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Abstract

This paper presents a comparative analysis of two momentum-based trading
strategies: a traditional rule-based approach using mean-variance optimization
and a machine learning approach utilizing the XGBoost algorithm. The rule-
based strategy selects stocks based on recent short-term returns and applies mean
variance optimization to enhance portfolio construction. Although this method
achieved lower overall returns (17.55%), it demonstrated a more stable risk-
adjusted performance, with a maximum drawdown of -68.35% and a return-to-
drawdown ratio of 0.26. However, its effectiveness is constrained by idealized
assumptions, such as normally distributed returns and static covariances, that of-
ten fail under real-world market dynamics.

In contrast, the XGBoost-based strategy, which learns from historical price and
volume data to forecast short-term returns, achieved stronger predictive perfor-
mance. It generated a cumulative return of 40.43% and a higher return-to-
drawdown ratio of 0.31, although this came with a significantly greater downside
risk, reflected in a maximum drawdown of -84.45%. These results underscore the
fragility of machine learning models in volatile environments, despite their ability
to uncover complex return signals.

Overall, this study highlights the trade-offs between traditional financial models
and machine learning approaches in momentum investing. While each offers dis-
tinct advantages, future research should explore hybrid strategies that combine
statistical discipline with machine learning flexibility, as well as alternative mod-
els such as neural networks to improve robustness in dynamic market conditions.
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Commitments on Academic Honesty and Integrity
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1 Introduction

Momentum investing, anchored in the observation that assets with strong recent performance tend to
continue outperforming in the short term, remains a cornerstone of quantitative finance (1). Momen-
tum strategies exploit behavioral inefficiencies such as investor herding and delayed price reactions.
While empirical studies have validated the profitability of these strategies across time periods and
markets (2), their effectiveness often diminishes in the presence of sudden reversals, high volatility,
or regime shifts (3).

Traditional implementations typically rely on simple rules, such as ranking stocks by recent returns
and forming equally weighted portfolios from the top or bottom performers. While transparent and
easy to execute, these rule-based approaches may overlook important risk factors and fail to capture
the complexity of real-world market behavior.

Recent research has shown that machine learning models, particularly decision trees and neural
networks, significantly outperform traditional linear return forecasting methods in empirical asset
pricing (4). However, there is still a lack of direct comparison between these models and classical
portfolio construction frameworks, such as Markowitz’s mean-variance optimization, particularly
within the context of momentum-based investing.

To address these limitations, this study compares two enhanced approaches to momentum investing:
one grounded in classical financial theory and the other driven by modern machine learning.

The first enhancement applies Markowitz’s mean-variance optimization to a momentum selected
stock pool, assigning risk adjusted weights in an effort to improve portfolio efficiency. This method
aims to maximize expected return for a given level of volatility. However, its practical effectiveness
is often constrained by strong assumptions, such as normally distributed returns, static covariances
and frictionless markets, which rarely hold in dynamic financial environments.

The second approach employs XGBoost, a powerful ensemble learning algorithm increasingly used
in finance for return prediction, risk classification and portfolio construction. Capable of modeling
complex, non-linear relationships in historical price and volume data, XGBoost provides strong pre-
dictive performance and insights through feature importance ranking. Nevertheless, it also presents
challenges: a tendency to overfit noisy financial data, limited interpretability and the absence of
built-in risk controls that are essential in real-world portfolio management.

By evaluating these two enhancements within the context of short-term momentum strategies, this
paper aims to assess their relative effectiveness in balancing predictive accuracy with practical risk
management. Ultimately, these findings can contribute to the broader discussion on how traditional
financial models and machine learning can be integrated in the evolution of quantitative investing.

1.1 Overview

This paper investigates the comparative effectiveness of two enhancements to momentum-based in-
vesting: a risk-optimized approach using classical Markowitz’s Modern Portfolio Theory and a pre-
dictive, data-driven method using XGBoost. While both techniques are applied within a short-term
momentum framework, they reflect contrasting philosophies: one grounded in statistical portfolio
construction, the other in machine learning-driven return forecasting.

The objective is to assess how each approach balances return potential with risk control when applied
to momentum investing. Through empirical evaluation, the study aims to clarify their respective
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advantages and limitations in order to contribute to the evolving dialogue on blending traditional
financial models with modern data science in quantitative asset management.

2 Approach

The baseline momentum strategy in this study involves systematically buying stocks with the highest
or lowest returns over the past five trading days, assuming that recent trends may continue. Portfo-
lios are rebalanced every five days, selecting ten stocks based on their short-term performance and
allocating equal weights. This rule-based approach serves as a control to assess the value added by
more advanced techniques like mean-variance optimization and machine learning.

The data used for all strategies in this study is drawn from China’s A-share market, covering a 17
years time period from 2007 to 2024. This dataset was chosen for its long historical span and the A-
share market’s relative structural stability compared to more volatile indices such as the NASDAQ,
making it a suitable environment for testing momentum-based strategies.

This section outlines the two primary methodologies evaluated in this study: a rule-based mean-
variance optimized approach and a machine learning approach utilizing XGBoost. The rule-based
method selects stocks based on historical return rankings, offering simplicity and transparency, while
the XGBoost model leverages data-driven insights to forecast short-term returns with greater flexi-
bility and predictive accuracy. Each strategy is used to identify and re-balance a momentum driven
portfolio and is assessed for its ability to capture return patterns and manage risk.

2.1 Markowitz Based Rule Approach

This strategy enhances a traditional momentum screen by combining quantitative analysis to identify
optimal return percentiles with Markowitz’s Modern Portfolio Theory, aiming to improve portfolio
efficiency through both targeted stock selection and risk-adjusted weight allocation. Specifically,
statistical evaluations are used to determine which decile ranges historically offer the best trade-off
between return and risk, while mean-variance optimization further refines the portfolio by adjusting
weights to optimize the balance between expected return and risk.

• Data collection and return calculation: Every five trading days, closing prices are col-
lected for all stocks. Returns are computed using a 5-day look-back window:

Ri =
Pi,t − Pi,t−5

Pi,t−5

Where Ri is the return of stock i and Pi,t, Pi,t−5 denote its price at time t and t − 5,
respectively.

• Stock ranking and selection: Stocks are ranked by 5-day returns and grouped into deciles.
A quantitative screen evaluates each group’s historical performance, identifying the decile
with the best return-risk profile. A simple backtest of cumulative return and maximum
drawdown for each decile group was used to evaluate risk-return trade-offs and select the
most favorable percentile range. The 10 stocks from this decile are then selected for the
portfolio.

• Portfolio optimization (mean-variance): For the selected stocks, an additional 30 days
of historical data is collected. Expected returns and the covariance matrix are computed to
capture both average performance and risk relationships among assets.

5
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Using this information, weights are optimized via the Markowitz mean-variance framework
to maximize expected return for a given level of risk:

min
w

1

2
wTΣw − λwTµ subject to

∑
wi = 1, wi ≥ 0

Where µ is the vector of expected returns, Σ is the covariance matrix and λ denotes risk
aversion.

• Portfolio construction: Funds are allocated to the selected stocks according to the opti-
mized weights. The portfolio is held for five trading days.

• Rebalancing: After five days, all positions are liquidated. The process then restarts using
updated return rankings.

• Performance evaluation: The strategy is evaluated over time using cumulative return,
maximum drawdown and Sharpe ratio:

– Sharpe ratio:

S =
Rp −Rf

σp

Where Rp is portfolio return, Rf is the risk-free rate and σp is the standard deviation
of returns.

Although default hyperparameters were used, the model’s performance could potentially be im-
proved with hyperparameter tuning and cross-validation, which were left for future work due to
computational constraints. This rule-based approach retains the momentum signal but refines port-
folio construction through statistical optimization, aiming to balance return and risk more effectively
than equal weighting.

2.2 Machine Learning Based Approach: XGBoost

XGBoost (Extreme Gradient Boosting) is a high-performance ensemble learning algorithm known
for its predictive accuracy and scalability. Unlike traditional statistical models, XGBoost constructs
an additive ensemble of decision trees, where each successive tree corrects the residuals of the
current model (5). In this study, XGBoost is employed as a supervised learning approach aimed
at predicting short-term stock returns using historical price and volume data. This allows for the
identification of the most promising stocks to hold over 5-day trading windows.

The prediction for a given input xi is modeled as the sum of outputs from K regression trees:

ŷi =

K∑
k=1

fk(xi), fk ∈ F (1)

The objective function to be minimized includes a loss function and a regularization term:

Obj =
n∑

i=1

ℓ(yi, ŷi) +

K∑
k=1

Ω(fk) (2)

Here, ℓ is typically the mean squared error for regression tasks. The regularization term Ω(fk)

penalizes model complexity:
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Ω(fk) = γT +
1

2
λ

T∑
j=1

w2
j (3)

Where T is the number of leaves, wj the weight of leaf j and γ and λ are regularization parameters.
This framework balances predictive accuracy and model generalizability.

• Data collection: Gather 30 days of historical K-line data (open, close, high, low prices and
volume) for each stock.

• Input construction: The XGBoost model is trained on 30 days of market data per stock,
including price points and volume. Each row captures a stock’s daily behavior, with the
output predicting its movement over the next five days.

Table 1: Structure of the Input and Output Data Used for XGBoost Modeling

P 1
1,o · · · P 30

1,o P 1
1,c · · · P 30

1,c P 1
1,h · · · P 30

1,h P 1
1,l · · · P 30

1,l V 1
1 · · · V 30

1 Y11

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

P 1
2,o · · · P 30

2,o P 1
2,c · · · P 30

2,c P 1
2,h · · · P 30

2,h P 1
2,l · · · P 30

2,l V 1
2 · · · V 30

2 Y21

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

P 1
n,o · · · P 30

n,o P 1
n,c · · · P 30

n,c P 1
n,h · · · P 30

n,h P 1
n,l · · · P 30

n,l V 1
n · · · V 30

n Yn1

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

Input Output

Table 1 represents the structure of the input and output data used in XGBoost modeling where input
variables P denote price and V denote volume. The superscript indicates the trading day. The first
subscript refers to stock number while the second subscript o, c, h, l represents, open, close, high
and low respectively. Y is the output, indicating the predicted price movement.

• Labeling: Define the output as the future 5-day return.

• Training: Train the XGBoost model using labeled A-shares stock data.

• Prediction and ranking: Predict returns for each stock and rank them by forecasted return.

• Portfolio construction: The top 10 stocks are selected and invested in with equal weight-
ing for a 5-day holding period.

• Remodeling: After five days, all positions are liquidated and the process restarts using
updated stock data.

• Performance evaluation The strategy is evaluated over time using cumulative return and
maximum drawdown:

– Cumulative return (machine learning):

Rt =

T∏
i=1

(1 + ri)− 1

Where ri is the portfolio return for each 5-day window. Stocks are held equally for
each cycle based on the top 10 predicted returns.

7
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2.3 Evaluation Metrics

Cumulative Return: Measures the total return from the start of an investment to a given point,
reflecting overall strategy performance (6). Calculated as:

Rcumulative =
Vt − V0

V0
(4)

Where Vt is the value of the portfolio at time t and V0 is the initial investment amount.

Maximum Drawdown: Indicates the largest drop from peak to trough, used to capture the portfolio’s
risk. Calculated as:

Max Drawdown = max
t∈[0,T ]

(
Vpeak − Vt

Vpeak

)
(5)

Where Vpeak is the highest portfolio value during the period and Vt is the portfolio value at time t.

3 Results

My analysis began with an exploration of recurring price patterns in 5-day candlestick sequences,
which revealed four typical motifs: consecutive gains, gains followed by losses, losses followed by
rebounds and consecutive losses. These patterns suggest a mix of short-term trend persistence and
rapid reversals, enough to support the use of a 5-day momentum screen, but also volatile enough to
highlight the importance of managing downside risk.

To test the viability of short-term momentum, I examined two baseline strategies: selecting the top
10 highest-returning stocks and the 10 lowest over the prior 5-day window. While the low-buy
strategy appeared promising at first, both approaches ultimately performed poorly over the 17-year
backtest. The high-buy strategy exhibited minimal growth from the outset and the low-buy portfolio
eventually reversed its early gains.

These results demonstrate the limitations of relying solely on recent returns as a predictive signal.
Short-term performance often reflects temporary cyclical expansion rather than sustained structural
trends where prices frequently revert as market sentiment stabilizes. This cyclical behavior, often
disconnected from underlying fundamentals, can erode momentum-based returns if left unchecked.

While momentum remains a well-established phenomenon in financial literature, these findings sug-
gest that naive implementations, such as selecting stocks purely on 5-day past returns, may fail to
capture its deeper structure and are particularly vulnerable to short-term volatility and noise: an ob-
servation consistent with Barroso and Santa-Clara’s findings on momentum crash risk and fragility
in volatile regimes (3).

Recognizing this, I introduced mean-variance optimization and machine learning based stock selec-
tion as enhancements to the core momentum framework. These methods aim to counter the insta-
bility of raw return signals by improving portfolio construction and sharpening prediction accuracy,
providing a more robust foundation for consistent, long-term performance.

3.1 Rule-Based Strategy

This section evaluates the performance of the rule-based strategy. Stocks were first screened using
a short-term momentum signal, based on 5-day return rankings, and grouped into deciles to iden-
tify favorable return-risk profiles. From the best-performing decile, a portfolio of ten stocks was
constructed using equal weighting. The strategy’s effectiveness was assessed through key metrics

8
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including cumulative return, maximum drawdown and return-to-drawdown ratio, providing insight
into the strengths and limitations of naive momentum-based selection when applied to dynamic
market conditions.

(a) High-to-low (b) Low-to-high

Figure 1: Cumulative return for high-to-low and low-to-high ranking approaches.

(a) High-to-low (b) Low-to-high

Figure 2: Maximum drawdown for high-to-low and low-to-high ranking approaches.

(a) High-to-low (b) Low-to-high

Figure 3: Return-to-drawdown ratio for high-to-low and low-to-high ranking approaches.
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Figure 1 analyzes cumulative return for the two ranking approaches across 1,100 stocks grouped
into deciles: (a) shows the high tolow ranking based on 5-day past return, while (b) presents the
low-to-high ranking. Figure 2 presents maximum drawdown for the same approaches, with (a) cor-
responding to high-to-low and (b) to low-to-high. The return-to-drawdown ratio in Figure 3 follows
the same structure, with (a) for high-to-low and (b) for low-to-high. For the high-to-low approach,
all three metrics—cumulative return, maximum drawdown, and return-to-drawdown ratio—exhibit
a broadly similar pattern. Each begins at a relatively low value in the first decile group, peaks in the
71st-80th interval, and then declines in the later deciles. By contrast, the low-to-high approach dis-
plays the reverse behavior: values for all three metrics start at their lowest point in the early intervals
and gradually increase across the ranking spectrum, suggesting a more monotonic improvement as
one moves toward higher-ranked deciles.

These patterns suggest that stocks temporarily depressed by cyclical factors, such as sector rotation
or short-term sentiment, tend to rebound, while those suffering from deeper structural issues, like
deteriorating fundamentals or inefficiencies, are more likely to experience lasting declines. This is
reflected in (Figure 1b), where the initial low-return group likely consists of structurally impaired
firms that have failed to recover. The subsequent spike in returns appears to capture stocks rebound-
ing from cyclical lows, an effect that is often short-lived. Conversely, (Figure 1a) shows that stocks
at the start of the distribution likely benefited from temporary cyclical strength, which quickly fades
over time. Given the long-term stability of the A-shares index, the relative balance observed may
result from structural losses in these declining firms being offset by gains from new market entrants.
As a result, stocks in the mid-range growth deciles are less influenced by structural extremes and
more shaped by short-term cyclical fluctuations. This reinforces the notion that extreme recent per-
formance, whether high or low, often fails to persist in the short term, limiting the reliability of
simple momentum-based selection.

3.1.1 Mean-Variance Weighting

Figure 4: Efficient frontier showing the risk-return profiles
of 10 selected stocks.

Figure 4 depicts the efficient fron-
tier, illustrating the trade-off between
risk and return for portfolios com-
posed of 10 stocks selected during
the quantitative screening stage on
June 24, 2020. Each point corre-
sponds to a unique weight alloca-
tion, with the red star marking the
portfolio that achieves the highest
Sharpe ratio. This point represents
the optimal balance between return
and risk, offering the most efficient
risk-adjusted performance among all
portfolios considered.

This reflects the momentum-based strategy’s premise that optimizing weights via mean-variance
methods can improve performance. By calibrating the balance between return and risk at this opti-
mal point, such portfolio construction may enhance robustness under varying market conditions.
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3.1.2 Comparison

Figure 5: Comparison of cumulative return, weighted and unweighted (71st-80th).

Figure 6: Comparison of cumulative return, weighted and unweighted (61st-70th)

Table 2: Comparison of portfolio performance metrics for weighted and unweighted strategies (Fig-
ures 5 and 6).

Metric
Figure 5 (71st-80th) Figure 6 (61st-70th)

Weighted Unweighted Weighted Unweighted

Cumulative Net Value 7.33 11.18 8.52 6.85

Annualized Return 16.21% 19.99% 17.55% 15.63%

Maximum Drawdown -59.24% -60.33% -68.35% -64.76%

Return/Drawdown Ratio 0.27 0.33 0.26 0.24

Figures 5 and 6 compare cumulative returns for weighted versus unweighted portfolios across two
stock intervals, 71st-80th and 61st-70th percentiles, identified as optimal ranges for growth. In both
cases, the orange line represents the unweighted strategy, while the blue line depicts the mean-
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variance-weighted portfolio. Spanning from 2010 to 2023, the graphs show similar upward trends,
punctuated by notable spikes in 2015 and 2022.

Detailed in Table 2, in the 71st-80th percentile group (Figure 5), the unweighted portfolio outper-
forms the weighted one, ending with a cumulative return around 11.18% versus 7.33%. In contrast,
the 61st-70th percentile group (Figure 6) shows the opposite: the weighted portfolio achieves a
higher final return, 8.52%, compared to the unweighted version, 6.85%. These mixed results rein-
force the notion that the Markowitz mean-variance framework is limited in capturing the complexity
of dynamic market conditions (7).

3.2 Machine Learning Based Strategy

I apply Extreme Gradient Boosting (XGBoost), a scalable tree boosting framework introduced by
Tianqi Chen and Carlos Guestrin (5), known for its strong performance in supervised learning.
XGBoost builds shallow decision trees sequentially, offering high accuracy with reduced overfitt
ing in both classification and regression tasks. For regression, it minimizes squared loss to predict
continuous outcomes, while allowing user-defined objectives and evaluation metrics for flexibility.
This research uses the open-source Python implementation with default hyperparameters, providing
a standardized baseline for model training.

The model is trained to predict 5-day forward stock returns based on historical pricing and volume
data. The model was retrained at each rebalancing point using a rolling window of the most recent 30
days of stock data to reflect evolving market conditions. Once trained, it generates return predictions
for each stock in the testing window. Stocks are ranked by their predicted returns, and the top 10
are selected to form the investment portfolio. These stocks are held for a 5-day trading cycle, after
which the portfolio is liquidated and the process repeated.

This predictive allocation process is repeated across multiple trading cycles, allowing for dynamic
portfolio composition that adapts to recent market patterns. Model performance is assessed based
on cumulative return, annualized return, maximum drawdown, and the return-to-drawdown ratio,
offering a holistic view of both profitability and risk exposure under this machine learning based
strategy.

3.2.1 Feature Importance

Table 3: Feature importance by category in XGBoost regression and classification models (in per-
centage)

Feature Category Regression (%) Classification (%)

Closing Price 24.0 21.5

High Price 23.5 19.5

Low Price 20.5 21.0

Opening Price 17.0 19.0

Volume 15.0 19.0

In the regression model, which predicts numerical return value over 5 days, the closing price is the
most influential feature (24%), followed by high (23.5%) and low prices (20.5%). This prominence
of the closing price likely stems from its role as a summary of daily market consensus, making
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it particularly reflective of recent sentiment and momentum. High and low prices add context by
capturing volatility and price extremes, helping to model upside and downside risk.

In the classification model, which predicts directional movements (rise/fall), importance is more
evenly spread. The closing price remains most significant (21.5%), but low price (21%), volume
(19%), and opening price (19%) contribute nearly as much. Notably, volume assumes a more promi-
nent role here than in the regression model, indicating the classification task’s greater sensitivity to
market dynamics such as liquidity shifts, investor reactions, and short-term trading behavior.

These differences show how regression focuses on trend magnitude using price continuity, while
classification emphasizes directionality using both price and behavioral signals. This insight informs
more effective feature engineering and model selection when designing momentum-based trading
strategies tailored to specific forecasting objectives.

Figure 7: Cumulative return curve of a top-10 stock strategy based on XGBoost predictions, with
key performance metrics shown in the inset.

After generating return predictions, the XGBoost based strategy was tested using real market data.
In each 5-day trading cycle, the top 10 stocks with the highest predicted returns were selected for
investment, and performance was evaluated using cumulative return, annualized return, maximum
drawdown, and return-to-drawdown ratio.

The strategy achieved a cumulative return of 40.43% and an annualized return of 26.02%, indicating
strong short-term growth potential. However, a maximum drawdown of 84.45% reveals substan-
tial downside risk. Despite this, the return-to-drawdown ratio of 0.31 suggests that the strategy
still maintained a reasonable trade-off between return and risk. This aligns with existing findings
that momentum-driven or machine learning-based strategies, while capable of delivering outsized
returns, often incur high volatility and exposure to market reversals (1; 4).

These sharp drawdowns likely stem from the model’s sensitivity to recent return patterns, which can
overweight transient market noise or reversals, particularly during volatile regimes. To mitigate this,
incorporating dynamic position sizing, where allocation adjusts based on prediction confidence or
recent volatility, can help reduce exposure during uncertain periods. Likewise, applying volatility
filters can limit trades in high-risk environments, improving stability without sacrificing upside.
Together, such enhancements may strengthen the robustness of the strategy by aligning risk with
conviction and market conditions (8; 9).
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4 Conclusion

This study examined two momentum-based trading strategies: a traditional mean-variance opti-
mized rule-based strategy and a machine learning approach utilizing XGBoost. Both were evaluated
in terms of cumulative return, drawdown, and overall risk-adjusted performance.

The results reveal that a simple 5-day momentum strategy performs best within the mid-high re-
turn decile (61st-70th), while extreme past winners and losers tend to mean-revert, limiting their
long-term profitability. While mean-variance re-weighting is theoretically expected to enhance the
return to risk trade-off, its real-world performance proved mixed in this context. This outcome re-
flects the broader challenges noted in the literature—such as estimation error and shifting market
dynamics—that often limit the practical benefits of optimized weighting over short horizons (7).

The XGBoost-based strategy demonstrated strong predictive capability, achieving a cumulative re-
turn of 40.43% and an annualized return of 26.02%. However, these gains were accompanied by
substantial tail risk, with a maximum drawdown of 84.45%, underscoring the volatility and fragility
often associated with machine learning models in financial markets. This reflects broader findings in
the literature, which note that while machine learning algorithms can uncover complex, non-linear
patterns, they are also prone to overfitting, unstable generalization, and heightened sensitivity to
regime shifts (4).

Ultimately, while machine learning presents powerful tools for uncovering complex return signals,
their practical success depends on effective risk management. This comparison underscores the
value of integrating predictive models with classical financial principles. Future research should
investigate hybrid approaches that merge the statistical rigor of frameworks like Markowitz mean-
variance optimization with advanced algorithms, such as reinforcement learning or deep neural net-
works, that can adapt to complex and evolving market conditions. Such methods could directly
address the framework’s limitations identified in this study, though their implementation in this re-
search was constrained due to computational resources.
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