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Abstract

The recent launch of the James Webb Space Telescope (JWST) and the forthcoming Atmospheric Remote-
sensing Infrared Exoplanet Large-survey (ARIEL) mission have positioned exoplanets at the forefront of
astrophysical research. As the exploration of exoplanets advances, the challenge of efficient‘analysis of
their atmospheres has become increasingly critical. Traditional methods, primarily based on Bayesian

inference techniques, are often slow and resource-intensive, limiting their effectiveness.

In this context, this paper pioneers a novel, flexible, and modular framework.that.integrates deep learning
concepts into classical retrieval methodologies, not only enhancing computational efficiency by an
estimated minimum speed up of 360% compared to MultiNest but also increasing: the flexibility of these
retrievals significantly, allowing for a more streamlined retrieval process. In the following sections, we will
demonstrate and exploit the effectiveness of this modular pipeline, utilising denoising autoencoder (DAE)
[1] + generative adversarial network (GAN) [2] system for data processing along with the simulation based
inference model TSNPE [3] for parameter prediction, achieving a final reconstruction accuracy of 99.05%
and a parameter prediction accuracy of 89.2%. We will thoroughly explore the endeavours undertaken to
enhance the model, notably through the incorporation of novel truncated and score-based methods for
parameter inference which enhances sampling efficiency and optimisation. By addressing the limitations
of current methods, this framework seeks to streamlinethe atmospheric retrieval process, facilitating more

efficient analyses of exoplanet atmospheres and allowing for the rapid discovery of new insights.

Keywords: Exoplanet, Atmospheric Retrieval, Deep Learning, Modular Framework, Simulation-Based

Inference, Computational Astrophysics
1 Introduction

The exploration of exoplanets.has surged in recent years, driven by the discovery of over 5000 of these
distant worlds and.the tantalisingpossibility of uncovering atmospheres that may harbour life. The James
Webb Space Telescope (JWST) and the upcoming ARIEL mission are set to further inundate exoplanet
science with high-fidelity spectral data, transforming atmospheric characterization. This large sum of
data, however, exposes a critical computational bottleneck: today’s gold-standard retrieval frameworks,
such as MultiNest and other nested sampling variants [4], scale poorly with data complexity, often
demanding days of processing time for a single planetary spectrum. Consequently, our ability to analyse
these rich datasets, not the acquisition of them, is rapidly becoming the rate-limiting step in exoplanet

science.



Recent machine learning approaches have attempted to address this, but they present a stark trade-off.
Amortized inference models offer remarkable speed after an intensive training phase, but their rigid
nature falters when faced with new instrument noise profiles or incomplete data. Conversely, flexible
simulation-based inference (SBI) methods can adapt to varied data quality but reintroduce a significant
computational cost for each new target. The community is thus forced to choose betweenspeed and
adaptability.

This paper introduces a two-stage framework that breaks this dilemma by decoupling data conditioning
from Bayesian inference. We first employ a generative pipeline - integrating an autoencoder with a
Generative Adversarial Network (GAN) - to denoise, complete, and-standardize raw spectra into a clean
representation. This uniform output is then processed by a state-of-the-art SBl'model, such as a truncated
or score-based posterior estimator, to retrieve atmospheric parameters. Because the inference engine
always operates on the standardized latent space, it remains agnostic-to the noise and observational
idiosyncrasies of the original input, eliminating the need for per-target retraining.

Our primary contributions are:

e A flexible, decoupled framewaork that separates generative data conditioning from simulation-
based inference, resolving the prevailing speed-versus-adaptability conflict in machine learning-
based retrievals.

e A robust generative pre-processor that leverages autoencoders and GANS to effectively handle
noisy and incomplete spectral data, achieving a 99.05% reconstruction accuracy.

e The first pairing of this generative conditioner with advanced posterior estimation models, which
achieves an 89.2% parameter retrieval accuracy while demonstrating a significant computational
speed-up over-traditional methods.

e A comprehensive-evaluation of model architectures and data-tuning strategies to optimize the

pipeline for the challenges posed by next-generation spectral datasets.

The-remainder of this paper is organized as follows: Section 2 surveys the landscape of current retrieval

metheds. Section 3 provides a detailed architectural overview of our proposed solution. Section 4






2 Related works

The challenge of atmospheric retrieval has spurred the development of diverse computational strategies,
each navigating a fundamental trade-off between mathematical rigor, computational speed, and
observational flexibility. Early deep learning approaches showed promise but often had limitations; for
instance, GAN-based retrievals struggled with parameter estimation [22], while Randem:Forest methods
were often confined to low-dimensional problems [23-25], and early CNNs like ExoCNN could not produce

complex, multi-modal posteriors.

This has led the field to converge on Simulation-Based Inference (SBI) as the most promising path forward.
This section surveys the three dominant paradigms within this modern.context - classic sampling, amortized
inference, and sequential inference - to identify the architectural gap-that our work addresses.

2.1 Classic Bayesian Sampling: The Rigorous but Slow Gold Standard

Traditional atmospheric retrieval relies on robust Bayesian sampling techniques. Nested sampling
algorithms, as implemented in tools like MultiNest [4], and MCMC variants like Hamiltonian Monte Carlo
(HMC) [19] and the No-U-Turn Sampler (NUTS)[20];-are’ considered the gold standard for their
mathematical rigor. These methods are the most-reliable“as they explore the full posterior distribution,

providing parameter uncertainties and direct log-evidence values for Bayesian model comparison.

However, their strength is also their primary weakness. The computational cost scales super-linearly with
the number of model parameters; as each‘of the thousands of required likelihood evaluations demands a
full forward model simulation, This leads toprohibitive runtimes, often lasting up to days for a single JWST
spectrum, rendering them.impractical for the large-scale surveys that will define the next era of exoplanet

science.
2.2 Amortized Deep Inference: Fast but Inflexible

To break the computational-scaling barrier, amortized inference methods leverage deep learning to learn a
direct mapping from an.observation to its posterior distribution. After a significant, one-time, up-front

training cost, inference becomes nearly instantaneous.

The power of this approach has been demonstrated by multiple groups. The work of Vasist et al. [7] used

Neural- Posterior Estimation (NPE) to achieve a 4000x speedup over MultiNest, but this required a



staggering 17,000 CPU hours for training data generation. More recently, the FASTER framework [Lueber
et al., 2025] has emerged as the state-of-the-art in high-throughput retrieval. It uses Neural Ratio Estimation
(NRE) to achieve inference in milliseconds, is Bayesian-complete (providing both posteriors and.model

probabilities), and has been validated on real JWST data.

However, while providing unparalleled speed, these powerful amortized models are fundamentally brittle.
They are trained for a specific instrument and a pre-defined statistical noise model. Their performance
degrades significantly when applied to data with different characteristics—for example, spectra from a
different instrument like ARIEL, observations with higher-than-expected noise,.or data with unexpected
artifacts or missing wavelength coverage. For each new observational setup, the entire computationally
expensive training pipeline must be repeated.

2.3 Sequential Simulation-Based Inference: Flexible but Costly

Positioned between the previous two extremes, sequential (or non-amortized) SBI methods adapt the
inference process to a single, specific observation. The, core method of Sequential Neural Posterior
Estimation (SNPE) [15], as adapted for exoplanets inframeworks like Floppity [6], iteratively refines a
proposal distribution to focus the simulation budget on regions‘of high posterior probability. This achieves
high posterior fidelity with fewer forward model calls than classic samplers and offers crucial flexibility to

handle unique, individual observations that.amortized models cannot.

However, the drawback is that this process must be repeated from scratch for every new target, making it
an inefficient use of computational resources when analyzing large datasets. While recent algorithmic
advances like Truncated SNPE (TSNPE) [16] and score-based methods like SNPSE [3] improve the sample
efficiency of this process, they do not eliminate the fundamental problem: the computational effort is spent

on a per-target basis.and is not amortized across a population.
2.4 The Architectural Gap and.Our Contribution

This analysis reveals that. the bottleneck is not the inference engines themselves, but the lack of a
standardized interface between raw, heterogeneous observational data and these powerful tools. The
components needed to bridge this gap—generative models for data cleaning—exist in isolation but have
not been integrated into a unified retrieval pipeline. For instance, denoising autoencoders are a standard
technique for noise reduction in spectroscopy [9], while Generative Adversarial Networks (GANS) have

been explored for data imputation in other fields [8].



To date, no framework has systematically coupled a generative data-conditioning front-end with a flexible
SBI back-end. This leaves the community choosing between the fast-but-brittle or flexible-but-slow.
paradigms. We resolve this dilemma by proposing a new paradigm of architectural decoupling.. Our
framework, FIexARE, introduces a generative pre-processor that standardizes raw, noisy, and.potentially
incomplete spectra into a clean, physically plausible representation. This conditioned spectrum then serves
as a high-quality input for a downstream inference engine. This two-stage architecture synthesizes the
strengths of prior approaches:

e |t grants flexibility to brittle amortized models by transforming novel data.into the format they were
trained on, saving thousands of hours of retraining.

e |t grants robustness to sequential models by ensuring their-computational effort is focused on the
true physical signal, not instrumental artifacts, leading.to more.accurate and reliable posteriors.

The following section provides a detailed overview of this architecture, explaining how the generative and
inferential modules are designed and integrated to create a.truly and flexible retrieval solution.

3 Methodology
3.1 Overview

To address the objective comprehensively, this research will employ a modular approach focused on two
primary objectives: data processing and atmospheric retrieval. Each task utilizes separate architectures with
dedicated training and testing phases, allowing for tailored optimization strategies and reduced complexities
through specialized datasets:.The experimental methodology comprises three main components: dataset
creation and preprocessing (3:2), the generative preprocessing pipeline (3.3) and the parameter retrieval

pipeline (3.4).



Training, model selection, hyperparameter tuning, optimisation

—_ Denoising — V\/\/\/\‘ﬁ —_— Imputation — | \/WA/\T

Observation Cleaned observation

Data Preprocessing \, \/\/J\/\f

Dataset Dataset

I— Simulations 41

Parameter Retrieval

Output + —
Evaluation

Training, model selection, hyperparameter tuning, optimisation

Figure 1 Flow.chart showing tasks mentioned in this paper
The following sections shall delve‘into each-objective separately and in more detail.
3.2 Dataset Creation and Preprocessing
3.2.1 Synthetic Dataset Generation

To conduct .this experiment, it was imperative to obtain a sufficiently large dataset for training the
generative networks. Due to the scarcity of existing real data, | opted to create a synthetic dataset consisting
of clean, noisy, and complete spectra within the wavelength range of 0.3 to 15 um. This range is optimal
for identifying key spectral features and aligns with the capabilities of both current and future instruments.
For this purpose, | utilized the TauREx 3 (Tau Retrieval for Exoplanets) [17] framework, which is
recognizedfor its user-friendly interface and computational efficiency. However, to develop a dataset of
spectra that more accurately reflects real-world conditions, | selected a more complex model. This decision

aimed-to-enhance the fidelity of the generated spectra while minimizing overall computation time.



Instead of employing a simple isothermal temperature profile, 1 implemented a modified two-stream
approximation based on the model proposed by Guillot (2010) [10][11]. This approach allows for
temperature variations with altitude, thereby capturing the thermal structure of exoplanetary atmospheres
more accurately. Additionally, I incorporated a free chemistry framework, treating the abundances of key
molecules such as H.O, CO, CO2, CH4, and NHs as variable parameters rather than fixed values based on
chemical equilibrium. This choice was made to enhance the realism of the spectra, despite the added
computational complexity. Furthermore, | introduced a pressure-dependent infinitely opaque cloud layer
and included a Mie scattering contribution as described in Lee et al. (2013) [12]. The prior.ranges and
opacity citations are detailed in Table 1.

Parameter ‘ Prior Range ‘ Reference
Rp (Ry) 4(0.1,2.0) -
log g 14(2.3,4.3) -
Tirr (K) | U(200,4000) -
log K1 U(-4,0) -
log k2 U(—4,0) 4
log Kipr U(—40) -
a U(0,1) -
log H»O U(—12,=2) | Polyansky et al. (2018)
log CH4 U(—=12,—-2) |Yurchenko et al. (2020)
log CO U(=12,-2) Li et al. (2015)
log CO4 U(-12,<2) Coles et al. (2019)
log NHz |, 4(—12,=2)~| Yurchenko et al. (2024)
log Péoud U(2,6) -

log aee U(—1:1) -
log.Q et U(=1,1) -
log x U(=40,-4) -

Table1 Prior values for synthetic dataset

I generated 100,000 cleanspectra, which required about 250 minutes on a cluster featuring 36.6 vVCPUs
with an AMD EPYC 7763 processor, totaling approximately 150 CPU hours. However, many simulations
produced NaN or infinite values due to overflow errors, likely caused by the broad parameter ranges

resulting in numerous invalid combinations.

Despite extensive parameter tuning, | could not resolve these issues. | decided to prune the dataset to remove
NaN and infinite values, reducing the count from 100,000 to roughly 81,000 spectra. Additionally, I

identified and eliminated spectra with excessively high transit depths and applied criteria to filter out



negative values and ensure normalized values did not exceed one. This process yielded a final dataset.of

approximately 63,000 spectra.

3.2.2 Noise and Binning

After simulating the spectra, | utilized the public package PandExo [18] to add JWST instrument noise to
the full spectrum, using the star parameters of HD 209458. | selected the NIRSpec/PRISM, as ‘prior
observations of the exoplanet Wasp 39b with this instrument would allow for comparison with-actual data
and the best-fit model. Consequently, I applied a noise floor of 15 ppm, representing the instrument's upper
limit. Following the addition of noise, | obtained the wavelength binning.from the noisy spectrum and
rebinned the clean spectra to match this wavelength range, producing.a corresponding clean version of the
noisy spectra. A comparison is provided below.
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Figure 2 Example spectrum with noise



3.3 Generative Preprocessing Pipeline

Data processing plays a crucial role in the analysis of exoplanetary spectra, offering significant advantages
both in general and specifically for this field. Previous works have already identified the problem.of the
inflexibility resulting in being limited to a singular wavelength grid and the need to retrain.on different
observational noise. As a result, data processing can be utilised as a way to generalise the input and can be

divided into two primary processes: denoising and generation.

3.3.1 Denoising

A common trend in the field is to simply rely on the advancements_in the field of . machine learning when
developing a solution to a problem. In this case, a particularly apt method commonly-used for denoising is

known as an autoencoder.

Autoencoders are a type of neural network architecture and:consist of two functions: an encoder and a
decoder. The encoder, typically a multi-layer perceptron or. network, passes the original input data =z € X’
through hidden layers, reducing its dimensionality intoqits latent'representation E (x) also known as z. The
denoiser denoted D then decodes z, increasing.its dimensionality and creating a reconstruction of the input

denoted Xx.

Encoder Efz) Decoder D(z)

Latent Space
Input z Qutput z'

Figure 3 Diagram of a simple autoencoder

Thedimensionality bottleneck created by the latent space z discourages perfect duplication or memorization
of the signal, instead encouraging the model to extract salient features and learn a more efficient

representation of the information.



Central to the accurate reproduction of inputs within autoencoders is the concept of the reconstruction error,
quantifying the difference between the original input x and its reconstruction X = D(E(x)). This is

typically measured with a loss function such as the mean squared error or cross entropy.

N
1
L=~ S (@i - D(B()))?
=1
Formula 1 Typical autoencoder loss function

However, to measure the accuracy of the reconstructions, | opted to-utilise RMSE instead, as it could

reliably represent accuracy as a percentage.

1-RMSE=1-

1 ~
\/5 > rarlyli=Y:)?
— X
v

100

Formula 2 Evaluation Criteria / Metric

Overall, the properties of this type of generative.model can be-€xploited for denoising purposes, allowing
it to learn key features present in the dataseparate from'the noise itself. To test this, | implemented a simple

dense autoencoder with the followingarchitecture:

Component Layer Output Shape | Parameters
Input 403 0
Dense +<ReLU 256 103,424
Encoder Dense + ReLU 128 32,896
’ Dense + RelLU 64 8,256
Dense + ReLU 128 8,320
Decodef DPense + RelLU 256 33,024
Dense 403 103,571
Total Parameters 289,491

Table 2 Simple dense autoencoder architecture

| implemented'normalization of the clean spectra to align with the highs and lows of the noisy spectra. This
approach ensures that in the final forward pass with real data, which will only include the noisy data, there
are no dependencies on the clean data ranges. Normalizing to the noisy spectra is effective, as it typically
exhibits more extreme highs and lows than the clean spectra. After training for 100 epochs using mean
squared error loss (as shown in Formula 1) on a limited dataset comprising approximately 6,000 spectra

(about 10% of the original size), the results were promising.
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Figure 4 Dense Autoencoder: Initial results

I was pleasantly surprised by the model's performance despite the significant noise, as demonstrated in
Example 1. This supports my hypothesis that the autoencoder could effectively denoise spectra. However,
noticeable mismatches in certain spectral regions, even with minimal noise (see Example 2), indicated that
the model still had limitations. Consequently; l'decided to explore alternative autoencoder implementations,

specifically a convolutional-autoencoder-and a long short-term memory (LSTM) autoencoder.

A convolutional autoencoder.integrates convolutional layers to enhance image processing capabilities. In
this architecture, .convolutional dayers apply filters—small, learnable matrices—to the input images,
enabling the model to-extract specific features such as edges and textures. The process of convolution
involves sliding these filters across the image and computing dot products to create feature maps, which
represent the presence of identified features. Following this, pooling layers reduce the spatial dimensions
of. the feature maps, summarizing the information while maintaining the most salient features. This
dimensionality reduction not only decreases computational complexity but also enhances the model's
robustness to variations in the input, such as translation and distortion. The encoder compresses these
extracted features into a lower-dimensional bottleneck representation, while the decoder reconstructs the

original image using transposed convolutional layers. Overall, CNN autoencoders effectively learn



complex representations for tasks like denoising and dimensionality reduction, leveraging the strengths.of

convolutional and pooling operations.

On the other hand, Long Short-Term Memory (LSTM) networks are a specialized type of recurrent neural
network (RNN) designed to effectively handle sequential data, particularly one-dimensional (1D) data like
time series. LSTMs excel at capturing long-range dependencies due to their unique architecture, which
features memory cells and gating mechanisms—including the input gate, forget gate,.and output gate. These
gates regulate the flow of information, allowing the network to retain relevant data over extended periods
while discarding irrelevant information. This structure alleviates the vanishing.gradient problem commonly
faced by standard RNNs. Overall, LSTMs provide a robust framework for  managing sequential
information, making them particularly effective for understanding.temporal patterns and contextual
relationships in 1D data.

To ensure a fair comparison, | maintained a similar number of parameters across all models through adding

extra layers and adjusting output dimensionality.

Component Layer Output Shape | Parameters
Input (1, 403) 0
Cénvid + ReLU (16, 403) 64
Conv Encoder MaxPoolld (16, 202) 0
(| Convld + ReLU (8, 202) 392
MaxPoolld (8, 101) 0
Flatten 808 0
Dense Encoder”| Linear 4+ ReLU 128 103,552
Linear.+ ReL.U 64 8,256
Linear. + ReLU 128 8,320
Dense Decoder’| Linear 4 RelLU 808 104,232
Reshape (8, 101) 0
Convld + ReLU (8, 101) 200
Upsample (8, 202) 0
Conv Decoder | Convld + ReLU (16, 202) 400
Upsample (16, 403) 0
Convld (1, 403) 49
Total Parameters 285,465

Table 3 Convolutional autoencoder architecture



le—2 Validation Losses Across Different Autoencoder Architectures
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Figure 5 Validation losses across autoencoder architectures

Ultimately, both the dense and convolutional autoencoders.showed promise, while the LSTM autoencoder
seemed to perform poorly, with its loss plateauing within the first few epochs, indicating minimal learning.
This may be attributed to the LSTM's complexity, its'limitations.in effectively capturing local patterns, and
potential issues with gradient descent during training. While LSTMs are adept at handling sequential data,
they may not be optimal for tasks that require a focus’‘onthe local features inherent in spectral data. For
those more familiar with LSTM architectures, further'exploration might uncover optimizations to enhance
performance. However, | chose to proceed with ‘the convolutional and dense autoencoders, as they

demonstrated greater effectiveness for denoising in this context.

The loss graph clearly indicated that the convolutional autoencoder outperformed the dense autoencoder,
prompting me to fine-tune.and optimize this model. | conducted a sequential hyperparameter sweep, testing
learning rates from 0.01 to 0.00001, activation functions (ELU, ReLU, GELU, and LeakyRelLU),
normalization functions (batchNorm, instanceNorm, groupNorm), dropout rates from 0 to 0.5, kernel sizes
from 3 to 7, and hidden dimension configurations of [64, 32], [128, 64], [256, 128], and [512, 256].

I ultimately identified the optimal hyperparameters as a learning rate of 0.001, an ELU activation function,
batch‘normalization, no dropout, a kernel size of 7, and hidden dimensions of [64, 32]. With these settings,
| began training. the optimal model on the full dataset. However, after early stopping at 30 epochs, the
validation ‘losses were unexpectedly poor. Previously, while testing the dense autoencoder on the full
dataset-for100 epochs, I had halted training early at around 5 epochs due to excessive duration. | preserved

the loss measurements for potential future reference, but the convolutional autoencoder | was currently



training yielded worse loss metrics than the initial dense autoencoder. This may be due to the convolutional
structure being advantageous for smaller datasets, facilitating more effective backpropagation hence
creating deceiving results. Consequently, | decided to switch my focus back to the dense autoencoder and

conduct another hyperparameter sweep.

This time, | identified an optimal learning rate of 0.001, a GELU activation /function, instance
normalization, and a dropout rate of 0. However, this optimization appeared ineffective since the parameters
were largely unchanged, apart from the activation function. The results of these optimisations.can be found

below:

Method 1-RMSE (%) Standard Deviation(%)
After Hyperparameter Tuning 99.36 217
Before Tuning 99.10 2.49
Convolutional Network (ConvNet) 97.40 4.38
Table 4 1 - RMSE before and after.optimisation

Despite the modest gains, it is clear that the optimisations did indeed benefit the model, confirming their
potential. With the denoising process refined, l-turn to the‘next phase of the generative pipeline: data

imputation.

3.3.2 Generation

In the realm of data generation, Generative Adversarial Networks (GANSs) emerge as a prominent choice.
The key advantage of this model lies in its unique adversarial training mechanism, which involves two
competing neural networks: the generator and the discriminator. The generator's objective is to produce
samples that can deceive.the discriminator, which is tasked with distinguishing between the real and

generated spectra.
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Figure 6 Diagram of a Generative Adversarial Network

This competitive interaction seeks to converge and reach the 'Nash ‘equilibrium, a theoretical concept in
game theory in which both players play perfectly and.reach a state where changes in strategy would lead to
inefficiencies. This results in the generation of-high-quality,  realistic samples as both networks
progressively improve their respective abilities.

Einpasa 10§ D™ (G(2))] A Eaap, log(1 — D™ (G(2)))]

Formula 3 Minimaxobjective function for optimal discriminator

As for our main purpose of data imputation,-we can make a reference to the framework utilised within
Generative Adversarial Imputation:Nets (GAIN) [8], which employs a random mask to simulate missing
data. However, instead of utilising a_random mask, we propose using a static mask that specifically
represents the wavelength range of:the instrument used for the spectra to be retrieved, in our case the James
Webb Space. Telescope’ (JWST). This approach allows for a more focused application of our model.
Additionally, it is theoretically possible to implement a different mask for retrieving data from other
instruments, such as'the Hubble Space Telescope's Wide Field Camera 3 (HST WFC3).



Figure 7 Mask for spectral data (left: random mask, right:specialised.mask)

| first tried out this model with a DCGAN, one of the most commonly used GAN' architecture-types,
standing out as a simple yet effective choice. DCGAN is a convolutional neural network, which differs
from a vanilla GAN in that it specialises more in visuals.“Specifically,"a convolutional neural network
makes use of a convolution filter or a multi-dimensional.vector representation to extract specific features
such as edges or textures from the input data. Although the spectral data:is 1 dimensional, it can be encoded

using a 2D image such that we can fully exploit the “feature extracting prowess of the DCGAN.

To preprocess the data, | first normalised the data and‘converted it into a pixel grid. The difference can be

observed below.

10

15

20

25

Figure 8 Spectrum converted into image for GAN (left: masked, right: unmasked)

I then'trained the DCGAN to recreate the image on the right given the image on the left by adding the initial
input into the output, masking the generated spectrum for 20 epochs. | obtained the following terrible

looking result on a benchmark spectrum:
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Figure 9 GAN result after 20 epochs

From this result, it was apparent that the GAN reconstruction was slightly offset from that of the real spectra,
leading to this unfortunate result. To fix this, | attempted to add a baseline calibration unit to the generator,
which has trainable offset and scale parameters to remedy this.issue. However, the end result got worse, as
it appeared the GAN had likely experienced mode collapse; where it found a certain number of suitable
modes of data distribution rather than capturing the.full.diversity of the target distribution for the baseline
calibration.
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Figure 10 GAN results with baseline calibration

As a result, I'decided that it was likely a problem with the architecture itself, and decided to experiment

with other architectures.



U-Net is another particularly promising architecture due to its unique design and capabilities, which can
be effectively leveraged in the context of generative tasks. Its distinctive feature is the U-shaped structure,
which consists of a contracting path to capture context and a symmetric expanding path that enables
precise localization. This architecture is particularly advantageous for tasks involving image=-toe-image
translation, as it effectively combines low-level features from earlier layers with high-level features from
later layers. In the context of spectra generation, U-Net's ability to retain spatial information while
generating outputs makes it a strong candidate for producing high-fidelity spectral data. Its skip
connections facilitate the transfer of detailed information, resulting in more accurate reconstructionsof

spectra.

DCGAN Generator U-Net Generator

7

- — —

Figure 8 DCGAN (left).vs U-Net (right) architecture

I also decided to try out an Attention-based/generator, which utilises an attention block, allowing the
model to focus on specific parts of the input data when making predictions. This means that the neural
network may potentially'be able to focus.on the specific positions where the mask transition occurs (i.e.
the edges of the input), potentially allowing it to gain an edge over the other models. | decided to utilise
comparison‘metrics of MSE, MAE and a custom metric of spectral continuity to prevent the sharp dropoff

that occurs at the mask boundaries.

N-1
1
Leont = m E |gi—|-1 - gz|
i=1
Formula 4 Spectral continuity metric

However, this ended up being obsolete as shown below.
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Although not easily observed due to the incredibly high outliers, UNet‘comes out on top in terms of both
the median, where it narrowly beats the Attention and DCGAN:in MAE and spectral continuity and loses

to Attention in MSE by a small margin.

As a result, | decided to conduct a hyperparameter search on the UNet,. obtaining an optimal learning rate
of 0.00005, ReL.U activation, 2 residual blocks and instance normalisation. Additionally, in an attempt to
fix the issue of the misaligned reconstructions,.rather than simply using a combination of the F1 loss and
adversarial loss, I chose to include the spectral continuity metric in addition to a new physics-based loss:

207 adv L1 physics grad
Gloss T Yloss + D10ss + oss + Noss
where: y
adv .
Gioss — Eﬂ(l\' (fpl'c(l 5 'rlnl)t'l)
L1 .
Hloss — /\Ll . H.fsp(:r:trn M Hl

physics
loss

= Aphysics * (shape_loss + amp_loss)

AT

1 .

shape_loss = — E (Vg — V?';)E
‘ =1

1 N
amp_loss = — (gi-—ri')?
j\r -
i=1
srad
,f]l&:j» = /\grz-ul . ||vf.~ip('(:tr:\ - VTHI
Formula 5 GAN Loss

Thisded me:to obtain the following results:
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Figure 10 GAN w/ loss + modifications

To enhance the reconstruction quality, | opted to implement pretraining for'the GAN. Specifically, | pre-
trained the model for 10 epochs to ensure that the discriminator does.not become overly dominant, which
could hinder the generation of accurate losses.
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Figure 11 Final GAN output

With these.new modifications, | was able to achieve a 98.5% reconstruction accuracy compared to an initial

85:4% from the start of the experimentation.



3.3.3 Validation

To benchmark this entire process, | decided to take the trained GAN and VAEs and combine them.into
the pipeline, before using 1000 spectra to test their reconstruction loss. | was able to obtain a spectacular
99.05% average reconstruction accuracy according to Formula 2 (1 - RMSE). An example of the

retrieved spectra can be found below.

Noisy
Reconstructed
—— Complete

0.048 1
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Figure 12 Example.of generative pipeline output

3.4 Parameter Retrieval

The key difficulty in performing parameter retrievals-for spectral data lies in the high dimensionality of
parameter spaces and complex distributions that can arise from the complex models used to generate
them. The ultimate goal of a'parameter retrieval is to identify the most likely parameter values given some
data. However, in the case of.complex distributions, multiple modes may exist, making a single prediction

insufficient. Such an oversimplification fails to capture the full complexity of the underlying data.

As a result, the underlying distribution must be obtained, and this can be solved using the Bayesian
paradigm: Bayesian inference is a statistical approach that incorporates prior knowledge or beliefs about
parameters‘along with observed data to update our beliefs in light of new evidence. It is grounded in

Bayes"theorem; which provides a mathematical framework for this updating process.

P(9|D) = —PWI)DI(D](;)D\@)

Formula 6 Bayes’ Theorem



Bayes’ theorem states that the posterior probability P(6|D) of the parameters given data D can be
represented in the form of likelihood P (D|6), the probability of observing the data given the parameters,
multiplied by the prior probability P(6), reflecting our prior beliefs about the parameters all divided.by
the marginal likelihood or evidence P(D) which normalises the posterior. This provides a concrete
mathematical framework that can be used to obtain the underlying distribution given that P(D]6) can be

calculated.

However, in the case of complex forward models such as those present in atmospheric spectra
simulations, the likelihood P(D|0) is intractable, meaning it cannot be computed.analytically. The
introduction of simulation-based inference methods address these challenges fully,"allowing for the
approximation of the posterior distribution without needing to directly compute the likelihood, hence

bypassing the main issue.
3.4.1 Neural Posterior Estimation

Whereas traditional simulation-based inference methods such as Monte Carlo Markov Chain estimation
utilise nested sampling, where they sample the posterior repeatedly to obtain the approximate underlying
distribution, recent developments in simulation-based inference methods have allowed for deep learning

to generate large computational efficiencies.

An important concept in simulation ‘based inference is the idea of a normalising flow [13], which can be
used to generate the complex pasteriors required. The concept can be formalised as follows: Let z be a
random variable with a simple base distribution p(z). A normalising flow transforms z into a more

complex random variable x through-a series of K invertible and differentiable transformations f.

2= fxofxk-10--0 fi(z)

Formula 7 Normalising Flow
%y Z,
f(z)
—_—

v

Figure 13 Example of normalising flow



Each transformation f; gradually increases the complexity of the distribution, and the probability density

of the transformed variable p, (x) can be computed using the change of variables formula.

_ _ o —1ls..0 ;1 T
pe(x) = po(fit 00 frt(x)) |det 2ol (@)

Formula 8 Change of variables formula

The crucial properties of the normalising flow are invertibility, which allows for efficient sampling from
Py (x) by first sampling from the base distribution p,(z) and then applying the-inverse transformations
fi'1. It also allows for efficient evaluation of the density p, (x) by computing the Jacobian determinant of

the inverse transformations.

However, normalising flows can be computationally expensive:.An alternative, known as neural posterior
estimation [14], learns a conditional normalising flow that directly maps-from observed data to posterior
distributions. This amortisation allows for rapid inference 'on new observations‘once the model is trained,

significantly reducing computational costs for multiple retrievals.

Neural posterior estimation is also particularly well-suited for'simulator based models, where the
likelihood is intractable but sampling from the forward model is possible. This makes it highly applicable
to atmospheric retrieval problems where complex physical models are involved. As for training, the KL
divergence between the true posterior'p (x|z) and estimation q(x|z) produced by the normalising flow is

minimised, or

KL(p|lg) s [ p(z|z)log L22 dg

p(z|z)

Formula 9 KL Divergence formula

To efficiently optimise the KL divergence during training, the loss function can be rewritten using Bayes'

theorem as

L= Ewwp(a?),zwp(zl;v)[log Q(m‘z) - logp(m)]

Formula 10 Optimised formula for training

Here, the training data is generated first by sampling parameters x from the prior p(x), then simulating the

data z.from the likelihood p(x|z). This allows the neural network to learn a flexible, normalising flow-



based representation of the posterior without requiring explicit likelihood evaluations. However, neural
posterior estimation is an amortised estimator, meaning it is written to be generalised to many

observations and requires a large dataset. This problem can be solved using an alternative approach.

3.4.2 Sequential and Truncated Methods

Whereas neural posterior estimation models are trained with a fixed set of simulations drawn from the
prior and likelihood and can generate posterior samples for any observation x after. training, sequential
neural posterior estimation [15] proceeds in multiple rounds, with each round. drawing parameters from
the proposal distribution, generating simulations and updating the estimator.using the data collected at
each point. The proposal distribution is also refined to focus on more.relevant regions‘of.the parameter
space, meaning it is more tailored to retrieve posterior samples for the observation ofinterest rather than
any new observation outside of the relevant parameter space. The. differences’'can<be observed in the
diagram below.

NPE
Generate Dataset Train using Dataset

[Prior Distribution p(())}

e (P ] H H | B
v
[Simu]ator p(m/())} (e.g. NF)

generate &, ~p (Z/0;) optimise log likelihood

SNPE

[ Proposal Distribution g(?) )]
7y

v
[ Prior Distribution p(l))}

Conditional
sample 0, ~ p(0) Density
A Estimator

[ Simulator p(z/0) (e.g. NS)

generate x;~ p(z/t;) train with previous data

Figure 14 NPE vs SNPE training process



This singular change means that a large and computationally costly dataset is no longer needed, and this
non-amortised approach also allows for greater accuracy around the particular observation and less

samples needed.

A new truncated alteration of the SNPE algorithm has also proven to be an attractive alternative. Known
as Truncated Sequential Neural Posterior Estimation or TSNPE [16], it aims to overcome:some of the

limitations of previous SNPE methods while maintaining their efficiency.

The key modification lies within the use of truncated proposal distributions. Rather than sampling from
the full prior or previous posterior estimate, TSNPE samples from a truncated version of the prior. This is
carried out through the definition of a proposal distribution proportional'to the prior, but-only within a
certain region called the Highest Probability Region (HPR), defined-as the smallest'region containing a
certain fraction (1 — &) of the mass of the current posterior estimate. As a result, the parameters sampled
from the prior are only accepted if they lie within the HPR of the current posterior estimate, creating a
truncated proposal distribution proportional to the prior within the HPR:This means that unlike other
SNPE methods requiring complex loss modifications, TSNPE allows training the neural density estimator

with a simple maximum likelihood objective in-all rounds.

L

Original Prior Approximated Posterior (HPR)  Resulting Posterior

Figure 15 Ilustration of truncated prior

Formula 11 Log-likelihood loss function for TSNPE

Another advantage of TSNPE is that it speeds up computation time, as it leads to prior samples outside of

the approximated posterior being rejected, leading to decreased sample sizes and greater efficiency.

In addition to TSNPE, | decided to explore a score-based method pioneered by Sharrock et al. [3], which

leverages score-based diffusion models to estimate the posterior's score rather than sampling directly from



the posterior estimate. This innovative approach transforming samples from the target posterior into a
tractable reference distribution has demonstrated significant promise, particularly in high-dimensional
retrieval tasks, suggesting that it may offer enhanced performance compared to traditional sampling
methods. To investigate the efficacy of these advanced methods, | will conduct a series of experiments
comparing the performance of TSNPE and the score-based approach against traditional SNPE techniques.
The results of these experiments will provide insights into their relative strengths and applicability in
various scenarios.

Forward Process
< 90 : db; = f(6¢,t)dt + g(t)dw,

" k: | L - %
p(60]z) % s a8 (N
C . . » ks : :
.(_dét = [ f(0:, T — t) + ¢*(T — t)Vologpz 1(Bs|z)|dt + g(T— t)dwt—.
@ Backward ];rocess @
Figure 16 Diagram representing SNRPSE process (obtained from L. Sharrock et al [3])
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(150, 2, ) =V o log py (6: ) ||*]dt,
Figure 17 SNPSE Loss function (obtained from L. Sharrock et al [3])

3.4.3 Model Selection

To test these'models, | utilised the sbi package [26] to implement the algorithms of TSNPE, SNPE and
TSNPSE. In order to ensure that the neural posterior estimation models were sufficiently apt in their
predictions, | utilised a custom neural spline flow based density estimator, with the implementation

architecture detailed below detailed below:



Layer Type Output Shape Parameters
CNN Embedding Network

Input - (B,1,771) 0

ConvlD-1 ConvlD (B,6,767) 30

MaxPoollD-1 MaxPoollD (B, 6, 383) 0

ConvlD-2 ConvlD (B,12,379) 360
MaxPoollD-2 MaxPoollD (B3,12,189) 0

Flatten Reshape (B, 2, 268) 0

Linear-1 Linear (B, 64) 145,216

Linear-2 Linear (B,64) 4,160

Neural Spline Flow

Input - (B,D) 0

NSF Block-1 ~ NSF (B, D) 2D - 50 /502 10
NSF Block-2 NSF (B, D) 2D - 50450210

15 transforms per block, 10 bins per transform

where:
e B is the batch size

e D is the dimensionality of the target distribution

Table 5 Density estimator with neural splineflows: architecture

To carry out the trials, | first generated a simple spectrum‘witha limited number of parameters compared

to the simulation dataset. The ground truth.can-be found below.

Parameter Ground Truth
Planet Radius (R) | 0.742

Planet Logg 4.028
Temperature (K) 1778

log HyO —4.305

log CO, —7.894

log’CH,4 —3.274

log NHj3 —8.103

log CO —5.115

Table 6 Ground truths for simulated observation
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Figure 18 Simulated.spectrum with-above parameters

Ultimately, | obtained incredibly complex posteriors for both TSNRPE and SNPE. However, the results
obtained for TSNPSE were completely different, as it returned comparatively Gaussian-like posteriors,
likely a result of its score-based diffusion model. A'comparison between the results generated by corner
[27] obtained by each model can be found below;, where the predictions are located above the histograms
with the numbers beside them tepresenting +1c and-1o values. The true values are also shown by the

blue lines.
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Figure'18 Posteriors obtained using SNPE

These posteriors.above from SNPE demonstrate its capability to produce complex, multimodal posteriors,
as can be observed.in the contour plots in the lower section. The simulation-based inference methods also
allow foraincertainty estimation, as can be seen by the +1c and -1o values demonstrating greater
confidence in'the parameters which are predicted with greater accuracy, and lower confidence in the

parameters predicted with lower accuracy.
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Figure 19 Posteriors obtained using TSNPE

The TSNPE process-also demonstrates the same capabilities, due to the fact that it utilises the same base
algorithm.to predict the spectra. However, its use of truncated proposals means it had almost half the
training time, which makes it impressive that it is able to produce these posteriors as well. It also appears

to have higher confidence in general compared to the SNPE results from earlier.
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Figure:20 Posteriors obtained using TSNPSE

Finally, the TSNPSE returned incredibly clean posteriors that lack any sign of multimodality. This is
likely due to its score-based nature and transformation of samples from the target posterior to a tractable
referencedistribution, leading to a cleaner, simpler distribution. Compared to the other models, this model
exhibits a significant capability in predicting the parameter values with greater accuracy, although its

wide uncertainties are a large downside.



TSNPE SNPE TSNPSE
Total Training Time 5641 8180 5704

Training time 3147 6213 2678
Simulation time 2494 1967 3026
1 - MAPE 88.9% 87.0% 86.1%

MAPE Formula:

1 T
MAPE = E;‘

A — F;

x 100

T

where A; is the actual value and F; is the forecasted value.

Table 7 Accuracy and Training Time across Models +.Mean Absolute Percentage Error Formula

As can be observed in the table above, TSNPE generally performed the best with an accuracy of 88.7%,
whilst SNPE obtained an accuracy of 87.0% and TSNPSE was worse by a decent margin at an accuracy
of about 86.1%. TSNPE not only has more accurate parameter-predictions, but also has a lower training
time, beating SNPE by 31% in computation time.

However, it appeared that SNPE performed.the best.during simulations, as it doesn’t require any
truncated proposals which take quite.long'to sample‘from in order to generate the spectra. TSNPSE also

likely has a more straightforward training approach;.leading to a lower training time.

Despite its lack of confidence in its posteriors.though, TSNPSE does indeed demonstrate the most
accurate posteriors for the mix ratios of the parameters, as can be observed by the clear fact that the

modes of the histogram occur at the specific bins that contain the parameter values.

This demonstrates that TSNPSE‘is indeed a promising candidate for potential future improvements, when
we are able'to make more modifications to the model and perform a hyperparameter sweep. However, in
the'meantime, it‘is clear'that TSNPE is the optimal model, and we will perform evaluations with this

model-in the proceeding sections.



4 Evaluation

To demonstrate the performance and viability of the end-to-end FIexARE framework, we conducted a
comprehensive case study on a complex, 15-parameter simulated observation. The raw, noisy-spectrum
was first processed by our generative module to produce a clean, high-fidelity input for the inference

engine, which took approximately 2 seconds. The ground truth parameters and final reconstruction can be

seen below:
Parameter | Ground Truth
Rp(R;) | 0.645
log g 3.510
Tirr (K) 2305
K1 —1.534
Ko —2.088
Kir -3.111
o 0.101
log H,O | —5.106
log CO; | =8.936
log CH, |-=3:945
log NHj |.—8.359
log CO —2.925
log Pcloud 3.992
log/mielse | 0.816
logmies® | —2.214
log mielge” | —34.04
Table 8 Ground. truth for final spectrum
0.0052 - Noisy
0.0051 1 —— Reconstructed

—— Complete
0.0050 -

0.0049 4
0.0048
0.0047 4

0.0046

0.0045 4
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Figure 21 Final reconstructed spectrum



4.1 Retrieval Accuracy and Posterior Quality

To retrieve the spectra, the preprocessed spectra was put into the SBI backend, where the TSNPE @
was then run for 10 rounds with 1500 simulations per round to retrieve the atmospheric par

entire process, from noisy spectrum to final posterior, serves as a proof-of-concept for the fu
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Final TSNPE posteriors for pre-processed spectrum




Ground Truth Prediction Accuracy (%)

0.645 1.23 30.79
3.510 3.54 1.50
2305 2250.35 1.44
-1.534 -1.58 1.15
-2.088 -1.70 9.70
-3.111 -3.17 1.48
0.101 0.47 36.90
-5.106 -5.09 0.16
-8.936 -9.70 7.64
-3.945 -3.94 0.05
-8.359 -7.50 8.59
-2.925 -2.90 0.25
3.992 3.86 3430
0.816 0.03 39.30
-2.214 -1.48 14.68
-34.04 -21.01 36.19
Table 9 Final prediction-results for preprocessed spectrum

We obtain incredible results from the FIexARE retrieval for the’key parameters (those determining the
temperature and molecular composition). As shown in<Table 9 and the posterior distributions in Figure
22, the framework successfully constrained the vast majority. of the 15 atmospheric parameters. However,
it is apparent that the prediction values.for the lee-mie scattering and radius (which is quite unusual) is
uncertain. However, during typical retrievals, this value is often already known. As a result, in the
calculations for the accuracy, | chose not to include this value. The values which are not as accurate also

have wider posteriors, indicating that the values are uncertain.

The retrieved values are well-centred onsthe ground-truth, leading to a final mean parameter accuracy
of 89.2%. This high accuracy'on a.complex, high-dimensional problem validates the design of both the
generative/pre-processor-and the/'SBI back-end. The posteriors are well-behaved and provide meaningful

uncertainty.quantification forthe retrieved parameters



5 Conclusion and Future Works

In this work, we have designed, implemented, and validated FIexARE, a novel, two-stage framework for
exoplanet atmospheric retrieval that decouples data conditioning from inference. Through a
comprehensive case study on a complex 15-parameter problem, we have demonstrated that our end-to-
end pipeline is both accurate and computationally efficient. The framework achieved a high parameter
retrieval accuracy of 89.2% while being several orders of magnitude faster than classical gold-standard
methods like MultiNest. This result serves as a successful proof-of-concept, showing that our-madular
architecture is a viable and powerful solution for tackling the challenges of next-generation exoplanet
spectroscopy and offers many advantages.

First, FlexARE is accurate. FlexARE’s preprocessing module enables the removal of noise from
obtained spectra and the imputation of missing data, allowing for.re-correction ofinaccurate data to an
accuracy of 99.05%. Additionally, the usage of posterior estimation methods leads to the ability to obtain
uncertainty estimates, allowing for better understanding and evaluation of:the parameters that have led to
the creation of the spectra.

Second, FlexARE is fast. FlexARE only took ~500 CPU hours'in total, with ~150 used for dataset
generation, ~130 for training the autoencoder, ~150 for.training the GAN and ~70 for the training the
sequential model. The generation of the:dataset canbe easily-parallelised on CPU clusters (as | have done
here) and model training can be easily optimised.on‘GPUs. Although | was originally going to use
MultiNest to obtain a proper benchmark forthe spectra, it ultimately took too long, as even after 48 hours
(or ~1800 CPU hours) of sampling (with & reduced number of parameters i.e. 12 parameters) the model
still hadn’t converged. As aresult, (due to the impending deadline) I have chosen to make an estimation
instead. As shown in M. Vasist et al.{7], when retrieving the same amount of parameters, MultiNest is
said to have used about,60000 ‘CPU hours to converge. However, it does indeed utilise a more complex
forward model, taking ~5s on average compared to ~1s with our current forward model. Hence, we obtain
a lower and upper bound.of 1800 CPU hours and 12000 CPU hours. This means that this pipeline
achieves a'minimum-speed.up of 3.6 times or 360% over MultiNest given the lower bound, and possibly
24 times or 2400% given the upper bound. If the upfront training times for the VAE and GAN are
removed, the speedup could be up to ~26-171 times faster. This means that FlexARE may even be able

to'be performed on home electronics in reasonable time periods.

Third, FIexARE is flexible. Its modular structure and lack of dependencies between the units mean that

one may easily be exchanged for another. For example, rather than TSNPSE, we could utilise an



amortised training method instead, using the noise processing module to preprocess the observation. This
not only means a reduced dataset size due to not having to generate noisy copies of the data, but also
leads to more accurate results. Additionally, multiple modules could be added, meaning the pipeline can
allow for multiple noise profiles from multiple instruments simply by adding more autoencaders, or
introducing a multi-view autoencoder that can handle all noise profiles without issue. This means that
multiple observations from multiple instruments could potentially be combined into one./Additionally,
each separate model can be trained and optimised individually to allow for greater efficiency.

Through these various benefits, FlexARE opens up the possibility of having and even combining more
sources of data (such as from amateur astronomers, as the preprocessing module can allow for high signal
to noise (SNR) ratios) in addition to allowing for more efficient exploration of exoplanetary atmospheres.

However, FlexARE does indeed still have its flaws. Most importantly, the-method in which data, inputs
and outputs are transferred between the different modules are important and'may lead to extra
hyperparameters involved and more complex modifications compared-to single models. Additionally, the
lack of dependencies between the modules means that loss cannot propagate through the entire model,
meaning certain optimisations cannot be achieved. This issue could potentially be resolved through
implementing learnable normalisation layers between the modules after each model is individually trained
and optimised, allowing for the loss propagation and.simplifying the different data normalisation

processes that may be used within each'model:

In terms of the explorations of different modules, it is clear that there are definitely ways to refine this
model tremendously in the.future. For example, we can experiment with adding in different autoencoder
models for differentnoise profiles,‘and even incorporate a multi-view variational autoencoder [28] due to
it allowing for learning joint representation of multiple modalities (in this case noise profiles) of data. As
for the GAN, we can experiment with adding masks other than JWST such as for the Hubble Space
Telescope spectra or even future ARIEL spectra wavelengths. However, a better option would be to
simply implement the GAIN [8] algorithm, allowing for completion of even patchy spectra and the
combination of‘multiple observations from multiple instruments. This may even allow amateur
astronomers to submit their own data and have it be used for atmospheric retrievals if a web interface is

created.

In the-case of the retrieval module which utilises simulation-based inference methods, there also exist

many methods that allow for non-amortised retrievals based on multiple observations, such as flow



matching posterior estimation (FMPE) [29] and Partially Factorised Neural Posterior Score Estimation
(PF-NPSE) [30].They both stand out in their ability to perform inference on high-dimensionalities of data.
Specifically, FMPE allows for unconstrained architectures, enabling exact density evaluation and fast
training, having been shown to reduce training time and increase scalability. On the other hand, PF-NPSE
[30] allows for the aggregation of an arbitrary number of observations at inference time whilst requiring a
low number of simulator calls. This means it avoids the limitation of standard inference methods as well
whilst remaining sample efficient. In addition to TSNPSE, the above models can be further explored and

optimised.

Finally, a web interface in combination with a module can be developed to allow amateurs and scientists
alike to utilise this framework conveniently, similar to the ones found-at online«in the exoplanet

characterisation toolkit by the space telescope science institute (ExoCTK by STScl) [31].

Extra Notes

The code be uploaded onto the github here as'soon as it has been tidied and written into a package.

Further concrete results will also be found_in an extra folder.

https://github.com/cookie-is-yummy/FlexARE
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