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Abstract

Sleep is integral to human health, and poor or fragmented sleep can impair cog-
nitive function, reduce physiological restoration and compromise well-being in
general. Around 30 per cent of adults chronically suffer from sleep and wakeful-
ness disorders (insomnia) - an epidemic linked to obesity, cardiovascular attacks
and deteriorating mental health. Despite their high frequency, sleep disorders
remain poorly identified; less than 20% of affected individuals receive a correct
diagnosis and treatment. This diagnostic gap highlights the need for acces-
sible tools that can flag early signs of sleep deprivation or irregularity. This
paper demonstrates our personalised model for sleep recovery using CNNs to
predict the level of sleep deprivation and semi-Markov chains for simulating op-
timal recovery sleep in this work. The CNN used is a MobileNetV2 due to its
light-weightedness and terrific performance of 79.1% on test data and 85.16%
accuracy on validation data. This Markov model automatically accounts for
user-specific parameters such as age, sex and pre-existing sleep debt, hence
making recommendations very personalised per individual. This utilised the
Polysomnographs and Hypnograms from the Sleep-EDF database, which had a
large diversity of genders and ages. In comparison to ground-truth sleep data,
the model achieved a mean percentage error of [26.58%] for wake, [14.16%] for
NREM, and [32.23%] for REM sleep stages. In comparison to many commercial
sleep trackers, which often offer limited diagnosis analysis and rely on gener-
alised estimations of time spent in sleep cycles, this system is tailored to model
individual sleep debt and recovery while achieving similar, if not better, results
than the advanced technological prowess of the state-of-the-art sleep trackers.

Keywords: deep learning, mobile application, sleep deprivation detection, CNN,
neural networks
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Chapter 1

Introduction

Around 30 per cent of adults chronically suffer from sleep and wakefulness dis-
orders; an epidemic linked to obesity, cardiovascular attacks and deteriorating
mental health. Despite their high frequency, sleep disorders remain poorly iden-
tified; less than 20% of affected individuals receive a correct diagnosis and treat-
ment. This diagnostic gap highlights the need for accessible tools to flag early
signs of sleep deprivation or irregularity.

This paper presents a novel AI-powered sleep recovery system that provides in-
sight into sleep patterns while intelligently refining recovery recommendations
based on a user’s real-life schedule. Unlike conventional solutions, it requires no
wearables, headbands, or complex technology, making it simple, accessible, and
affordable for all.

Sleep deprivation is a growing concern globally, yet practical and accessible
tools for quantifying it remain limited. While wearables such as Fitbit or Apple
Watch can estimate sleep debt using biosignals like heart rate, they are often
expensive, require consistent use, and may not be personalised to the user’s
recovery needs. Furthermore, popular sleep-tracking applications rely on sound
detection or movement or require an external device to connect for providing
analysis.

Motivated by these limitations, this project explores whether facial cues alone
can offer a viable, low-cost, and non-intrusive alternative for estimating sleep
deprivation. Facial features such as swollen eyes, dark circles, and drooping
mouth corners have been associated with fatigue in previous research. Leverag-
ing these insights, we aim to build a CNN-based model that classifies drowsiness
and assigns a sleep deprivation score from an image-based assessment. Using
Markov models constructed from hypnograms affected by certain factors, we aim
to simulate recovery sleep accurately to alleviate the effects of sleep deprivation
on the user. The innovations of the project are summarised as follows:
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• Sleep Deprivation scoring from a facial image

• Personalised Markov models for accurately simulating sleep

• Non-intrusive application which is accessible to all

• Combination of sleep deprivation score through facial image and semi-
Markov models for simulating sleep.

• Integration of cognitive-behavioural theory to enhance user compliance
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Chapter 2

Literature Review

2.1 Importance of Sleep and Recovery

2.1.1 Sleep Science

Sleep is a temporary, homeostatically regulated and neurophysiologically active
state where the brain undergoes a sequential progression of distinct, fixed sleep
stage patterns controlled by the circadian and homeostatic mechanisms.

Throughout each sleep cycle, the brain undergoes the sleep stages in the follow-
ing order: Wake, N1, N2, N3, N2 and REM. Sleep stages from N1 to N3 are
referred to as NREM stages, or non-rapid eye movement sleep stages, progress-
ing into deeper sleep. The typical night consists of 4-5 sleep cycles, varying from
90 to 110 minutes each cycle. The wake stage has the highest frequency of beta
waves when the eyes are open and the highest frequency of alpha waves when
the eyes are closed. The table below highlights the key differences between the
different stages of sleep. [1]

Table 2.1: Summary of Sleep Stages
Sleep Stage Length of Stage Percentage of Total Sleep EEG Recording
N1 1–5 minutes 5% Theta waves (low voltage)
N2 25+ minutes 45% Sleep spindles and K-complexes
N3 30–60 minutes 25% Delta waves (low frequency, high amplitude)
REM 10–60 minutes 25% Beta-like waves (similar to wakefulness)

Notable Features of Sleep Stages

• N1: Often marked by slow eye movements and transition from wakeful-
ness. Hypnic jerks may occur.

• N2: Presence of sleep spindles and K-complexes. K-complexes are large,
sharp EEG waves that help suppress cortical arousal and aid memory
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consolidation, while sleep spindles are neuronal firings into the superior
temporal gyri, anterior cingulate, insular cortices, and thalamus, allowing
for synaptic plasticity - the strengthening or weakening of the connections
between synapses.

• N3: The stage in which one experiences the deepest sleep with low-
frequency and high-amplitude delta wave signals. Crucial for physical
recovery and immune function.

• REM: REM sleep is not classified as a restful stage, as irregular breath-
ing, rapid eye movements, and vivid dreaming characterise it. The EEG
patterns during REM closely resemble those of wakefulness, and muscle
atonia occurs to prevent the physical enactment of dreams. The brain also
tends to be very active during these stages.

Facial indicators of sleep deprivation

• Hanging eyelids

• Red eyes

• Swollen eyes

• Glazed eyes

• Droopy corners of mouth

• Pale skin

[2]
These research findings highlight specific facial cues for sleep deprivation,

which consolidate a crucial foundation for the sleep deprivation scoring model.
These research findings also emphasise certain facial features that are much more
largely affected by sleep deprivation through the VAS scale (often used to score
subjective experiences on a scale of 0-100mm), such as hanging eyelids, swollen
eyes, and droopy corners of the mouth [2]. A combination of the intensity of
these factors would help produce a more accurate score.

2.1.2 Sleep Debt

Sleep debt is chronic sleep loss without adequate recovery sleep, leading to the
accumulation of sleep debt over time. Dinges et al.[3] studies showed that even
minimal amounts of sleep debt cause impairment to brain function.
Sleep deprivation has other harmful effects on attention spans, reaction times,
mood swings, along with many health complications such as heart attacks, kid-
ney disease, strokes, and even death after long periods. [4].
Erratic sleep schedules can be dangerous for heart health. During our sleep, a
phenomenon known as nocturnal dipping occurs, where blood pressure dips as
a result of lower activity. Consequently, a lack of sleep would lead to eventual
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hypertension and other cardiovascular risks, which could be fatal.

Below is a figure showcasing the difference between a non-sleep-deprived in-
dividual and one in a psychomotor Vigilance test. This tests the reaction time
of individuals, and a PVT lapse occurs when the button is not pressed within
500 milliseconds. Although the values fluctuate, there is an upward trend as
the hours progress. Nevertheless, there is always a large disparity between the
number of PVT lapses in a healthy human and a sleep-deprived human.

Figure 2.1: A graph showing the number of PVT lapses as the number of hours
in the sleep deprivation condition progresses [5]

This figure helps to highlight the dangers to sleep-deprived individuals them-
selves and others. Plane crashes, nuclear meltdowns, grounding of large ships
are just a few of the large-scale events occurring as a result of sleep deprivation.

Recovery of sleep debt

Although sleep debt can accumulate quickly from short sleep durations during
weekdays, recovery from this debt is complex and often incomplete. The full
extent of how one recovers has not been discovered yet. Studies suggest that
common recovery strategies, such as catch-up sleep on weekends and short naps,
provide limited benefits and do not fully reverse the cognitive and physiological
impairments caused by chronic sleep restriction. [6]
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Population-Level Recovery Behaviors

In a representative study of 12,637 adults [6], it was found that:

• 35.9% of the population were short sleepers (< 6 hours per day),

• 27.7% had sleep debt exceeding one hour (18.8% had severe debt > 90
minutes),

• Only 18.2%

A significant 75.8% of those with severe sleep debt did not balance it through
any form of recovery during the week. Even among the general population, less
than half (46.1%) engaged in weekend catch-up sleep, and only 24.7% napped.

Total Population Sleep Debt > 60 minSevere Sleep Debt > 90 min
0

20

40

60

80

100

28.2

76.1
24.7

7.1 7.446.1

16.8 18.2

%
of
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d
iv
id
u
al
s

Weekend Catch-up Napping No Recovery

Figure 2.2: Sleep debt recovery strategies across population groups. Data from
[6].

This bar chart shows that individuals suffering from severe sleep debt curi-
ously make the least effort at compensating for the lost sleep debt. As those
with lower amounts of sleep debt take more action, we can correlate this lack
of initiative to taking action as a result of a lack of awareness or concern about
it. It illustrates the need for free, accessible applications that plan for their re-
covery to alleviate the effects of sleep deprivation. Furthermore, an application
accessible to all could promote the further dissemination of knowledge regarding
sleep.

Effectiveness of Recovery Sleep

A study conducted by Mikael Sallinen and his colleagues proved that recovery
sleep was the most effective way to improve performance. Another form of
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recovery they tested was small breaks between tasks.[7] While this did prove
slightly beneficial, recovery sleep drastically improved performance. However,
it is important to note that recovery sleep never fully removes the effects of sleep
debt, as the control group performed better on all occasions.
Furthermore, this study provides an important takeaway: recovery rates and
the effects are different from person to person. This highlights the importance
of the personalisation of the transition matrices.

Plateauing of Recovery

Another study [8] observed that after four consecutive nights of sleep restric-
tion (5 hours/night), daytime sleepiness plateaued despite continued sleep loss.
Upon one night of 10-hour sleep recovery, sleepiness levels returned to base-
line; however, some effects persisted if recovery included only napping or partial
sleep.

These findings support the idea that the body’s recovery mechanisms are
non-linear: sleepiness increases quickly during restriction but reaches a plateau,
and recovery does not occur in full symmetry. In other words, gaining back lost
sleep is neither immediate nor always proportional to the debt incurred.
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Accumulation of Sleepiness During Sleep Restriction

Figure 2.3: Sleepiness accumulates rapidly during the first few days of sleep re-
striction, but plateaus after approximately Day 4, based on Stanford Sleepiness
Scale and Multiple Sleep Latency Test data [8].
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2.2 Background and Current Methods in this
Field

2.2.1 Non-invasive Sleep Tracking and Estimation Tech-
niques

Ballistocardiography

This clinical technique, discovered in 1877, was one of the pioneer methods of
tracking sleep, which is gaining resurgence. This method involves the detection
of blood flow signals from the heart [9]. It is a non-invasive technique and can
be integrated into beds or chairs, but the large number of sensors drives up the
overall price and needs to be adjusted to account for many factors. [9]

Actigraphy

Actigraphy is a different yet widely supported technique for tracking sleep. Con-
sisting of accelerometers, gyroscopes and magnetometers [9], this approach in-
volves recording movements during sleep to determine whether the user is in a
sleep state or wake state. Additionally, it can provide insight into an individ-
ual’s circadian rhythms, but it cannot determine which sleep state the subject
is in with much accuracy. On the other hand, it relies solely on the absence or
presence of motion, provides limited data, and can also provide discomfort as it
will be attached to either your wrist or arm [9]. Despite this, it is regarded as
a non-invasive method.

Polysomnography

Polysomnography is the most accurate and insightful tool for monitoring sleep.
It will collect EEG, EOG, EMG, nasal airflow, and pulse oximetry, which is
recorded through the sensors [9]. Although classified as a non-invasive technique,
the subject is required to stay overnight in a specialised, controlled environment
[9]. Furthermore, the subject will be required to wear a multitude of sensors,
which not only raise costs but also cause discomfort during sleep. As sensor
data must be processed to provide a detailed sleep analysis, it is an inefficient
method.

2.3 Sleep Modelling with Markov chains

Initially, a Markov Chain model was proposed by Zung et al. [10] for represent-
ing sleep patterns in 1965. However, as a standard Markov model assumes a
geometric distribution [11] and sleep stages do not progress in an orderly fash-
ion (emphasising more on specific stages and less on others), it proved to be
inadequate.

In 1973, Mark Yang et al. [11] advanced this idea through a semi-Markov
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Method Advantages Disadvantages Invasiveness
Ballistocardiography Can be inte-

grated into beds
or chairs; non-
invasive

Requires multiple
sensors; expensive;
must be adjusted for
individual factors

Non-invasive

Actigraphy Tracks sleep/wake
cycles; insights
into circadian
rhythm; portable

Cannot accurately
detect sleep stages;
relies on motion
only; can cause
discomfort

Non-invasive

Polysomnography
(PSG)

Most accurate; de-
tailed insight into
sleep structure

Expensive; uncom-
fortable due to many
sensors; must stay
overnight in lab; in-
efficient data pro-
cessing

Non-invasive

Table 2.2: Summary of Comparison of Sleep Tracking Techniques

model to describe sleep patterns. The benefit of using a semi-Markov model
is that, unlike standard Markov models, it is not memoryless; the probabilities
are weighted based on the length of the period for which the model has been at
a certain state (e.g. average time spent in REM stage in the sleep process) to
represent complex processes.

Advancements and refinements were made on the Semi-Markov model to im-
prove efficiency and curve fitting. Wang et al. [12] tested out different fitting
functions: Exponential Density, Power Law Density and Weibull Density func-
tions to improve their representation of sleep patterns. This was tested by
calculating the sleep stage distributions of the 244 hypnograms which they had
access to and smoothing through Kernel Density estimation [12]. This involves
removing local estimations and thus noise, to smooth the irregularity of the
plotted hypnogram by averaging nearby sleep stage transitions over time.

Given a set of observed data points x1, x2, . . .,xn, the KDE at point x is given
by:

f̂h(x) =
1

nh

∑
i = 1nK

(
x− xi

h

)
• K: kernel function

• h: bandwidth (smoothing parameter)

• xi: observed data points (e.g., times at which stage transitions occur)

It will assign weights to points in the near vicinity based on the bandwidth
and K value to represent a smoother curve during plotting, effectively blurring
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the transitions across time.
This is extremely useful for analysing and extrapolating data.

Figure 2.4: Hypnogram of a sleep cycle in a healthy young adult. Normal
sleep involves cycling through stages of light sleep, deep sleep, and REM sleep
approximately every 90 minutes.

2.4 Sleep deprivation through Artificial Intelli-
gence and Machine Learning

While there are an extremely large number of drowsiness detection and fatigue
detection research papers, most are inadequate for use. Firstly, these datasets
only differentiate whether one feels drowsy or rested, which doesn’t provide
much insight. Additionally, the non-invasive datasets rely on inconsistent cues
such as yawns or blinking frequency or eye closure, which are unreliable indica-
tors of the level of sleep deprivation.

Furthermore, a study conducted by Benjamin et al. [13] in 2019 aimed to assess
the effects of sleep deprivation on facial and skin features on 181 subjects, such
as skin colour, eye openness, mouth curvature and periorbital darkness through
objective measures.

The findings of this article showed that facial indicators alone are unable to
classify sleep conditions accurately. Therefore, additional input will be required
to scale the accuracy of the model.

It is important to mention that Lyu et al. [14] reached an accuracy of 90.05 %
with the Long-term Multi-granularity Deep Framework approach on the NTHU
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Driver Drowsiness detection dataset. However, this data set cannot be consid-
ered fully, as participants in this study actively tried to mimic sleep-deprived
effects rather than actual sleep deprivation.

2.5 Conclusion

The effects of sleep debt are harmful and pose a threat to themselves and their
surroundings due to the severe reaction time and health complications. High-
lighting the need to spread awareness, there is an expansive array of methods to
test sleep quality, which indirectly detect sleep (e.g. through motion) or cause
discomfort. Solutions which have tried to solve this have reached impressive
accuracy rates of up to 90.55%. Although this may be due to ethical concerns,
many physiological and facial features of true sleep deprivation cannot be con-
sciously mimicked: circles under eyes, dull skin tone, hanging eyelids, etc. This
suggests that the model has been trained on features which do not correlate
with sleep deprivation but are rather similar to the other participants in the
study.

Miguel et al. tested a convolutional neural network in real-life scenarios and
reached an accuracy of 72.23%, which can be optimised through the growing
field of AutoML. The DROZY dataset used, which contains pictures primarily.

There was a gradual advancement from standard Markov models being inad-
equate to represent sleep patterns to semi-Markov models. After Wang et al.
[12] tested and found the Weibull fitting function to perform best.

Markov chains have only been used to simulate sleep patterns, but not in adap-
tive recovery planning. Furthermore, Current literature lacks personalisation in
Markov models. Often, a transition matrix is constructed from multiple hypno-
grams; however, this cannot accurately simulate recovery sleep and provide
valuable insights to the users.
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Chapter 3

Methodology

3.1 Proposed Approach

3.1.1 Sleep Deprivation Scoring model

Convolutional Neural Networks Overview

An image is provided as input to a convolutional neural network as a third-order
tensor in the form

x ∈ RH×W×D

D represents the number of channels of matrices with the size H ×W , which in
this case is 3 - Red, Green, and Blue. Furthermore, the matrix H ×W contains
red, green, or blue values [15].

A convolutional layer is made up of many convolutional kernels or filters.
These filters are applied to the images that move across the image based on the
stride. However, if s > 1, the convolution is executed horizontally and vertically
on all s pixels [15].

Figure 3.1: This figure shows how a kernel is applied to an image. [16].
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Additionally, in mathematics, the convolution process is expressed by the
following notation:

yil+1,jl+1,d =

H∑
i=0

W∑
j=0

Dl∑
dl=0

fi,j,dl,d × xl
il+1+i, jl+1+j, dl

The left side: yil+1,jl+1,d represents a single scalar value at the spatial loca-
tion (il+1, jl+1) in the d-th channel.

The right side: Looping over the height from row 0 to row H − 1, the width of
the filter from column 0 to column W − 1 through each of the RGB channels,
multiplying the receptive field xl

il+1+i, jl+1+j, dl which is a slice of the input

volume matching the filter size. il+1 and jl+1 correspond to the position of the
filter in the input volume. i and j are added to each of them respectively to
denote the position of the particular pixel in the channel dl for a dot product
multiplication with the filter fi,j,dl,d (which represents the filter weight at row
i, column j, input channel d) which will be added to the output feature map d.

These kernels help highlight certain image features, making it more easily recog-
nisable (e.g. edge detection) and speeding up the learning process.

Activation functions are essential to the deep learning field for tasks such as
Image recognition or Speech, etc. Activation functions prevent linearity as the
linear functions are passed through a non-linear function. These non-linear
functions can be much more easily modelled on complex data points which do
not follow a straight line.

Here is an example:
• Layer 1: z1 = W 1x+ b1

• Layer 2: z2 = W 2z1 + b2

z2 = W 2(W 1x+ b1) + b2 = (W 2W 1)x+ (W 2b1 + b2)
z2 = W ′x+ b′ (Still a linear function)

ReLU stands for rectified linear unit.

y = ReLU(z) = max(z, 0)

The reason why the ReLU activation function is so widely used is that it pre-
vents the vanishing gradient problem. With tanh and sigmoid functions, for
very large or small values, they are at either end of the range 0 to 1 for sigmoid
and −1 to 1 for tanh. Thus, the output stops changing for very large and small
values, making it ”saturated” [17]. This creates a problem with learning and
adjusting weights during backpropagation, as the derivative (providing the slope
at that point) is 0.
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ReLU avoids this vanishing gradient problem. As a ReLU function has a gra-
dient of 1 when the output is > 0, the gradient does not vanish as it is not
multiplied by a small number < 1.

−10 −5 5 10

2

4

6

8

10

z

ReLU(z)

ReLU(z) = max(0, z)

For a reference:

Layer Type Function / Description
Input Layer Raw pixel values of the image as a tensor (Height*Width*Channels) ∈

RH×W×D

Convolutional Layer Applies kernel filters to ease the extraction of local features from the input
image. Sliding at the determined stride; Eventually outputs a feature map.

Activation Layer Prevent linearity to support the modelling of complex data which does not
follow a linear pattern

Pooling Layer reduces the spatial dimensions of the feature maps, which decreases computa-
tional power, increases speed and helps prevent overfitting on the data.

Batch Normalisation normalises the output of a previous layer to stabilise and speed up training as
it prevents any of the inputs from weighting the final output more than usual

Dropout Layer randomly drops a precise percentage of the neurons during training to reduce
overfitting.

Dense Layer Each neuron is connected to every neuron in the previous layer, which allows
a combination of local features to produce high-level global features detected
by the model

Output Layer Produces final prediction probabilities. Softmax for multi-class, Sigmoid for
binary classification.

Table 3.1: Summary of CNN Architecture Layers

Why CNNs Outperform Traditional Neural Networks in Image Pro-
cessing

• The convolutional layers extract spatial features [18] by capturing local
patterns in the input, allowing the model to recognise textures, edges,
and shapes.
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• The pooling layers introduce translation invariance [18], allowing the net-
work to recognise objects regardless of their position or orientation. In
contrast, traditional neural networks lack this adaptability due to their
reliance on fixed input structures.

• CNNs offer spatial invariance, enabling robust object recognition even
when images contain slight variations. Standard neural networks, on the
other hand, require inputs to closely match training data, limiting gener-
alisation. [18]

• Transfer learning - leveraging a model trained on large-scale datasets -
greatly enhances the performance of CNNs by reducing the need for ex-
tensive task-specific data and training time.

Implementation in project

This will significantly improve the accuracy of the sleep deprivation scoring
model to recognise certain facial features in comparison to traditional neural
networks. CNN will recognise certain indicators of sleep deprivation on the
face: hanging eyelids, redder eyes, darker circles under the eyes [2] and combine
these results to form a sleep deprivation score.

Let D = {(Ii, yi)}Ni=1 be a training set of N labeled facial images Ii ∈ RH×W×C ,
where each RGB color image is associated with a sleep deprivation label yi ∈
{0, 1, 2} representing low, moderate, and high levels of sleep deprivation respec-
tively.

The objective is to train a convolutional neural network fθ : RH×W×C →
{0, 1, 2}, parameterized by θ, that maps an input image I to a predicted la-
bel ŷ = fθ(I).

This prediction ŷ acts as an estimated sleep deprivation score.

Data Preprocessing

The dataset used is the UTA Real-Life Drowsiness Dataset from the University
of Texas at Arlington, which consists of 30 hours of RGB videos of 60 healthy
participants. Each of the participants recorded a video for 3 different levels of
sleep deprivation: Alert, Low vigilance and Drowsiness. All participants were
adults and a vast variety of ethnicities from Caucasian to Hispanic (Non-white)
to Indo-Aryan, Dravidian, Middle-Eastern and even East Asian. Furthermore,
in this dataset, women represent 15% of all data (assuming equal video lengths).
Moreover, this dataset also takes glasses, facial hair and different age categories
from (20-59 years old) into consideration. Lastly, it was recorded in real-life
environments and backgrounds, which makes it very realistic and useful for the
model to identify sleep deprivation levels in the users, who will most likely not
take a photo in a controlled environment. [19]
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This data set is divided into 2 subsets: development groups: training, vali-
dation, and testing. This ensures that the testing process tests the model’s
learning capability rather than relying on memorised data and performs hy-
perparameter tuning as well. It was cleaned to remove any empty, unlabeled
pictures, and a Label encoder was used for the x levels of sleep deprivation:x,t,y,
all spatially scaled to fixed dimensions of 224x224.

As these were videos, every 20 frames, an image was extracted and labelled
(based on the video title) before it was added to the dataset.

Data augmentation was applied only to the training images, using the Image-
DataGenerator class from the Keras library. This data augmentation was ap-
plied only to the training images to improve the model’s performance further
when dealing with unseen images [20]. This augmentation involves rotations,
varying levels of brightness, and a white noise filter [21].

Figure 3.2: Canny Edge Detection applied on a facial image.

Using Neural Architecture Search to optimise CNN performance

The architecture of the connected layers within a Convolutional Neural Net-
work. If purely modified manually, determining the optimal structure for a
convolutional neural network is extremely time-consuming and difficult. Neural
Architecture search, a subfield of the growing AutoML field, generates high-
performance models that are also memory-efficient to run on low-power devices
through the use of reinforcement learning algorithms.
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Figure 3.3: Represents the breakdown of how Neural Architecture search is
conducted [22].

The search space contains all possible architectures that can be represented
in a principle that can be expanded to extremely large sizes. Although these
search spaces can ”incorporate domain knowledge” [22] to simplify the search
by setting some boundaries for what to search for, too many restrictions can
prevent a NAS method from finding the highest-performance models.

Additionally, Reinforcement learning, part of the black box optimisation-based
techniques, is used as the search strategy to find the highest-performing CNN
architecture models.

Moreover, the performance estimation strategy is the method which is used to
quickly predict how the model would perform on the dataset. It would be too
computationally expensive and inefficient for the computer to train the model
on the dataset and analyse its accuracy on the test data.

The concept behind NASNet, introduced by Zoph et al. [23], is that the major-
ity of handmade model architectures are designed with repetitive microarchi-
tectural blocks, which are reused multiple times throughout the network. This
method reduces complexity and improves performance by reducing the search
space much more effectively.

The policy gradient is a method used to optimise the policy in a reinforce-
ment learning algorithm. The function of a policy π(s) determines the optimal
action to be taken in a certain state to maximise the total rewards [24]. How-
ever, the research paper requires 100s of hours of GPU computational power.

After careful evaluation, AutoKeras, which acts as a superior alternative, is
a library which runs on significantly less computational power through the use
of methods such as hyperparameter tuning and designing a neural network ar-
chitecture through random search. This method entails defining a search space
(ranges and limits of possible parameter values) and randomly picking combi-
nations to try. Although an unorthodox method, it has proven to perform very
efficiently.
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Figure 3.4: Figure displaying the flowchart of an AutoKeras class [25].

This is mainly because there is a small number of parameters which greatly
affect performance. Grid search involves testing combinations with all parame-
ters; it is a much more exhaustive effort, which does not yield as great results.
Additionally, using a random combination almost ensures that the entire search
space is covered, which cannot be guaranteed through grid search.

3.1.2 Recovery of sleep through a Semi-Markov chain

A Markov chain is a stochastic process that satisfies the Markov property: the
future state of the process only depends on the current state and not upon past
states. [26]

Xt+1 depends only on Xt

Key terms

• The state of a Markov chain at time t is the value of Xt,

• The state space of a Markov chain, S, is the range of values Xt can be
assigned to. The number of elements in the set S is in ∈ N ∪ {∞}

• The transition matrix is a matrix of the probability of moving from one
state to another in a single step.

• A trajectory in a Markov chain is the path that the Markov chain takes.
Eg: The trajectory up to time t = 2 is 1,2,3 with X0 = 1, X1 = 2 and
X2 = 3 as two steps occurred.

The Markov property can be written in mathematical notation as follows:

P (Xt+1 = s | Xt = st, Xt−1 = st−1, . . . , X0 = s0) = P (Xt+1 = s | Xt = st)

This equation in literal form equates:
(1) The probability of the variable X at time t+ 1 from state st to s given the
entire history of the trajectory from time 0 to t
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(2) The probability of the variable X at time t+1 from state st to s given only
the state at time t.

It can be inferred that the current state only depends on the previous state
and not the entire trajectory. Only the value of the previous step xt with the
value st is considered, as the only difference in the two equations is the state
values of the variables X0 to Xt−1, and since their inclusion does not affect the
outcome, they are effectively irrelevant to the transition.

3.1.3 Transition Matrix

A transition matrix is an array containing the probabilities of moving from 1
state to another. The rows correspond to the current state i, and each column
corresponds to the next state j

Figure 3.5: This showcases the transition matrix produced from the Markov
chain diagram [27].

The sum of the probabilities in each row of a transition matrix must be
equal to 1 [26]. This is because, assuming P (i, j) and the current state is i, a
transition must occur, whether it is from i to i or i to j in the next step.

The formula can simply represent the transition probability:

pij = P(Xt+1 = j | Xt = i), for i, j ∈ S, t = 0, 1, 2, . . .

This formula is the probability of going from state i to state j in one step
[26]. The transition matrix is filled with these data points.

In addition to the transition probabilities, a Markov chain also requires an
initial state distribution, which tells us the probability of starting in each state
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at time t = 0.
This distribution is usually denoted by a vector π(0), where: π

(0)
i = P(X0 = i)

For each state i ∈ S, the sum of all entries in this distribution must equal 1:∑
i∈S π

(0)
i = 1.

To end, using matrix multiplication in this formula π(t+1) = π(t)P will showcase
the full behaviour of the chain over time. [26]

Semi-Markov Decision Processes

By analysing hypnograms affected by a variety of factors, Markov models can
be constructed according to the distribution of the sleep stages from a hypno-
gram plot. Since this is a semi-Markov model, which does not follow geometric
distributions with fixed periods for each epoch, the amount of time spent in
each state before transitioning to another is referred to as the sojourn time.

Implementation in project

In this project, Markov models are used to simulate transitions between differ-
ent sleep stages during recovery after sleep deprivation. Adapting the transition
matrix to a user’s sleep debt and personal information, the system creates a per-
sonalised sleep pattern. By running these simulations, the model can predict the
optimal recovery sleep schedule for an individual. This probabilistic approach
allows the system to generate adaptive and data-driven recommendations for
regaining lost sleep.

Semi-Markov model for Sleep Recovery

The literature review provided valuable information about the feasibility of this
sleep modelling between a semi-Markov chain and a Markov chain. For con-
structing the transition matrix used to model sleep, the base transition matrix
was mapped to the ”Alert” state, which will be used from the work of Wang et
al. [12], who built a Semi-Markov model through analysis of 244 hypnograms
(122 male, 122 female) ranging from 20 to 85 years of age.

Table 3.2: Alert-state Sleep Stage Transition Matrix
From \ To Wake NREM REM
Wake 0 0.9632 0.0368
NREM 0.8093 0.0000 0.1907
REM 0.6655 0.3345 0

Additionally, a transition matrix is needed for mapping to the ”Drowsiness”
state. Through the support of Väinö Jääskinen et al. [28] using a dataset first
mentioned by Sallinen et al. [7], a transition matrix was produced solely on
hypnograms of recovery sleep of drowsy individuals.
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For this transition matrix, assuming there were n state transitions between state
p and state s of an epoch interval [1, x], the transition probability = n/x, which
is equivalent to its relative frequency.

As the previous transition matrix had condensed the stages S1, S2 and SWS,
and we could not revert the previous Transition matrix from NREM to S1, S2,
and SWS, the transition matrix needed to be collapsed from a 5-state to a 3-
state matrix.

Table 3.3: Drowsy-state Sleep Stage Transition Matrix
From \ To Wake NREM REM
Wake 0.4645 0.4905 0.0450
NREM 0.0172 0.9703 0.0124
REM 0.0170 0.0440 0.9390

Addressing the transition matrix for the ”Low vigilance” state, it is calculated
using convex mixing. An input x represents the sleep deprivation score as a
decimal, which will be entered. This sleep deprivation score is obtained through
the output of the sleep-deprivation level image classification software.

P (x) = (1− x)(Pa) + x(Pd)

Where P (x) represents the transition probability for ”Low vigilance”, Pa rep-
resents the transition probability for ”Alert”, and Pd represents the transition
probability for ”Drowsiness”.

The user will self-report a variety of personal details. This can be used for
the personalisation of the transition matrices.
Furthermore, justified by research papers, a variety of factors apart from sleep
debt affect sleep quality and the transition states. Bump factors will be assigned
to each state change, and then the data will be normalised for the probabilities
in a single row of a Markov model to add up to 1. These bump factors are all
relative to a ”normal” night of sleep.

Firstly, with age, as an individual’s age approaches 60, they have a reduced
probability of falling asleep quickly (Wake to NREM x0.9), increased probabil-
ity of remaining awake throughout the night (Wake to Wake x1.1), increased
likelihood of NREM to Wake (x1.2) and REM to Wake (x1.1) [?] as a result of
individuals above the age of 60 as more receptive to interruptions. [?].

In addition, stress has proven to be a major deterrent to sleep health, lead-
ing to frequent awakenings from NREM to Wake (x1.2), delayed sleep onset
(x0.9) and shorter REM cycles, which increases REM to NREM (x1.1) or REM
to Wake (x1.2) [29].
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Moreover, the circadian rhythm alignment is a key factor in sleep quality. Thus,
sleeping at adverse circadian phases leads to harder initiations of sleep at these
phases [30] (lowering Wake to NREM x0.9) and increasing REM to Wake state
transitions (x1.1) [30].

Equally important is the individual’s gender. Studies have shown women tend
to fall asleep quicker [31] (Wake to NREM x1.05) and have fewer awakenings as
well (NREM to Wake x0.9). As women tend to cycle into REM earlier, it tends
to be more often as well (NREM to REM x1.1) [31].

Lastly, any form of medication perturbs sleep transitions. Sedatives lead to
fewer awakenings (NREM to Wake x0.8) and likewise, make it easier for sleep
onset (Wake to NREM x1.1). SSRI Antidepressant-treated sleepers have fewer
REM episodes (NREM to REM x0.7) [32].
As mentioned previously in the Literature review, Weibull fitting functions will
be utilised in this semi-Markov chain for realistic bouts of sleep.

Once the percentages of time spent in each sleep stage are determined, these
values are compared to a standard “healthy” distribution, which is generally
considered to reflect an optimally recovered night. The percentages of time will
be multiplied by the epochs or conversely by the total time to understand how
much time was spent in each sleep stage.

The participant’s observed time per stage is then subtracted from these base-
line values to quantify the residual sleep debt in each stage. These differences
(wholly representing the sleep debt) are standardised, ensuring that deviations
in NREM, REM, or Wake are weighted appropriately by their relative contri-
bution to physiological recovery.

This process is repeated across consecutive nights, allowing stage-specific deficits
to be accumulated over time and used to update a sleep recovery score. This
score decreases as the individual approaches full recovery. Notably, sleep debt
often plateaus after several nights of recovery, indicating that certain deficits
cannot be immediately compensated and that the recovery process is inherently
non-linear, as referenced in section 2.1.2 on the plateauing of recovery sleep.

By converting stage-wise sleep periods into a quantitative recovery metric, this
approach enables the model to simulate realistic recovery trajectories. Conse-
quently, it provides a basis for generating personalised recommendations based
on individual recovery progress and allows the user to be classified as fully re-
covered from sleep debt.

The Google Calendar API can be used for scheduling these bouts to recover from
the sleep debt through naps or longer sleep durations based on the scheduling
of the calendar and its precision.
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Chapter 4

Experiment

4.1 Sleep Deprivation Model

In this experiment, we will test the accuracy of multiple models on the cus-
tomised UTA-RLDD dataset, which was used and maximise the accuracy to
reach the heights of the state-of-the-art models currently used.

4.1.1 Hypothesis

I believe that I can train and create a light-weight model which reaches a similar
performance level to the currently best running models.

4.1.2 Training Environment

The experiments were conducted using Google Colaboratory’s cloud-based en-
vironment, accessed from a local machine running macOS Sequoia 15.1 with
16 GB of RAM storage, accelerated by an NVIDIA T4 GPU. This model was
implemented with TensorFlow, Keras, Numpy, Sci-kit learn, and Matplotlib
frameworks.
The network was trained using the Adam Optimiser over 100 epochs with a
batch size of 32. This prevents the risk of generalisation and facilitates the pro-
cess of escaping local minima. An added The dataset is split into a 50/30/20
split (Train, Test and Validation). The key differentiator between Validation
data and Test data is that Validation is used during the training of the model
for hyperparameter tuning, while Test data is applied to the model after it is
frozen.
ReLU activation functions were introduced after each layer in the neural net-
work, with a softmax function at the end, since all the outputs are positive and
the total sum is 1.

Furthermore, the loss function used is the Categorical Cross-entropy. This is
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often used for multiple mutually exclusive states and outputs a probability dis-
tribution. [33]

Li = −
K∑

k=1

yi,k log (ŷi,k)

This formula displays the workings of the categorical cross-entropy function for:

• Li: Loss for the i-th sample

• K: total number of states

• yi,k: Truth value

• ŷi,k: Predicted probability for class k from the model for sample i

If the model predicts 100% accuracy for a class (which is a probability of 1), and
as yi,k will only produce a value of 1 if the correct class is chosen (thus rendering
the rest as 0), for a sample i, the loss can just be represented as − log (ŷi,k).
Thus, this would just return − log (1) = 0 to show 0 loss. Additionally, as the
model predicts a small probability for the correct class, the loss value becomes
a larger positive value because of the negative sign. This allows for model
improvement with validation data during training.

4.1.3 Model Architectures

As established in the Literature Review, it is difficult to capture sleep depriva-
tion from photographs alone. This was largely due to the methods followed and
the quality of the datasets, where often the reactions were mimicked but did
not focus on true sleep deprivation.

After collecting 10,000+ images with extensive diversity in terms of race, eth-
nicity, accessories and facial hair, different models were tested to optimise the
accuracy which can be achieved. This included: A MobileNetV2 model and a
variety of models tested using the AutoKeras library.

Figure 4.1: MobileNet V2 Architecture

The maxtrials parameter in the AutoKeras library was set to 3 as a result
of the computational power required to run. Furthermore, the random seed was
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set to 42, which allows for consistency throughout the processing, as for all other
parameters, such as random search for hyperparameters in tuners or weight ini-
tialisation. This is crucial as it allows for reproducibility and observation of the
factors affecting the model without any biases.

Furthermore, several steps were added after the initial tries due to excessive
overfitting, which occurred. For this dataset, the images are grouped based on
the individuals to prevent data leakage, as the model may learn to recognise the
faces itself rather than the sleep deprivation levels using the GroupShuffleSplit()
function along with others. Early Stopping was also introduced, which prevents
further training of the model after determining whether overfitting is occurring.

4.2 Semi-Markov model for recovery sleep

In this experiment, we will test the similarity of a sleep simulation from the Semi-
Markov model and a Hypnogram produced from the analysis of a Polysomno-
graph by a medical professional.

4.2.1 Hypothesis

I believe that I can produce an accurate personalised semi-Markov chain to
reflect sleep patterns with individuals.

4.2.2 Dataset

The Polysomnographs and Hypnograms are available at the Sleep-EDF Database.
This data set represents the ground truth against which the semi-Markov model
will be compared. These were obtained in a 1987-1991 study of the effects of
age on sleep in healthy Caucasian adults 25 to 101 years, exempt from any sleep
medication [34].

Polysomnographs of about 20 hours each were recorded during two subsequent
day-night periods at the subjects’ homes. We will be using the 2nd day, as
users’ sleep may have been affected by the cassette tape attached to them on
the 1st night more than on the 2nd night.

Data Preprocessing

Furthermore, the hypnogram records the stages in the R&K format: W, 1, 2,
3, 4, R, M, ? while our transition matrix uses Wake, NREM, REM. Thus, for
comparison, a sleep staging map was constructed for converting the hypnogram
into a sleep sequence. The extraction of data from the .edf file was done through
the MNE-Python library, a library specialised for EEG signal analysis and vi-
sualisation and saved to a .csv file.

It was necessary to identify the sections where sleep began and remove the
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wake stages before that so that the sleep could begin at the correct position
and index it to 960 epochs (as each epoch is 30 seconds, 960 epochs is 8 hours).
To accomplish this, the EDFBrowser must be used to upload hypnograms and
polysomnograms for analysis.

The factors which we can utilise for personalisation are:

• Age

• Gender

• Sleep medication (No effect as none was taken)

4.2.3 Semi-Markov chain simulation

The transition matrix was constructed through analysis by Wang et al. [12], as
there is no mention of sleep deprivation within the subjects. Furthermore, since
this occurs within their home, sleep deprivation caused by discomfort is less
likely. The bump factors were previously defined in section 3.1.2; however, only
the age and the gender factors can be utilised. Using the applybumpsandnormal-
ize() function, which we defined, each row will add up to 1. For Weibull fitting,
which closely approximates the shape of sleep duration distributions, the Sci-Py
library was used along with the parameters which were passed into the function.

To optimise these parameters over a variety of individuals, the Weibull function
was fitted to each of them. However, they were adapted to individuals with
those specific conditions. It was used for fine-tuning, however. Additionally,
floor probabilities were implemented to prevent stages from occurring altogether.

Lastly, to determine if the results are ”good”, we will be comparing through
Absolute Percentage error as our metric.
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Chapter 5

Results

5.1 Sleep Deprivation

5.1.1 MobileNetV2 Performance

The MobileNetV2-based CNN was trained for 10 epochs using the preprocessed
dataset. Training began with an accuracy of 40.49% and validation accuracy
of 56.92% in the first epoch. Throughout the training, both of the metrics
improved steadily, with the final epoch achieving 74.73% training accuracy
and 85.16% validation accuracy.

The loss also showed a consistent downward trend, decreasing from 1.0727
(training) and 1.0405 (validation) in epoch 1 to 0.6733 and 0.6297, respec-
tively, by epoch 25. This indicates that the model was learning effectively
without severe overfitting, as the validation loss had very similar values to the
training loss, while following the same pattern through each epoch as well.

When evaluated on the test model, it still performed extremely well, with an
accuracy of 0.791%, which is key and shows that the MobileNetV2 generalised
very well on the data provided.
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5.1.2 AutoKeras Performance

We implemented the AutoKeras library to experiment with a variety of different
models. Initially, the trials would reach 98-99% accuracy within the 1st epoch,
showing clear signs of overfitting, often caused by a large number of parame-
ters increasing the width of each layer. To prevent this, the GroupShuffleSplit
function was utilised to prevent data leakage. Moreover, the EarlyStopping-
Function() restores the optimal weights after quitting training, which we defined
through automatic monitoring of validation data loss values. Lastly, an L2 reg-
ularizer and Dropout were added to the model layers; however, this would only
come into effect after the model was trained.

5.2 Sleep Modelling through Markov chains

5.2.1 Subject 33

Subject 33 was male gender and 60 years old. This subject was chosen as it acts
as a subject that best reflects the study population, as the median participant
age is 57, the average age is 59, and this study consists mainly of the male
gender.
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Table 5.1: Comparison of simulated hypnogram to EDF hypnogram. Percentage
error is calculated as (Simulated− EDF)/EDF× 100.

Sleep Stage EDF (%) Simulated (%) Percentage Error (%)
Wake 21.98 15.83 27.9
NREM 67.29 76.98 -14.4
REM 10.73 7.19 33.0

5.2.2 Subject 9

Subject 9 was female gender and 25 years old. This subject was chosen due to
their young age to provide diversity to the study to capture the reliability of
the results.

Table 5.2: Comparison of simulated hypnogram to EDF hypnogram. Percentage
error is calculated as (Simulated− EDF)/EDF× 100.

Sleep Stage EDF (%) Simulated (%) Percentage Error (%)
Wake (W) 3.23 3.65 13.0
NREM (N) 69.17 80.94 17.0
REM (R) 27.60 15.42 -44.1

5.2.3 Subject 4

Subject 4 was female gender and 34 years old. This subject was chosen due to
their gender to differentiate between the accuracy of simulations between males
and females and further increase the diversity and reliability of the results.

Table 5.3: Comparison of simulated hypnogram to EDF hypnogram. Percentage
error is calculated as (Simulated− EDF)/EDF× 100.

Sleep Stage EDF (%) Simulated (%) Percentage Error (%)
Wake (W) 6.67 3.96 -40.7
NREM (N) 70.83 75.52 6.6
REM (R) 22.50 20.52 -8.8

5.2.4 Subject 66

Subject 6 was female gender and 101 years old. This subject represents an
anomaly in age and was used to test the upper bounds of the dataset for verifi-
cation of the semi-Markov simulations in extreme cases.
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Table 5.4: Comparison of simulated hypnogram to EDF hypnogram. Percentage
error is calculated as (Simulated− EDF)/EDF× 100.

Sleep Stage EDF (%) Simulated (%) Percentage Error (%)
Wake (W) 11.04 13.85 25.44
NREM (N) 66.67 54.27 -18.64
REM (R) 22.29 31.88 43.05
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Chapter 6

Discussion

6.1 Sleep Deprivation model results

For detecting sleep deprivation, due to problems caused by the AutoKeras model
despite the precautions listed in 5.1.2, the AutoKeras had very noisy loss shifts
and a large disparity between the validation and training accuracy, as shown in
the Figure below.

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

Epoch

L
os
s

Training Loss Validation Loss

Figure 6.1: Training and validation loss over epochs for a trial using AutoKeras

Thus, as MobileNetV2 has impressive scores of 85%+ validation accuracy
and approximately 80% test accuracy, similar to Lyu et al. [14] who reached
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90% accuracy while using a dataset which mimicked sleep-deprived individuals
driving. As mentioned in section 2.4, this may not have been detecting the
correct features, as some of the features cannot be mimicked and would thus
not show up in the dataset, which represents a stark contrast to the dataset we
had constructed.
Additionally, the hypothesis was achieved and the goal was met, which labels
this as a success, and as an advantage, using MobileNetV2 makes it much more
feasible to run on phones, which would be required of this application.

6.2 Sleep Modelling through Markov chains re-
sults

Taking the average percentage errors across all the subjects of vast diversity
with the given factors, is: 24.3%. This is a phenomenal performance by the per-
sonalised semi-Markov chains, considering that the top-band performers such as
the Oura Ring, Fitbit Sense, Apple Watch, etc. have 71-76% accuracy [35, 36]in
classifying sleep stages. This means that our probabilistic model, requiring no
use of any wearables or sensors, has reached a similar accuracy to the Oura Ring,
the current top contender of all commercial products. While this is a compara-
tively smaller dataset, it has quite a bit of diversity and small differences, such
as in the REM stage, have caused high levels of inaccuracy (of 32.2%, which
is very similar to the performance of the Fitbit Sense) whilst still outputting
similar values.

Our hypothesis has been achieved, and this is exemplified due to the cost and
discomfort that the user does not face. It is extremely important to note that
this study was able to consider solely 2 factors: Age and Gender, which pre-
vented further personalisation to the user for higher accuracy levels.

6.3 Limitations

One of the primary limitations of this study is the vast expanse of factors which
influence sleep deprivation and recovery. However, due to the lack of equipment,
only certain select factors can be considered and emphasised in Markov chains.
Furthermore, gaps in existing sleep science literature may have ruled out possi-
ble factors contributing to recovery sleep, which could be limiting the potential
of the decision processes.

Additionally, this study was limited by the absence of comparative performance
analysis. Without a benchmark comparison to the ’gold-standard’ methods of
polysomnography, it is difficult to quantify the accuracy of recovery sleep. Fu-
ture work on this topic would need to include a comparison with other methods.

The number of subjects for the experiment was also limited due to the time-
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intensive nature of personalised simulation and validation. Future work will
require taking a larger number of subjects for proper verification.

Moreover, the dataset used is based on the Stanford Sleepiness Scale, which
is self-reported by the user. In some cases, this has also led to the sleepiness
case reducing over long periods of sleep deprivation [37].

6.4 Future Work

Recovery is core for athletes, and sleep optimisation can boost performance.
However, most athletes do not have the resources to use high-end technology for
recovery, as it is prioritised towards training. Only 14.9% of athletes who com-
peted in the Olympic Games received direct funding from the IOC scholarship
program, who are elite-level athletes. This application could prove extremely
useful to an athlete as it is free and causes no discomfort.

Furthermore, truck drivers are often sleep-deprived, with the mean daily sleep
duration being 5.6 + / − 1.3 hours [38]. Such prolonged sleep restriction com-
pounded with intensive 10-hour workdays further exemplifies sleep deprivation
levels [38]. This can lead to fatal accidents as a result of sleep deprivation, which
has been proven to affect human reaction times critically. Thus, this sleep re-
covery application can act as a benchmark for truck drivers to determine if they
are ready for long-hour drives.

Similar to the truck drivers, many healthcare clinics and hospitals could drasti-
cally benefit from this. A recent Medical Defence Union survey [39] of doctors
found that nearly 90% of respondents felt sleep-deprived at work. Of those, 41%
experienced sleep deprivation at least weekly, and 35% said their tiredness had
impacted their ability to treat patients safely [39]. This shows a critical flaw
which could worsen and potentially prove fatal to the patients of these doctors.
Thus, this sleep recovery application can also act as a benchmark for doctors to
determine whether they can successfully perform to the necessary standards.

Lastly, in general, all workers and students can perform more efficiently if this
issue is tackled through our application. This can also spread awareness to
Governments, schools and companies to issue new policies to prevent further
harm to more than 2/3rds of the entire global population [40] according to the
International Labour Organisation from 2024.
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Chapter 7

Conclusion

This research study aimed to develop a personalised sleep recovery model using
CNN-based sleep deprivation scoring and semi-Markov chain simulations for op-
timisation of recovery sleep patterns. Unlike existing sleep trackers, which are
often costly and invasive, this novel approach provides an accurate, no-cost, and
fully non-contact solution through a simple application. Through integration of
deep learning combined with adaptive probabilistic modelling, it offers practical
applicability in the real world for populations where these expensive devices are
often inaccessible. The novelty lies in the sleep recovery system, which strate-
gically provides sleep recovery guidance available to a much wider community.
Lastly, this work is scalable and can be deployed widely without specialised
equipment and can produce further work and research into other solutions.

I have achieved my goal in creating a realistic prototype of an affordable, non-
invasive yet effective Sleep tracker, which has the potential to improve the lives
of billions cognitively, physically, emotionally and socially.
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