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Abstract 

The recent launch of the James Webb Space Telescope (JWST) and the forthcoming Atmospheric Remote-

sensing Infrared Exoplanet Large-survey (ARIEL) mission have positioned exoplanets at the forefront of 

astrophysical research. As the exploration of exoplanets advances, the challenge of efficient analysis of 

their atmospheres has become increasingly critical. Traditional methods, primarily based on Bayesian 

inference techniques, are often slow and resource-intensive, limiting their effectiveness. 

In this context, this paper pioneers a novel, flexible, and modular framework that integrates deep learning 

concepts into classical retrieval methodologies, not only enhancing computational efficiency by an 

estimated minimum speed up of 360% compared to MultiNest but also increasing the flexibility of these 

retrievals significantly, allowing for a more streamlined retrieval process. In the following sections, we will 

demonstrate and exploit the effectiveness of this modular pipeline, utilising denoising autoencoder (DAE) 

[1] + generative adversarial network (GAN) [2] system for data processing along with the simulation based 

inference model TSNPE [3] for parameter prediction, achieving a final reconstruction accuracy of 99.05% 

and a parameter prediction accuracy of 89.2%. We will thoroughly explore the endeavours undertaken to 

enhance the model, notably through the incorporation of novel truncated and score-based methods for 

parameter inference which enhances sampling efficiency and optimisation. By addressing the limitations 

of current methods, this framework seeks to streamline the atmospheric retrieval process, facilitating more 

efficient analyses of exoplanet atmospheres and allowing for the rapid discovery of new insights.  

Keywords: Exoplanet, Atmospheric Retrieval, Deep Learning, Modular Framework, Simulation-Based 

Inference, Computational Astrophysics 

1 Introduction 

The exploration of exoplanets has surged in recent years, driven by the discovery of over 5000 of these 

distant worlds and the tantalising possibility of uncovering atmospheres that may harbour life. The James 

Webb Space Telescope (JWST) and the upcoming ARIEL mission are set to further inundate exoplanet 

science with high-fidelity spectral data, transforming atmospheric characterization. This large sum of 

data, however, exposes a critical computational bottleneck: today’s gold-standard retrieval frameworks, 

such as MultiNest and other nested sampling variants [4], scale poorly with data complexity, often 

demanding days of processing time for a single planetary spectrum. Consequently, our ability to analyse 

these rich datasets, not the acquisition of them, is rapidly becoming the rate-limiting step in exoplanet 

science. 20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



 

 

Recent machine learning approaches have attempted to address this, but they present a stark trade-off. 

Amortized inference models offer remarkable speed after an intensive training phase, but their rigid 

nature falters when faced with new instrument noise profiles or incomplete data. Conversely, flexible 

simulation-based inference (SBI) methods can adapt to varied data quality but reintroduce a significant 

computational cost for each new target. The community is thus forced to choose between speed and 

adaptability. 

This paper introduces a two-stage framework that breaks this dilemma by decoupling data conditioning 

from Bayesian inference. We first employ a generative pipeline - integrating an autoencoder with a 

Generative Adversarial Network (GAN) - to denoise, complete, and standardize raw spectra into a clean 

representation. This uniform output is then processed by a state-of-the-art SBI model, such as a truncated 

or score-based posterior estimator, to retrieve atmospheric parameters. Because the inference engine 

always operates on the standardized latent space, it remains agnostic to the noise and observational 

idiosyncrasies of the original input, eliminating the need for per-target retraining. 

 

Our primary contributions are: 

● A flexible, decoupled framework that separates generative data conditioning from simulation-

based inference, resolving the prevailing speed-versus-adaptability conflict in machine learning-

based retrievals. 

● A robust generative pre-processor that leverages autoencoders and GANs to effectively handle 

noisy and incomplete spectral data, achieving a 99.05% reconstruction accuracy. 

● The first pairing of this generative conditioner with advanced posterior estimation models, which 

achieves an 89.2% parameter retrieval accuracy while demonstrating a significant computational 

speed-up over traditional methods. 

● A comprehensive evaluation of model architectures and data-tuning strategies to optimize the 

pipeline for the challenges posed by next-generation spectral datasets. 

 

The remainder of this paper is organized as follows: Section 2 surveys the landscape of current retrieval 

methods. Section 3 provides a detailed architectural overview of our proposed solution. Section 4 20
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benchmarks its performance and accuracy against established techniques. Finally, Section 5 discusses the 

broader implications of our findings, acknowledges limitations, and outlines future research directions.  
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2 Related works 

The challenge of atmospheric retrieval has spurred the development of diverse computational strategies, 

each navigating a fundamental trade-off between mathematical rigor, computational speed, and 

observational flexibility. Early deep learning approaches showed promise but often had limitations; for 

instance, GAN-based retrievals struggled with parameter estimation [22], while Random Forest methods 

were often confined to low-dimensional problems [23-25], and early CNNs like ExoCNN could not produce 

complex, multi-modal posteriors. 

This has led the field to converge on Simulation-Based Inference (SBI) as the most promising path forward. 

This section surveys the three dominant paradigms within this modern context - classic sampling, amortized 

inference, and sequential inference - to identify the architectural gap that our work addresses. 

2.1 Classic Bayesian Sampling: The Rigorous but Slow Gold Standard 

Traditional atmospheric retrieval relies on robust Bayesian sampling techniques. Nested sampling 

algorithms, as implemented in tools like MultiNest [4], and MCMC variants like Hamiltonian Monte Carlo 

(HMC) [19] and the No-U-Turn Sampler (NUTS) [20], are considered the gold standard for their 

mathematical rigor. These methods are the most reliable as they explore the full posterior distribution, 

providing parameter uncertainties and direct log-evidence values for Bayesian model comparison. 

However, their strength is also their primary weakness. The computational cost scales super-linearly with 

the number of model parameters, as each of the thousands of required likelihood evaluations demands a 

full forward model simulation. This leads to prohibitive runtimes, often lasting up to days for a single JWST 

spectrum, rendering them impractical for the large-scale surveys that will define the next era of exoplanet 

science.  

2.2 Amortized Deep Inference: Fast but Inflexible 

To break the computational scaling barrier, amortized inference methods leverage deep learning to learn a 

direct mapping from an observation to its posterior distribution. After a significant, one-time, up-front 

training cost, inference becomes nearly instantaneous. 

 

The power of this approach has been demonstrated by multiple groups. The work of Vasist et al. [7] used 

Neural Posterior Estimation (NPE) to achieve a 4000x speedup over MultiNest, but this required a 20
25
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staggering 17,000 CPU hours for training data generation. More recently, the FASTER framework [Lueber 

et al., 2025] has emerged as the state-of-the-art in high-throughput retrieval. It uses Neural Ratio Estimation 

(NRE) to achieve inference in milliseconds, is Bayesian-complete (providing both posteriors and model 

probabilities), and has been validated on real JWST data.  

However, while providing unparalleled speed, these powerful amortized models are fundamentally brittle. 

They are trained for a specific instrument and a pre-defined statistical noise model. Their performance 

degrades significantly when applied to data with different characteristics—for example, spectra from a 

different instrument like ARIEL, observations with higher-than-expected noise, or data with unexpected 

artifacts or missing wavelength coverage. For each new observational setup, the entire computationally 

expensive training pipeline must be repeated. 

2.3 Sequential Simulation-Based Inference: Flexible but Costly 

Positioned between the previous two extremes, sequential (or non-amortized) SBI methods adapt the 

inference process to a single, specific observation. The core method of Sequential Neural Posterior 

Estimation (SNPE) [15], as adapted for exoplanets in frameworks like Floppity [6], iteratively refines a 

proposal distribution to focus the simulation budget on regions of high posterior probability. This achieves 

high posterior fidelity with fewer forward model calls than classic samplers and offers crucial flexibility to 

handle unique, individual observations that amortized models cannot. 

However, the drawback is that this process must be repeated from scratch for every new target, making it 

an inefficient use of computational resources when analyzing large datasets. While recent algorithmic 

advances like Truncated SNPE (TSNPE) [16] and score-based methods like SNPSE [3] improve the sample 

efficiency of this process, they do not eliminate the fundamental problem: the computational effort is spent 

on a per-target basis and is not amortized across a population. 

2.4 The Architectural Gap and Our Contribution 

This analysis reveals that the bottleneck is not the inference engines themselves, but the lack of a 

standardized interface between raw, heterogeneous observational data and these powerful tools. The 

components needed to bridge this gap—generative models for data cleaning—exist in isolation but have 

not been integrated into a unified retrieval pipeline. For instance, denoising autoencoders are a standard 

technique for noise reduction in spectroscopy [9], while Generative Adversarial Networks (GANs) have 

been explored for data imputation in other fields [8]. 20
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To date, no framework has systematically coupled a generative data-conditioning front-end with a flexible 

SBI back-end. This leaves the community choosing between the fast-but-brittle or flexible-but-slow 

paradigms. We resolve this dilemma by proposing a new paradigm of architectural decoupling. Our 

framework, FlexARE, introduces a generative pre-processor that standardizes raw, noisy, and potentially 

incomplete spectra into a clean, physically plausible representation. This conditioned spectrum then serves 

as a high-quality input for a downstream inference engine. This two-stage architecture synthesizes the 

strengths of prior approaches: 

● It grants flexibility to brittle amortized models by transforming novel data into the format they were 

trained on, saving thousands of hours of retraining. 

● It grants robustness to sequential models by ensuring their computational effort is focused on the 

true physical signal, not instrumental artifacts, leading to more accurate and reliable posteriors. 

The following section provides a detailed overview of this architecture, explaining how the generative and 

inferential modules are designed and integrated to create a truly and flexible retrieval solution. 

3 Methodology 

3.1 Overview  

To address the objective comprehensively, this research will employ a modular approach focused on two 

primary objectives: data processing and atmospheric retrieval. Each task utilizes separate architectures with 

dedicated training and testing phases, allowing for tailored optimization strategies and reduced complexities 

through specialized datasets. The experimental methodology comprises three main components: dataset 

creation and preprocessing (3.2), the generative preprocessing pipeline (3.3) and the parameter retrieval 

pipeline (3.4). 
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Figure 1 Flow chart showing tasks mentioned in this paper 

The following sections shall delve into each objective separately and in more detail. 

3.2 Dataset Creation and Preprocessing 

3.2.1 Synthetic Dataset Generation 

To conduct this experiment, it was imperative to obtain a sufficiently large dataset for training the 

generative networks. Due to the scarcity of existing real data, I opted to create a synthetic dataset consisting 

of clean, noisy, and complete spectra within the wavelength range of 0.3 to 15 μm. This range is optimal 

for identifying key spectral features and aligns with the capabilities of both current and future instruments. 

For this purpose, I utilized the TauREx 3 (Tau Retrieval for Exoplanets) [17] framework, which is 

recognized for its user-friendly interface and computational efficiency. However, to develop a dataset of 

spectra that more accurately reflects real-world conditions, I selected a more complex model. This decision 

aimed to enhance the fidelity of the generated spectra while minimizing overall computation time. 20
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Instead of employing a simple isothermal temperature profile, I implemented a modified two-stream 

approximation based on the model proposed by Guillot (2010) [10][11]. This approach allows for 

temperature variations with altitude, thereby capturing the thermal structure of exoplanetary atmospheres 

more accurately. Additionally, I incorporated a free chemistry framework, treating the abundances of key 

molecules such as H₂O, CO, CO₂, CH₄, and NH₃ as variable parameters rather than fixed values based on 

chemical equilibrium. This choice was made to enhance the realism of the spectra, despite the added 

computational complexity. Furthermore, I introduced a pressure-dependent infinitely opaque cloud layer 

and included a Mie scattering contribution as described in Lee et al. (2013) [12]. The prior ranges and 

opacity citations are detailed in Table 1. 

 

Table 1              Prior values for synthetic dataset 

I generated 100,000 clean spectra, which required about 250 minutes on a cluster featuring 36.6 vCPUs 

with an AMD EPYC 7763 processor, totaling approximately 150 CPU hours. However, many simulations 

produced NaN or infinite values due to overflow errors, likely caused by the broad parameter ranges 

resulting in numerous invalid combinations. 

Despite extensive parameter tuning, I could not resolve these issues. I decided to prune the dataset to remove 

NaN and infinite values, reducing the count from 100,000 to roughly 81,000 spectra. Additionally, I 

identified and eliminated spectra with excessively high transit depths and applied criteria to filter out 20
25
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negative values and ensure normalized values did not exceed one. This process yielded a final dataset of 

approximately 63,000 spectra. 

3.2.2 Noise and Binning 

After simulating the spectra, I utilized the public package PandExo [18] to add JWST instrument noise to 

the full spectrum, using the star parameters of HD 209458. I selected the NIRSpec PRISM, as prior 

observations of the exoplanet Wasp 39b with this instrument would allow for comparison with actual data 

and the best-fit model. Consequently, I applied a noise floor of 15 ppm, representing the instrument's upper 

limit. Following the addition of noise, I obtained the wavelength binning from the noisy spectrum and 

rebinned the clean spectra to match this wavelength range, producing a corresponding clean version of the 

noisy spectra. A comparison is provided below. 

 

Figure 2                Example spectrum with noise  
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3.3 Generative Preprocessing Pipeline 

Data processing plays a crucial role in the analysis of exoplanetary spectra, offering significant advantages 

both in general and specifically for this field. Previous works have already identified the problem of the 

inflexibility resulting in being limited to a singular wavelength grid and the need to retrain on different 

observational noise. As a result, data processing can be utilised as a way to generalise the input and can be 

divided into two primary processes: denoising and generation.   

3.3.1 Denoising 

 

A common trend in the field is to simply rely on the advancements in the field of machine learning when 

developing a solution to a problem. In this case, a particularly apt method commonly used for denoising is 

known as an autoencoder.  

Autoencoders are a type of neural network architecture and consist of two functions: an encoder and a 

decoder. The encoder, typically a multi-layer perceptron or network, passes the original input data  

through hidden layers, reducing its dimensionality into its latent representation 𝐸(𝑥) also known as 𝑧. The 

denoiser denoted 𝐷 then decodes 𝑧, increasing its dimensionality and creating a reconstruction of the input 

denoted 𝑥.  

 

Figure 3           Diagram of a simple autoencoder 

The dimensionality bottleneck created by the latent space z discourages perfect duplication or memorization 

of the signal, instead encouraging the model to extract salient features and learn a more efficient 

representation of the information.  20
25
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Central to the accurate reproduction of inputs within autoencoders is the concept of the reconstruction error, 

quantifying the difference between the original input 𝑥 and its reconstruction 𝑥 = 𝐷(𝐸(𝑥)). This is 

typically measured with a loss function such as the mean squared error or cross entropy. 

 

 

Formula 1           Typical autoencoder loss function 

However, to measure the accuracy of the reconstructions, I opted to utilise RMSE instead, as it could 

reliably represent accuracy as a percentage.   

 

Formula 2                Evaluation Criteria / Metric 

Overall, the properties of this type of generative model can be exploited for denoising purposes, allowing 

it to learn key features present in the data separate from the noise itself. To test this, I implemented a simple 

dense autoencoder with the following architecture: 

 

Table 2                  Simple dense autoencoder architecture 

I implemented normalization of the clean spectra to align with the highs and lows of the noisy spectra. This 

approach ensures that in the final forward pass with real data, which will only include the noisy data, there 

are no dependencies on the clean data ranges. Normalizing to the noisy spectra is effective, as it typically 

exhibits more extreme highs and lows than the clean spectra. After training for 100 epochs using mean 

squared error loss (as shown in Formula 1) on a limited dataset comprising approximately 6,000 spectra 

(about 10% of the original size), the results were promising.  20
25
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Figure 4                         Dense Autoencoder: Initial results 

I was pleasantly surprised by the model's performance despite the significant noise, as demonstrated in 

Example 1. This supports my hypothesis that the autoencoder could effectively denoise spectra. However, 

noticeable mismatches in certain spectral regions, even with minimal noise (see Example 2), indicated that 

the model still had limitations. Consequently, I decided to explore alternative autoencoder implementations, 

specifically a convolutional autoencoder and a long short-term memory (LSTM) autoencoder.  

A convolutional autoencoder integrates convolutional layers to enhance image processing capabilities. In 

this architecture, convolutional layers apply filters—small, learnable matrices—to the input images, 

enabling the model to extract specific features such as edges and textures. The process of convolution 

involves sliding these filters across the image and computing dot products to create feature maps, which 

represent the presence of identified features. Following this, pooling layers reduce the spatial dimensions 

of the feature maps, summarizing the information while maintaining the most salient features. This 

dimensionality reduction not only decreases computational complexity but also enhances the model's 

robustness to variations in the input, such as translation and distortion. The encoder compresses these 

extracted features into a lower-dimensional bottleneck representation, while the decoder reconstructs the 

original image using transposed convolutional layers. Overall, CNN autoencoders effectively learn 20
25
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complex representations for tasks like denoising and dimensionality reduction, leveraging the strengths of 

convolutional and pooling operations. 

 

On the other hand, Long Short-Term Memory (LSTM) networks are a specialized type of recurrent neural 

network (RNN) designed to effectively handle sequential data, particularly one-dimensional (1D) data like 

time series. LSTMs excel at capturing long-range dependencies due to their unique architecture, which 

features memory cells and gating mechanisms—including the input gate, forget gate, and output gate. These 

gates regulate the flow of information, allowing the network to retain relevant data over extended periods 

while discarding irrelevant information. This structure alleviates the vanishing gradient problem commonly 

faced by standard RNNs. Overall, LSTMs provide a robust framework for managing sequential 

information, making them particularly effective for understanding temporal patterns and contextual 

relationships in 1D data. 

To ensure a fair comparison, I maintained a similar number of parameters across all models through adding 

extra layers and adjusting output dimensionality. 

 

Table 3              Convolutional autoencoder architecture 
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Figure 5              Validation losses across autoencoder architectures 

Ultimately, both the dense and convolutional autoencoders showed promise, while the LSTM autoencoder 

seemed to perform poorly, with its loss plateauing within the first few epochs, indicating minimal learning. 

This may be attributed to the LSTM's complexity, its limitations in effectively capturing local patterns, and 

potential issues with gradient descent during training. While LSTMs are adept at handling sequential data, 

they may not be optimal for tasks that require a focus on the local features inherent in spectral data. For 

those more familiar with LSTM architectures, further exploration might uncover optimizations to enhance 

performance. However, I chose to proceed with the convolutional and dense autoencoders, as they 

demonstrated greater effectiveness for denoising in this context. 

The loss graph clearly indicated that the convolutional autoencoder outperformed the dense autoencoder, 

prompting me to fine-tune and optimize this model. I conducted a sequential hyperparameter sweep, testing 

learning rates from 0.01 to 0.00001, activation functions (ELU, ReLU, GELU, and LeakyReLU), 

normalization functions (batchNorm, instanceNorm, groupNorm), dropout rates from 0 to 0.5, kernel sizes 

from 3 to 7, and hidden dimension configurations of [64, 32], [128, 64], [256, 128], and [512, 256]. 

I ultimately identified the optimal hyperparameters as a learning rate of 0.001, an ELU activation function, 

batch normalization, no dropout, a kernel size of 7, and hidden dimensions of [64, 32]. With these settings, 

I began training the optimal model on the full dataset. However, after early stopping at 30 epochs, the 

validation losses were unexpectedly poor. Previously, while testing the dense autoencoder on the full 

dataset for 100 epochs, I had halted training early at around 5 epochs due to excessive duration. I preserved 

the loss measurements for potential future reference, but the convolutional autoencoder I was currently 20
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training yielded worse loss metrics than the initial dense autoencoder. This may be due to the convolutional 

structure being advantageous for smaller datasets, facilitating more effective backpropagation hence 

creating deceiving results. Consequently, I decided to switch my focus back to the dense autoencoder and 

conduct another hyperparameter sweep. 

This time, I identified an optimal learning rate of 0.001, a GELU activation function, instance 

normalization, and a dropout rate of 0. However, this optimization appeared ineffective since the parameters 

were largely unchanged, apart from the activation function. The results of these optimisations can be found 

below: 

 

Table 4               1 - RMSE before and after optimisation 

Despite the modest gains, it is clear that the optimisations did indeed benefit the model, confirming their 

potential. With the denoising process refined, I turn to the next phase of the generative pipeline: data 

imputation. 

 

 

3.3.2 Generation 

In the realm of data generation, Generative Adversarial Networks (GANs) emerge as a prominent choice. 

The key advantage of this model lies in its unique adversarial training mechanism, which involves two 

competing neural networks: the generator and the discriminator. The generator's objective is to produce 

samples that can deceive the discriminator, which is tasked with distinguishing between the real and 

generated spectra.  
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Figure 6          Diagram of a Generative Adversarial Network 

This competitive interaction seeks to converge and reach the Nash equilibrium, a theoretical concept in 

game theory in which both players play perfectly and reach a state where changes in strategy would lead to 

inefficiencies. This results in the generation of high-quality, realistic samples as both networks 

progressively improve their respective abilities. 

 

Formula 3         Minimax objective function for optimal discriminator  

As for our main purpose of data imputation, we can make a reference to the framework utilised within 

Generative Adversarial Imputation Nets (GAIN) [8], which employs a random mask to simulate missing 

data. However, instead of utilising a random mask, we propose using a static mask that specifically 

represents the wavelength range of the instrument used for the spectra to be retrieved, in our case the James 

Webb Space Telescope (JWST). This approach allows for a more focused application of our model. 

Additionally, it is theoretically possible to implement a different mask for retrieving data from other 

instruments, such as the Hubble Space Telescope's Wide Field Camera 3 (HST WFC3). 
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Figure 7          Mask for spectral data (left: random mask, right: specialised mask) 

I first tried out this model with a DCGAN, one of the most commonly used GAN architecture-types, 

standing out as a simple yet effective choice. DCGAN is a convolutional neural network, which differs 

from a vanilla GAN in that it specialises more in visuals. Specifically, a convolutional neural network 

makes use of a convolution filter or a multi-dimensional vector representation to extract specific features 

such as edges or textures from the input data. Although the spectral data is 1 dimensional, it can be encoded 

using a 2D image such that we can fully exploit the feature extracting prowess of the DCGAN. 

 

To preprocess the data, I first normalised the data and converted it into a pixel grid. The difference can be 

observed below.  

 

Figure 8                 Spectrum converted into image for GAN (left: masked, right: unmasked) 

I then trained the DCGAN to recreate the image on the right given the image on the left by adding the initial 

input into the output, masking the generated spectrum for 20 epochs. I obtained the following terrible 

looking result on a benchmark spectrum: 20
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Figure 9                              GAN result after 20 epochs  

From this result, it was apparent that the GAN reconstruction was slightly offset from that of the real spectra, 

leading to this unfortunate result. To fix this, I attempted to add a baseline calibration unit to the generator, 

which has trainable offset and scale parameters to remedy this issue. However, the end result got worse, as 

it appeared the GAN had likely experienced mode collapse, where it found a certain number of suitable 

modes of data distribution rather than capturing the full diversity of the target distribution for the baseline 

calibration.  

 

Figure 10                                       GAN results with baseline calibration 

As a result, I decided that it was likely a problem with the architecture itself, and decided to experiment 

with other architectures. 

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



 

U-Net is another particularly promising architecture due to its unique design and capabilities, which can 

be effectively leveraged in the context of generative tasks. Its distinctive feature is the U-shaped structure, 

which consists of a contracting path to capture context and a symmetric expanding path that enables 

precise localization. This architecture is particularly advantageous for tasks involving image-to-image 

translation, as it effectively combines low-level features from earlier layers with high-level features from 

later layers. In the context of spectra generation, U-Net's ability to retain spatial information while 

generating outputs makes it a strong candidate for producing high-fidelity spectral data. Its skip 

connections facilitate the transfer of detailed information, resulting in more accurate reconstructions of 

spectra. 

 

Figure 8          DCGAN (left) vs U-Net (right) architecture 

 

I also decided to try out an Attention-based generator, which utilises an attention block, allowing the 

model to focus on specific parts of the input data when making predictions. This means that the neural 

network may potentially be able to focus on the specific positions where the mask transition occurs (i.e. 

the edges of the input), potentially allowing it to gain an edge over the other models. I decided to utilise 

comparison metrics of MSE, MAE and a custom metric of spectral continuity to prevent the sharp dropoff 

that occurs at the mask boundaries.  

 

Formula 4             Spectral continuity metric 

However, this ended up being obsolete as shown below.  20
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Figure 9                  Model comparisons 

 

Although not easily observed due to the incredibly high outliers, UNet comes out on top in terms of both 

the median, where it narrowly beats the Attention and DCGAN in MAE and spectral continuity and loses 

to Attention in MSE by a small margin.  

 

As a result, I decided to conduct a hyperparameter search on the UNet, obtaining an optimal learning rate 

of 0.00005, ReLU activation, 2 residual blocks and instance normalisation. Additionally, in an attempt to 

fix the issue of the misaligned reconstructions, rather than simply using a combination of the F1 loss and 

adversarial loss, I chose to include the spectral continuity metric in addition to a new physics-based loss: 

 

Formula 5                     GAN Loss 

This led me to obtain the following results:  
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Figure 10                   GAN w/ loss + modifications 

To enhance the reconstruction quality, I opted to implement pretraining for the GAN. Specifically, I pre-

trained the model for 10 epochs to ensure that the discriminator does not become overly dominant, which 

could hinder the generation of accurate losses.  

 

Figure 11                              Final GAN output 

With these new modifications, I was able to achieve a 98.5% reconstruction accuracy compared to an initial 

85.4% from the start of the experimentation.   
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3.3.3 Validation 

To benchmark this entire process, I decided to take the trained GAN and VAEs and combine them into 

the pipeline, before using 1000 spectra to test their reconstruction loss. I was able to obtain a spectacular 

99.05% average reconstruction accuracy according to Formula 2 (1 - RMSE). An example of the 

retrieved spectra can be found below. 

 

Figure 12                        Example of generative pipeline output 

 

3.4 Parameter Retrieval 

The key difficulty in performing parameter retrievals for spectral data lies in the high dimensionality of 

parameter spaces and complex distributions that can arise from the complex models used to generate 

them. The ultimate goal of a parameter retrieval is to identify the most likely parameter values given some 

data. However, in the case of complex distributions, multiple modes may exist, making a single prediction 

insufficient. Such an oversimplification fails to capture the full complexity of the underlying data. 

As a result, the underlying distribution must be obtained, and this can be solved using the Bayesian 

paradigm. Bayesian inference is a statistical approach that incorporates prior knowledge or beliefs about 

parameters along with observed data to update our beliefs in light of new evidence. It is grounded in 

Bayes' theorem, which provides a mathematical framework for this updating process.  

 

Formula 6          Bayes’ Theorem 20
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Bayes’ theorem states that the posterior probability 𝑃(𝜃|𝐷) of the parameters given data 𝐷 can be 

represented in the form of likelihood 𝑃(𝐷|𝜃), the probability of observing the data given the parameters, 

multiplied by the prior probability 𝑃(𝜃), reflecting our prior beliefs about the parameters all divided by 

the marginal likelihood or evidence 𝑃(𝐷) which normalises the posterior. This provides a concrete 

mathematical framework that can be used to obtain the underlying distribution given that 𝑃(𝐷|𝜃) can be 

calculated.  

However, in the case of complex forward models such as those present in atmospheric spectra 

simulations, the likelihood 𝑃(𝐷|𝜃) is intractable, meaning it cannot be computed analytically. The 

introduction of simulation-based inference methods address these challenges fully, allowing for the 

approximation of the posterior distribution without needing to directly compute the likelihood, hence 

bypassing the main issue.  

3.4.1 Neural Posterior Estimation 

Whereas traditional simulation-based inference methods such as Monte Carlo Markov Chain estimation 

utilise nested sampling, where they sample the posterior repeatedly to obtain the approximate underlying 

distribution, recent developments in simulation-based inference methods have allowed for deep learning 

to generate large computational efficiencies.  

 

An important concept in simulation based inference is the idea of a normalising flow [13], which can be 

used to generate the complex posteriors required. The concept can be formalised as follows:  Let 𝑧 be a 

random variable with a simple base distribution 𝑝(𝑧). A normalising flow transforms 𝑧 into a more 

complex random variable 𝑥 through a series of 𝐾 invertible and differentiable transformations 𝑓𝐾.  

 

Formula 7           Normalising Flow  

 

Figure 13           Example of normalising flow 20
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Each transformation 𝑓𝐾 gradually increases the complexity of the distribution, and the probability density 

of the transformed variable 𝑝𝑥(𝑥) can be computed using the change of variables formula.  

 

Formula 8           Change of variables formula 

The crucial properties of the normalising flow are invertibility, which allows for efficient sampling from 

𝑝𝑥(𝑥) by first sampling from the base distribution 𝑝𝑧(𝑧) and then applying the inverse transformations 

𝑓𝑘
−1. It also allows for efficient evaluation of the density 𝑝𝑥(𝑥) by computing the Jacobian determinant of 

the inverse transformations. 

However, normalising flows can be computationally expensive. An alternative, known as neural posterior 

estimation [14], learns a conditional normalising flow that directly maps from observed data to posterior 

distributions. This amortisation allows for rapid inference on new observations once the model is trained, 

significantly reducing computational costs for multiple retrievals.  

Neural posterior estimation is also particularly well-suited for simulator based models, where the 

likelihood is intractable but sampling from the forward model is possible. This makes it highly applicable 

to atmospheric retrieval problems where complex physical models are involved. As for training, the KL 

divergence between the true posterior 𝑝(𝑥|𝑧) and estimation 𝑞(𝑥|𝑧) produced by the normalising flow is 

minimised, or 

 

Formula 9           KL Divergence formula 

To efficiently optimise the KL divergence during training, the loss function can be rewritten using Bayes' 

theorem as  

 

Formula 10           Optimised formula for training 

Here, the training data is generated first by sampling parameters x from the prior p(x), then simulating the 

data z from the likelihood p(x|z). This allows the neural network to learn a flexible, normalising flow-20
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based representation of the posterior without requiring explicit likelihood evaluations. However, neural 

posterior estimation is an amortised estimator, meaning it is written to be generalised to many 

observations and requires a large dataset. This problem can be solved using an alternative approach.  

3.4.2 Sequential and Truncated Methods 

Whereas neural posterior estimation models are trained with a fixed set of simulations drawn from the 

prior and likelihood and can generate posterior samples for any observation x after training, sequential 

neural posterior estimation [15] proceeds in multiple rounds, with each round drawing parameters from 

the proposal distribution, generating simulations and updating the estimator using the data collected at 

each point. The proposal distribution is also refined to focus on more relevant regions of the parameter 

space, meaning it is more tailored to retrieve posterior samples for the observation of interest rather than 

any new observation outside of the relevant parameter space. The differences can be observed in the 

diagram below. 

 

Figure 14            NPE vs SNPE training process 
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This singular change means that a large and computationally costly dataset is no longer needed, and this 

non-amortised approach also allows for greater accuracy around the particular observation and less 

samples needed.  

A new truncated alteration of the SNPE algorithm has also proven to be an attractive alternative. Known 

as Truncated Sequential Neural Posterior Estimation or TSNPE [16], it aims to overcome some of the 

limitations of previous SNPE methods while maintaining their efficiency. 

The key modification lies within the use of truncated proposal distributions. Rather than sampling from 

the full prior or previous posterior estimate, TSNPE samples from a truncated version of the prior. This is 

carried out through the definition of a proposal distribution proportional to the prior, but only within a 

certain region called the Highest Probability Region (HPR), defined as the smallest region containing a 

certain fraction (1 − 𝜀) of the mass of the current posterior estimate. As a result, the parameters sampled 

from the prior are only accepted if they lie within the HPR of the current posterior estimate, creating a 

truncated proposal distribution proportional to the prior within the HPR. This means that unlike other 

SNPE methods requiring complex loss modifications, TSNPE allows training the neural density estimator 

with a simple maximum likelihood objective in all rounds.  

 

Figure 15            Illustration of truncated prior 

 

Formula 11           Log-likelihood loss function for TSNPE 

Another advantage of TSNPE is that it speeds up computation time, as it leads to prior samples outside of 

the approximated posterior being rejected, leading to decreased sample sizes and greater efficiency.  

In addition to TSNPE, I decided to explore a score-based method pioneered by Sharrock et al. [3], which 

leverages score-based diffusion models to estimate the posterior's score rather than sampling directly from 20
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the posterior estimate. This innovative approach transforming samples from the target posterior into a 

tractable reference distribution has demonstrated significant promise, particularly in high-dimensional 

retrieval tasks, suggesting that it may offer enhanced performance compared to traditional sampling 

methods. To investigate the efficacy of these advanced methods, I will conduct a series of experiments 

comparing the performance of TSNPE and the score-based approach against traditional SNPE techniques. 

The results of these experiments will provide insights into their relative strengths and applicability in 

various scenarios. 

 

Figure 16              Diagram representing SNPSE process (obtained from L. Sharrock et al [3]) 

 

Figure 17                  SNPSE Loss function (obtained from L. Sharrock et al [3])  

 

3.4.3 Model Selection 

To test these models, I utilised the sbi package [26] to implement the algorithms of TSNPE, SNPE and 

TSNPSE. In order to ensure that the neural posterior estimation models were sufficiently apt in their 

predictions, I utilised a custom neural spline flow based density estimator, with the implementation 

architecture detailed below detailed below: 
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Table 5                          Density estimator with neural spline flows: architecture 

 

To carry out the trials, I first generated a simple spectrum with a limited number of parameters compared 

to the simulation dataset. The ground truth can be found below. 

 

Table 6                               Ground truths for simulated observation 
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Figure 18                  Simulated spectrum with above parameters 

Ultimately, I obtained incredibly complex posteriors for both TSNPE and SNPE. However, the results 

obtained for TSNPSE were completely different, as it returned comparatively Gaussian-like posteriors, 

likely a result of its score-based diffusion model. A comparison between the results generated by corner 

[27] obtained by each model can be found below, where the predictions are located above the histograms 

with the numbers beside them representing +1σ and -1σ values. The true values are also shown by the 

blue lines.  
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Figure 18                     Posteriors obtained using SNPE 

These posteriors above from SNPE demonstrate its capability to produce complex, multimodal posteriors, 

as can be observed in the contour plots in the lower section. The simulation-based inference methods also 

allow for uncertainty estimation, as can be seen by the +1σ and -1σ values demonstrating greater 

confidence in the parameters which are predicted with greater accuracy, and lower confidence in the 

parameters predicted with lower accuracy.  
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Figure 19                                    Posteriors obtained using TSNPE 

The TSNPE process also demonstrates the same capabilities, due to the fact that it utilises the same base 

algorithm to predict the spectra. However, its use of truncated proposals means it had almost half the 

training time, which makes it impressive that it is able to produce these posteriors as well. It also appears 

to have higher confidence in general compared to the SNPE results from earlier.  20
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Figure 20                            Posteriors obtained using TSNPSE 

Finally, the TSNPSE returned incredibly clean posteriors that lack any sign of multimodality. This is 

likely due to its score-based nature and transformation of samples from the target posterior to a tractable 

reference distribution, leading to a cleaner, simpler distribution. Compared to the other models, this model 

exhibits a significant capability in predicting the parameter values with greater accuracy, although its 

wide uncertainties are a large downside.  
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Table 7          Accuracy and Training Time across Models + Mean Absolute Percentage Error Formula 

As can be observed in the table above, TSNPE generally performed the best with an accuracy of 88.7%, 

whilst SNPE obtained an accuracy of 87.0% and TSNPSE was worse by a decent margin at an accuracy 

of about 86.1%. TSNPE not only has more accurate parameter predictions, but also has a lower training 

time, beating SNPE by 31% in computation time.  

However, it appeared that SNPE performed the best during simulations, as it doesn’t require any 

truncated proposals which take quite long to sample from in order to generate the spectra. TSNPSE also 

likely has a more straightforward training approach, leading to a lower training time.  

Despite its lack of confidence in its posteriors though, TSNPSE does indeed demonstrate the most 

accurate posteriors for the mix ratios of the parameters, as can be observed by the clear fact that the 

modes of the histogram occur at the specific bins that contain the parameter values.  

 

This demonstrates that TSNPSE is indeed a promising candidate for potential future improvements, when 

we are able to make more modifications to the model and perform a hyperparameter sweep. However, in 

the meantime, it is clear that TSNPE is the optimal model, and we will perform evaluations with this 

model in the proceeding sections.  
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4 Evaluation 

 

To demonstrate the performance and viability of the end-to-end FlexARE framework, we conducted a 

comprehensive case study on a complex, 15-parameter simulated observation. The raw, noisy spectrum 

was first processed by our generative module to produce a clean, high-fidelity input for the inference 

engine, which took approximately 2 seconds. The ground truth parameters and final reconstruction can be 

seen below: 

 

Table 8            Ground truth for final spectrum 

 

Figure 21                               Final reconstructed spectrum  
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4.1 Retrieval Accuracy and Posterior Quality 

To retrieve the spectra, the preprocessed spectra was put into the SBI backend, where the TSNPE model 

was then run for 10 rounds with 1500 simulations per round to retrieve the atmospheric parameters. The 

entire process, from noisy spectrum to final posterior, serves as a proof-of-concept for the full pipeline. 

 

 

Figure 22                     Final TSNPE posteriors for pre-processed spectrum 

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



 

 

Table 9                   Final prediction results for preprocessed spectrum 

We obtain incredible results from the FlexARE retrieval for the key parameters (those determining the 

temperature and molecular composition). As shown in Table 9 and the posterior distributions in Figure 

22, the framework successfully constrained the vast majority of the 15 atmospheric parameters. However, 

it is apparent that the prediction values for the lee-mie scattering and radius (which is quite unusual) is 

uncertain. However, during typical retrievals, this value is often already known. As a result, in the 

calculations for the accuracy, I chose not to include this value. The values which are not as accurate also 

have wider posteriors, indicating that the values are uncertain.  

The retrieved values are well-centred on the ground-truth, leading to a final mean parameter accuracy 

of 89.2%. This high accuracy on a complex, high-dimensional problem validates the design of both the 

generative pre-processor and the SBI back-end. The posteriors are well-behaved and provide meaningful 

uncertainty quantification for the retrieved parameters 
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5 Conclusion and Future Works 

In this work, we have designed, implemented, and validated FlexARE, a novel, two-stage framework for 

exoplanet atmospheric retrieval that decouples data conditioning from inference. Through a 

comprehensive case study on a complex 15-parameter problem, we have demonstrated that our end-to-

end pipeline is both accurate and computationally efficient. The framework achieved a high parameter 

retrieval accuracy of 89.2% while being several orders of magnitude faster than classical gold-standard 

methods like MultiNest. This result serves as a successful proof-of-concept, showing that our modular 

architecture is a viable and powerful solution for tackling the challenges of next-generation exoplanet 

spectroscopy and offers many advantages. 

First, FlexARE is accurate. FlexARE’s preprocessing module enables the removal of noise from 

obtained spectra and the imputation of missing data, allowing for re-correction of inaccurate data to an 

accuracy of 99.05%. Additionally, the usage of posterior estimation methods leads to the ability to obtain 

uncertainty estimates, allowing for better understanding and evaluation of the parameters that have led to 

the creation of the spectra.  

Second, FlexARE is fast. FlexARE only took ~500 CPU hours in total, with ~150 used for dataset 

generation,  ~130 for training the autoencoder, ~150 for training the GAN and ~70 for the training the 

sequential model. The generation of the dataset can be easily parallelised on CPU clusters (as I have done 

here) and model training can be easily optimised on GPUs. Although I was originally going to use 

MultiNest to obtain a proper benchmark for the spectra, it ultimately took too long, as even after 48 hours 

(or ~1800 CPU hours) of sampling (with a reduced number of parameters i.e. 12 parameters) the model 

still hadn’t converged. As a result, (due to the impending deadline) I have chosen to make an estimation 

instead. As shown in M. Vasist et al. [7], when retrieving the same amount of parameters, MultiNest is 

said to have used about 60000 CPU hours to converge. However, it does indeed utilise a more complex 

forward model, taking ~5s on average compared to ~1s with our current forward model. Hence, we obtain 

a lower and upper bound of 1800 CPU hours and 12000 CPU hours. This means that this pipeline 

achieves a minimum speed up of 3.6 times or 360% over MultiNest given the lower bound, and possibly 

24 times or 2400% given the upper bound. If the upfront training times for the VAE and GAN are 

removed, the speedup could be up to ~26-171 times faster. This means that FlexARE may even be able 

to be performed on home electronics in reasonable time periods.  

 

Third, FlexARE is flexible. Its modular structure and lack of dependencies between the units mean that 

one may easily be exchanged for another. For example, rather than TSNPSE, we could utilise an 20
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amortised training method instead, using the noise processing module to preprocess the observation. This 

not only means a reduced dataset size due to not having to generate noisy copies of the data, but also 

leads to more accurate results. Additionally, multiple modules could be added, meaning the pipeline can 

allow for multiple noise profiles from multiple instruments simply by adding more autoencoders, or 

introducing a multi-view autoencoder that can handle all noise profiles without issue. This means that 

multiple observations from multiple instruments could potentially be combined into one. Additionally, 

each separate model can be trained and optimised individually to allow for greater efficiency.  

 

Through these various benefits, FlexARE opens up the possibility of having and even combining more 

sources of data (such as from amateur astronomers, as the preprocessing module can allow for high signal 

to noise (SNR) ratios) in addition to allowing for more efficient exploration of exoplanetary atmospheres.  

 

However, FlexARE does indeed still have its flaws. Most importantly, the method in which data, inputs 

and outputs are transferred between the different modules are important and may lead to extra 

hyperparameters involved and more complex modifications compared to single models. Additionally, the 

lack of dependencies between the modules means that loss cannot propagate through the entire model, 

meaning certain optimisations cannot be achieved. This issue could potentially be resolved through 

implementing learnable normalisation layers between the modules after each model is individually trained 

and optimised, allowing for the loss propagation and simplifying the different data normalisation 

processes that may be used within each model.  

In terms of the explorations of different modules, it is clear that there are definitely ways to refine this 

model tremendously in the future. For example, we can experiment with adding in different autoencoder 

models for different noise profiles, and even incorporate a multi-view variational autoencoder [28] due to 

it allowing for learning joint representation of multiple modalities (in this case noise profiles) of data. As 

for the GAN, we can experiment with adding masks other than JWST such as for the Hubble Space 

Telescope spectra or even future ARIEL spectra wavelengths. However, a better option would be to 

simply implement the GAIN [8] algorithm, allowing for completion of even patchy spectra and the 

combination of multiple observations from multiple instruments. This may even allow amateur 

astronomers to submit their own data and have it be used for atmospheric retrievals if a web interface is 

created.  

 

In the case of the retrieval module which utilises simulation-based inference methods, there also exist 

many methods that allow for non-amortised retrievals based on multiple observations, such as flow 20
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matching posterior estimation (FMPE) [29] and Partially Factorised Neural Posterior Score Estimation 

(PF-NPSE) [30].They both stand out in their ability to perform inference on high-dimensionalities of data. 

Specifically, FMPE allows for unconstrained architectures, enabling exact density evaluation and fast 

training, having been shown to reduce training time and increase scalability. On the other hand, PF-NPSE 

[30] allows for the aggregation of an arbitrary number of observations at inference time whilst requiring a 

low number of simulator calls. This means it avoids the limitation of standard inference methods as well 

whilst remaining sample efficient. In addition to TSNPSE, the above models can be further explored and 

optimised. 

 

Finally, a web interface in combination with a module can be developed to allow amateurs and scientists 

alike to utilise this framework conveniently, similar to the ones found at online in the exoplanet 

characterisation toolkit by the space telescope science institute (ExoCTK by STScI) [31]. 

 

Extra Notes 

The code be uploaded onto the github here as soon as it has been tidied and written into a package. 

Further concrete results will also be found in an extra folder. 

https://github.com/cookie-is-yummy/FlexARE 
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