 . . . 0


, M(S−) =



1 v1 0

−t v2 0

t u1 1

−1 u2 −1

0 . . . 0
... N

...

0 . . . 0


, M(S0) =



v1 1 0

v2 0 1

u1 0 −1

u2 1 0

0 0

N
...

...

0 0


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where v1, v2, u1, u2 are vectors and N is a matrix.

Consider the matrices Ai obtained by deleting the same row from each M(·), and denote

the corresponding reduced matrix Ni replacing N .

We observe that

det
(
Ai(S+)

)
− det

(
Ai(S−)

)
= det



1 v1 1

−t v2 −1

t u1 1

−1 u2 −1

0 . . . 0
... Ni

...

0 . . . 0


= (t− 1) · det

u1 + v2

u2 + v1

Ni



and

det
(
Ai(S0)

)
= det



v1 1 0

v2 0 1

u1 0 −1

u2 1 0

0 0

N
...

...

0 0


= det

u1 + v2

u2 + v1

Ni



Thus, for each Ai, the relation

det
(
Ai(S+)

)
− det

(
Ai(S−)

)
= (t− 1) · det

(
Ai(S0)

)
always holds.

4.3 Transformations of the Alexander Matrix

Theorem 4.3.1. Suppose that an element αi of the fundamental group of the knot or 2-knot

complement is replaced once by a relation element sj, expressed as an element u. Then, for

other elements in the Alexander matrix, the following transformation holds:

xkq → xkq + xiq · P
(

∂u

∂αk

)
(k ̸= i ∧ q ̸= j).

Proof. Define

deg(αi) = 1, deg(e) = 0, deg(uv) = deg(u) + deg(v).

Notice that each relation element sk satisfies deg(sk) = 0. If from sj we derive αi = u (e.g.

α1α2α
−1
1 α−1

3 =⇒ α3 = α1α2α
−1
1 or α1 = α3α1α

−1
2 ), then

deg(u)− deg(αi) = deg(sk) = 0 =⇒ deg(u) = 1.
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Let s′q be the relation obtained after substituting αi by u in sq. Consider the Fox derivative

P

(
∂s′q
∂αk

)
By the Leibniz rule for Fox derivatives,

∂(wv)

∂gi
=

∂w

∂gi
+ w

∂v

∂gi
,

we separate the part of αk outside u, denoted by α′
k. Since deg(u) = deg(αi), we have

P

(
∂s′q
∂α′

k

)
= P

(
∂sq
∂αk

)
.

Next, consider the part of αk inside u, denoted by βk. Since deg(u) = deg(αi) and applying

the Leibniz rule again, we find that P
(

∂s′q
∂βk

)
can be expressed as a multiple of P

(
∂u
∂βk

)
, and

the multiple is exactly P
(

∂sq
∂αi

)
.

Hence,

P

(
∂s′q
∂βk

)
= P

(
∂sq
∂αi

)
P

(
∂u

∂βk

)
.

Therefore,

P

(
∂s′q
∂αk

)
= P

(
∂s′q
∂α′

k

)
+ P

(
∂s′q
∂βk

)
= P

(
∂sq
∂αk

)
+ P

(
∂sq
∂αi

)
P

(
∂u

∂αk

)
.

Q.E.D.

Here, we can explain this from geometric and graph-theoretic perspectives. Consider αk as a

path, where the multiplication of elements corresponds to the concatenation of paths, and each

relation corresponds to a loop. The term P
(

∂v
∂αk

)
calculates how many paths are traversed

before each occurrence of αk or α−1
k in the path v.

When αi is replaced by u, this corresponds to substituting αi by u in the original relation.

Therefore, when recalculating P
(

∂s′q
∂αk

)
, besides considering the original paths, one must also

account for occurrences of αk and α−1
k in u, as well as how many paths are traversed before

occurrences of αi and α−1
i in the original path.

Hence, the above conclusion follows.

Next, we discuss the relationship between the Artin representation of the braid group and the

Alexander matrix.

Remark. Artin representation

σi :


xi 7→ xi+1,

xi+1 7→ x−1
i+1xixi+1,

xj 7→ xj , for j ̸= i, i+ 1.
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Theorem 4.3.2 (Isomorphism of Artin representation on the Alexander matrix).

σi 7→ σ′
i(A)

=


Ii−1 · · · 0

...

(
0 t−1

1 1− t−1

)
...

0 · · · In−i−1


A+


0i−1 · · · 0

...

(
1 0

0 1

)
...

0 · · · 0n−i−1


−


0i−1 · · · 0

...

(
1 0

0 1

)
...

0 · · · 0n−i−1


Proof. Consider the row vectors of the Alexander matrix as v1, v2, . . . , vn.

Due to the Artin representation

σi :


xi 7→ xi+1,

xi+1 7→ x−1
i+1xixi+1,

xj 7→ xj , j ̸= i, i+ 1,

we observe the homomorphism φ : Bn → GLn

(
Z[t, t−1]

)
defined by

φ(σi) :


vi 7→ t−1vi+1 +

(
0, . . . , 0,−1, t−1, 0, . . . , 0

)
,

vi+1 7→ (1− t−1)vi+1 + vi +
(
0, . . . , 0, 1,−t−1, 0, . . . , 0

)
,

vj 7→ vj , j ̸= i, i+ 1.

(There are n − 1 zeros preceding the −1 in the vector
(
0, . . . , 0,−1, t−1, 0, . . . , 0

)
and the 1 in

the vector
(
0, . . . , 0, 1,−t−1, 0, . . . , 0

)
.)

Hence, the corresponding matrix transformation can be constructed as:

σ′
i(A)

=


Ii−1 · · · 0

...

(
0 t−1

1 1− t−1

)
...

0 · · · In−i−1


A+


0i−1 · · · 0

...

(
1 0

0 1

)
...

0 · · · 0n−i−1


−


0i−1 · · · 0

...

(
1 0

0 1

)
...

0 · · · 0n−i−1

 .

Here we notice that:
Ii−1 · · · 0

...

(
0 t−1

1 1− t−1

)
...

0 · · · In−i−1

 =


Ii−1 · · · 0

...

(
1− t 1

t 0

)
...

0 · · · In−i−1


−1

The matrix on the right is the isomorphism corresponding to σi in the Burau representation.

Here, we examine the relationship between the Burau representation and the Alexander matrix.
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Proposition 4.3.3 (Relation between Alexander matrix and Burau representation). Define

σi 7→ Ai =


Ii−1 · · · 0

...

(
1− t 1

t 0

)
...

0 · · · In−i−1

 .

If
k∏

j=1

σij 7→
k∏

j=1

Aij

and
k∏

j=1

σij 7→ σ′
i1

(
σ′
i2

(
. . .
(
σ′
ik
(0)
)
. . .
))

,

then we have

σ′
i1

(
σ′
i2

(
. . .
(
σ′
ik
(0)
)
. . .
))

+ In =

 k∏
j=1

Aik+1−j

−1

.

Proof. Define

Sk =

 k∏
j=1

Aik+1−j

−1

, S0 = In, Di =


0i−1 · · · 0

...

(
1 0

0 1

)
...

0 · · · 0n−i−1


Note that:

σ′
i1

(
σ′
i2

(
. . .
(
σ′
ik
(0)
)
. . .
))

=
k∑

j=1

(
SjDij − Sj−1Dij

)
and

A−1
i (In −Di) = In −Di.

We prove this by mathematical induction:

- For k = 1,

S1Di1 −Di1 + In = S1,

which holds.

- Assume that for k = m,  m∑
j=1

SjDij − Sj−1Dij

+ In = Sm

holds.

- For k = m+ 1, we have:

m∑
j=1

SjDij − Sj−1Dij + In = Sm,
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which is equivalent to

−SmDim+1 +

m∑
j=1

SjDij − Sj−1Dij + In = Sm(In −Dim+1),

equivalently,

−SmDim+1 +
m∑
j=1

SjDij − Sj−1Dij + In = SmA−1
im+1

(In −Dim+1),

which implies

−SmDim+1 +
m∑
j=1

SjDij − Sj−1Dij + In = Sm+1(In −Dim+1),

and so
m+1∑
j=1

SjDij − Sj−1Dij + In = Sm+1.

Thus, by mathematical induction, for all k ∈ N,

σ′
i1

(
σ′
i2

(
. . .
(
σ′
ik
(0)
)
. . .
))

=
k∑

j=1

(
SjDij − Sj−1Dij

)
= Sk =

 k∏
j=1

Aik+1−j

−1

.

Next, we extend to the case of 2-knots. We know that the Artin representation of the loop

braid group of 2-knots is given by:

σi :


xi 7→ xi+1,

xi+1 7→ x−1
i+1xixi+1,

xj 7→ xj , for j ̸= i, i+ 1,

ρi :


xi 7→ xi+1,

xi+1 7→ xi,

xj 7→ xj , for j ̸= i, i+ 1,

τi :

xi 7→ x−1
i ,

xj 7→ xj , for j ̸= i.

It is easy to see that ρi corresponds to a permutation matrix, which does not affect our

previous proofs. Moreover, if f(P (t)) = kP (t), then f is an involution if and only if k = ±1,

and clearly neither satisfies this condition. Therefore, it is impossible to represent τi linearly.
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4.4 Situation with multiple knots(link)

Previously, we discussed examples involving a single knot or 2-knot. Here, we aim to study the

way multiple knots or 2-knots are linked together, and connect this to the theories introduced

above.

First, we note that after abelianization, the conditions in the previously stated theorem no

longer hold. As a result, we obtain a multivariable Laurent polynomial with integer coefficients,

which makes the computations more complicated.

Below, we consider the effect of the linking of two 2-knots on the Alexander matrix. We

know this will be a function of two variables, and thus we need to redefine the function P :

Definition 4.4.1. Define a map P ′ : R
(
{α1, . . . , αn} ∪ {β1, . . . , βm}

)
→ Z[t, t−1, u, u−1] satis-

fying:

P ′(αi) = t, P ′(βj) = u, P ′(1) = 1,

and ∀w, v ∈ R
(
{α1, . . . , αn} ∪ {β1, . . . , βm}

)
,

P ′(wv) = P ′(vw) = P ′(w) · P ′(v),

P ′(w + v) = P ′(w) + P ′(v).

We denote the elements generated by the two knots as ⟨α⟩ni=1, ⟨β⟩mi=1, and consider the

commutation relation in the fundamental group of the complement:

sq = αiβkα
−1
j β−1

k .

Then the Fox derivatives evaluated by P ′ give:

P ′
(
∂sq
∂αi

)
= 1,

P ′
(
∂sq
∂βk

)
= u− 1,

P ′
(
∂sq
∂αj

)
= −t.

Since the variables differ, the previous proof for the uniqueness of the Alexander polynomial

no longer holds, requiring separate treatment. Moreover, to preserve the independence of the

two knots, the skein form of the Alexander polynomial becomes more complicated and difficult

to handle.

We want to determine, purely from the braid group, which element belongs to which knot. We

pose the following problem:

Problem 4.4.2. Define the permutation ρi = (1, 2, . . . , i+1, i, . . . , n). how can we calculate the

number of cyclic permutations in
∏k

j=1 ρij?

This problem, according to [14], does not have a closed-form formula.

Next, we discuss the case where we know to which knot each element belongs: Let xi, xi+1
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satisfy P ′(xi) = t, P ′(xi+1) = u. Note that

φ : Bn → GLn

(
Z[t, t−1, u, u−1]

)
and

φ(σi) →


vi 7→ u−1vi + 0 + · · ·+ 0− 1 · vi+1 + (u−1)vi+1 + 0 + · · ·+ 0,

vi+1 7→ 1− t−1vi+1 + vi + 0 + · · ·+ 0 + 1− t−1 + 0 + · · ·+ 0,

vj 7→ vj , for j ̸= i, i+ 1,

so we have

σ′
i(A)

=


Ii−1 · · · 0

...

(
0 u−1

1 1− t−1

)
...

0 · · · In−i−1


A+


0i−1 · · · 0

...

(
1 0

0 1

)
...

0 · · · 0n−i−1


−


0i−1 · · · 0

...

(
1 0

0 1

)
...

0 · · · 0n−i−1

 .

However, since P ′(xi) = u, P ′(xi+1) = t, it is not so straightforward to derive the Alexander

matrix directly from the braid group.

5 Applications

Knot theory, although an abstract field, has a variety of applications in the real world. These in-

clude medical imaging, such as constructing dynamic surfaces from MRI data, high-dimensional

data analysis in data science, and the study of molecular structures in materials science.One of

the hottest research areas is undoubtedly the analysis of quantum computation in topological

quantum field theory.

In the literature [6], it is mentioned that pairs of Fibonacci anyons can be created in vacuum.

When two anyons fuse, the outcomes may be:

• annihilation back to the vacuum,

• combination into a new anyon.

When two anyons annihilate, we denote the state as |0⟩, and when they combine, as |1⟩.
To compute the positions after anyon exchanges in a 2+1 dimensional world, we can represent

the exchange paths by braid groups, as illustrated in the figure. The article mentions that we

Figure 21: Illustration adapted from [6].

can construct braids to simulate arbitrary quantum circuits. Compared to other computational
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methods that require local data, topological quantum computation depends only on the topology

of the braids, making the computation results less susceptible to local disturbances.

At the end of the article, the authors also propose the idea of replacing knots with 2-knots,

and mention that the computations involved are related to the fundamental group.

Besides the above, we introduce another application: cryptography.

In [5, 11], two different encryption methods were proposed based on distinct invariants and

problems. Here, we present a different encryption approach.

In the previous theory, we discussed the Alexander matrix of knot braid groups and the

general calculation of the Alexander matrix. However, as mentioned in [10], it is impossible to

derive the braid group of a knot solely from its fundamental group or quandle. We propose to

develop this problem as the core of an encryption scheme.

6 Conclusion

In this work, we examined the relationship between 2-knot diagrams and the fundamental groups

of their complements, emphasizing the role of associated invariants and properties. We extended

our discussion to the Alexander matrix, braid groups, and loop braid groups, establishing con-

nections among different invariants and interpreting these connections from both geometric and

algebraic perspectives.

Our approach aims to provide a more fundamental and intuitive framework—via 2-knot

diagrams and graph-theoretic methods—for interpreting invariants and properties of 2-knots.

This framework is intended to serve as a teachable and simulatable mathematical model, thereby

lowering the entry barrier for understanding 2-knots and their invariants.

Future directions include the study of multiple interlinked knots and the exploration of

further relationships between invariants, such as those involving the Hecke algebra and the Jones

polynomial, together with their geometric interpretations. These developments will contribute

to a more comprehensive and accessible understanding of knot theory.
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