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Geometric Analysis of the Eigenvalue Range of the
Generalized Covariance Matrix

Yu, Yao-Hsing (& £)

Abstract

In classical random matrix theory, the limiting spectral distribution (LSD) of a sample covariance
matrix can be derived explicitly via the Stieltjes transform. However, for generalized sample
covariance matrices, no closed-form expression for the LSD-is available, complicating efforts to
analyze their spectral behavior. In this work, we employ a'combination’of geometric techniques and
the Stieltjes transform to derive rigorous bounds on the support of the eigenvalue distribution for
generalized covariance matrices. To assess the sharpness of our theoretical estimates, we conduct
numerical simulations under various parameter settings‘and compare the observed eigenvalue
ranges with our predicted bounds. The results demonstrate that our geometric transform approach
yields tight approximations to the.true spectraledge. These findings offer new insights into the
asymptotic behavior of the<‘generalizedcovariance matrix and provide practical guidelines for

applications requiring precise eigenvalue information.

Keywords: Gaussian distribution, limiting spectral distribution (LSD), random matrix,

Stieltjes transform
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1 Introduction

In modern statistics and high-dimensional data analysis, the study of large random matrices has
become increasingly important. When analyzing datasets with many variables relative to‘the
number of observations, classical statistical methods often fail, and new theoretical frameworks
are needed. Random matrix theory provides powerful tools for understanding the behavior of
such high-dimensional systems. A fundamental object in multivariate statistics is the data ma-
triz, which organizes n observations of p variables into a structured pxn matrix X = (x1, . . 55X,
where each column x; corresponds to a single observation and each row represents a variable.
This representation facilitates computational efficiency and provides a natural framework for
multivariate analysis techniques. As the dimensions of the data matrix grow large, the empirical

properties of derived quantities, such as the sample covariance matrix

1
S, = —XX*,
n

become increasingly important. Here, X* denotes the conjugate transpose of X. A cornerstone
result in random matrix theory is the Marcenko-Pastur law |7}y avhich describes the limiting
spectral distribution of sample covariance matrices. Specifically, if/the entries of X are inde-
pendent and identically distributed (i.i.d.) with mean zero.and variance one, and if the ratio
p/n — y > 0 as n — oo, then the empirical spectral distribution.of S,, converges almost surely
to a nonrandom limit whose density is given-by the Mar¢enko-Pastur distribution.

An important line of work has been developed“concerning generalized sample covariance
matrices. Define

B,/=8S,T,,

where S,, denotes the sample covariance matrix, and {T,}°°; is a sequence of nonnegative
definite Hermitian matrices. ‘This formulation encompasses many important examples across
scientific fields. For instance, the standard sample covariance matrix and Fisher matrices of the
form F,, arise naturally in statistical theory [9]. Similarly, products of i.i.d. random matrices
with this structure are commonly encountered in signal processing and wireless communications.
To the best of our knowledgey the exact form of the limiting spectral distribution (LSD) for gen-
eralized sample covariance matrices is not known. Therefore, instead of focusing on the explicit
form of the LSD, this study investigates the support of the limiting spectral behavior of such
matrices.” Building upon the existing results [3, 4, 10], which provide implicit characterizations
via the Stieltjes transform, we develop a geometrical approach to determine the support of the
LSD:

Our/main contributions are as follows:

14, We derive explicit bounds for the support of the limiting distribution when the limiting

population measure H has a two-mass-point support structure of the form H = 36, + (1 —

B)01.

2. We apply a geometrical technique by transforming the problem of solving the Stieltjes

transform into analyzing the number of intersection points between two curves.
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2 Background

Let M be a pxp Hermitian matrix with eigenvalues A1, ..., A,. The empirical spectral distribution
(ESD) of M is defined as

M 1 g
Pl
pizl

where ¢y, is the Dirac delta measure at \;. Equivalently, the cumulative distribution function is

given by
12
p(x) = FM[va] = 5 Z Lyi<a
i=1

where 1),<; is the indicator function. The Stieltjes transform of a probability measure 1 on R

is defined as

su(2) :/]R ! du(z), z¢€Ct,

r— =z

where C* = {2z € C: §(z) > 0} is the upper half-plane.

2.1 Fundamental theory

We begin with two fundamental results from,random matrix-theory. The first extends the
classical Marcéenko—Pastur law to products of sample covariance.matrices with deterministic se-
quences. The second is an inverse formula‘that allows.us to derive the corresponding probability

measure via the Stieltjes transform.

Theorem 2.1 (Generalized sample covariance matrix theorem [4, 10]). Let S,, be the sample

covariance matriz defined by Sy, = %XX*, where X = (X1,...,Xy,) is a p X n data matriz. Let

{T,} be a sequence of nonnegative definiteHermitian matrices of size px p. Define a generalized
sample covariance matrix

B, =S,T,. (1)
Assume the following conditions hold:
(i) The entries (xy) of the/data matriz are i.i.d. with mean zero and variance 1.
(ii) The dimension-to=sample ratio satisfies £ — y >0 as n — oo.
(iii) The sequence {T,} is either deterministic or independent of S,,.

(iv) Almost surely, the empirical spectral distribution H, = FTn of T, converges weakly to a

nonrandom probability measure H.

Then almost.surely, FBr converges weakly to a nonrandom probability measure F, u. Moreover,

the Stieltjes transform s(z) of Fyy g satisfies the implicit equation

S(z)_/t(lyyzs(z))de(t)’ eC". (2)

Remark 2.2. The equation (2) uniquely determines the Stieltjes transform s(z) in the upper

half-plane, and hence uniquely determines the limiting distribution Fy p.
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Proposition 2.3 (Inversion Formula [4, 6]). Let p be a probability measure on R with Stieltjes

transform s, (z). Then for all continuous and compactly supported functions ¢ : R — R,

[ et utdn) =tim = [ @) S(s (o + ) o
R vl0 T JRr

In particular, for continuity points a < b of pu,

b

p(la,b]) =t % S(s,u(x + iv)) dz.

2.2 Applications of theory

Theorem 2.1 can be applied through several classical examples from random matrix theory and

multivariate statistics.

Example 2.4 (Classical Mar¢enko-Pastur law). If T), = I, (the p x4 identity matriz), then
B, = S,. In this case, H = 1 (the Dirac measure at 1), ‘and Theorem 2.1 reduces to the
classical Marcéenko-Pastur law. The limiting distribution has supporton’[(1 — /y)%, (1 + /y)?]

when y < 1, and has an additional point mass at zero~when y > 1.

Example 2.5 (Fisher matrix). In multivariatesanalysis, the Fisher matrixz is defined as F,, =
Sl,nsi}l, where S1,, and Sz, are independent sample covariance matrices. This can be written
in the form ¥,, = S, T, with T, = SQ_}1

Under the conditions of Theorem 2.1, “and assuming that the spectral distribution of T,
converges appropriately, the asymptotic behavior of ¥, can be analyzed using this framework.
The limiting spectral distribution of Fisher matrices has been studied extensively by Zhang, Bai,

and Hu [9].

Example 2.6 (Product of i.i.d» sample.covariance matrices). Consider the case where T, is an

independent copy of thewsample covariance matriz, denoted So,. We define
Bn = Sl,nSQ,rm

where Sy, and So ,, are independent sample covariance matrices. Such products arise de-noise
technique innsignal processing, especially in high dimension and low sample size data ([5, 8]).
Under the framework of Theorem 2.1, assuming appropriate convergence of the spectral distri-
butions. of both matrices, one can analyze the asymptotic spectral properties of B,,. The limiting
spectral distribution is characterized by the implicit equation (2) with H being the Marcenko-

Pastur distribution. The limiting spectral distribution of product matrices has been studied by
[2].
3 Explicit support bounds via a geometric method

Building upon the convergence result in Theorem 2.1, we now present our main method: Geo-

metric technique to derive explicit bounds for the support of the LSD in a special case. While
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Theorem 2.1 provides the existence of the limiting distribution and its implicit characteriza-
tion via the Stieltjes transform, it does not give explicit information about the support of this

distribution. Our work fills this gap for an important special case.

3.1 Coarse Bounds for the Support

We consider a specific case where the limiting measure H has a simple two-point structure,
allowing us to derive explicit and computable bounds for the support of the limiting distribution.

Suppose the measure H is specified as
H = ﬂéa + (1 - B)(Sla

wherea > 1,y >1,and 0 < 5 < 1.

Theorem 3.1. Suppose that the conditions of Theorem 2.1 hold.~Then the support of Fy pr is
contained in the interval

t i t
ter%%co)g( ),te(rgll%’o)g( e

where

yBla— 1)t + (at +1)((y — 1)t = 1).

9(t) = (at 1) (82 + 1)

Proof. We start with an alternative formulation/involving the matrix B,, = %X*THX of size

n x n. The matrices B,, and B,, share the same nonzero eigenvalues, so their ESDs satisfy
nFBe — pFBr < (n'— p)do.

When p/n — y > 0, this gives the relation
Fjw=yFyn = (1-y)do,

where F, ; is the limiting distribution of B,,. The corresponding Stieltjes transforms s(z) and
s(z) are related-by
1—
s(z) = ———2 +ys(2).

Substituting this relation into the equation for s(z), we obtain the alternative formulation

s(2) = — <z—y/1+;(z)dH(t)>_l.

Solving/for z.yields
1

t

= ——— ———dH(t). 3

=53 T @

We utilize the alternative formulation (3) to determine the support of the LSD. For the
measure H = 0, + (1 — )01, equation (3) becomes

1 t 1 Ba 1-4
= —dH(t) = —- . 4
& §+y 1+ts ®) s+y<1+as+1+8) )
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By rewriting (4), we obtain the following cubic polynomial of s:
azs’ + (a(z—y+1)+2) s+ (a+z—y+1—-yB(a—1))s+1=0.
We define a real-valued function as below.
f)=azt’ + (a(z—y+ 1) +2)*+(a+2—y+1—yBa—1))t+1 (5)

In view of Proposition 2.3, it is necessary to analyze the imaginary part of s(z) in (3.1). However,
the exact support of the limiting spectral distribution cannot be readily inferred from s(z), even
when an explicit expression for s(z) is available. Instead, we determine the values of £ for which
s(z) has a nonzero imaginary part. Our objective is to characterize the set of z € R for which
the equation f(¢) = 0 admits a unique singular real solution. Conversely, any. value of z for
which f(t) = 0 has three real roots lies outside the support of-the LSD. Consider

— . yBla—Dt+(at+1){(y—1)t—1
v=g(t) uB( )(at+1)(tgi(f) )t—1}/

(6)

v="h(t) =z 2z>0.

Given z, v = h(t) is a horizontal line. When vs= ¢(f) and v-=h(t) have only one point of
intersection, this indicates that f(¢) = 0 has enly.one real Toot. Therefore, we transform the
solve-equation problem into a geometric problem of curve intersection. As shown in Figure 1,
the left diagram has three intersection points, indicating that z is not in the support of the LSD.
The right diagram has one intersection.point, indicating that z may be in the support of the
LSD.

(a) (b)

Figure 1: The graphs below depict the functions v = ¢(tf) and v = h(t). The left panel
corresponds to the parameter setting (a,y,8) = (2.1,1.7,0.03). while the right panel uses
(a,y,8) = (10,1.7,0.03).



Research Report 2025 S. T. Yau High School Science Award (Asia)

Now, we analyze the behavior of the curve g(t) by directly differentiating it, as follows:

! a?yp y(1-p) _ Pa(t)
O R TR (N e sy g2 n

Moy 2 2a3y/8 2y(1 - /6)
gt =3 (@13 (13 ®)

where a quartic polynomial
Py(t) = (at + 1)*(t +1)% — a®*yBt2(t + 1)* —y(1 — B) t*(at + 1)

We examine the curve of g(¢) across four disjoint regions of the realiline: (a) t/< —14 (b)
t e (-1,-1/a), (c) t € (—1/a,0), and (d) t > 0. Detailed analyses for regions-(a), (c), and
(d) are presented first, implies the result of Theorem 3.1. The diseussion for-region (b) will be

presented in next section.

(a) t < —1: Define

B a*ypt?  y(1=P)t
J(t)__<(at+1)2 T+ 1)2 )
We have

, a’y3t? 1 —B)t? 1
90 =5 (- @ ) w0 o) o)

1 QQQB (1-5)
STy ((at-l— DR 1)3> ‘

Since t < —1, we have at + 1 < Oand t +1 < 0 so J'(t) < 0 for ¢ < —1. Thus, J(t)

Note that

is strictly decreasing on (—oo0, —1). Mereover, tlim J(t) = —y. Therefore, J(t) < —y for all
——00
t < —1. From (9), we-have
1
gt < t—2(1 —y) <0.

Hence, g is strictly decreasing on (—oo, —1) and admits no local extrema in this interval.

(c) t € (—1/a,0): Clearly, we have a > 1,t+1 >0, —t > 0, and at + 1 > 0. Then,

t 3 _(at+1)3 2
(at +a)* — (at + 1) v,

g'(t) = (at+1pP(E+1p3 | (t+13

S

Therefore, ¢'(t) is strictly increasing. Moreover, since

lim ¢'(t) = o0 and lim ¢'(t) = —oo,
t—0~ t%(7;)+

a

there exists exactly one root of the equation ¢'(t) = 0 in the interval (—1/a, 0), and thus g(t)

has a unique local minimum in this interval.
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(d) t > 0: For the interval (0, 00), we define I(t) = ¢'(t) (at + 1)2. Then for ¢t > 0,

a 2 a 2
o = s - ya- il
and

We have I'(t) < 0 for t > 0. In this case, I is strictly decreasing and (at4 1)? is strictly

increasing on (0, 00). Consequently, I'(t) is also strictly decreasing on this interval, Since

lim I(t) =00 and lim I(t) = a*(1 —y) <0, (11)

t—0+ t—00
there exists a unique b > 0 with I(b) = 0, i.e. ¢’(b) = 0. Thus ¢ has a unique local maximum
on (0,00).

Based on (a), (c), and (d), the curves v = g(t) and v = h(t) may-hayve one point. Thus,

t i t
ter?(ffo>g( ) te(glfﬁ,o)g( )

include the support of the LSD. The proof is-done. O

3.2 Explicit Bounds for the.Support

To derive the exact bounds for the support of L.SD, we will complete the part (b) in Section 3.1.

(b) t € (—1,—1/a): Note'that Py(—1).<0, Ps(—1/a) < 0, and P4(0) > 0 in (7). It follows that

Py(t) and ¢'(t) share the 'same set of roots. From the analyses in Section 3.1, we conclude that

the number of real roots of ¢'(t) is either two or zero. Let
P4(t) = 64254 + 63t3 + Cgt2 + c1t + cp, (12)

where ¢4 = a®(1 —y); ¢3.=2a*(1 —yB) +2a{l —y(1—B)}, ca = a*>(1 —yB) +4a+ {1 —y(1- )},
c1 =2a+ 2, and ¢y = 1. Based a modified version of the Ferrari’s method, we apply the Tian
Heng (K¥7) formulae For more information, visit https://zhuanlan.zhihu.com/p/677634589.
Let

= 36% - 86462,
3 4 8 2
—c3 + 4cyczer — 8cyeq,
= 3¢} + 16c5c3 — 16c4cica + 16¢iczer — 64cico,

= D?-3F, B=DF -9F* C=F?-3DE? A= DB?-4AC. (13)

=~ T &= O
I

Assume that x1, e, x3, x4 are the four roots of Py(t) (note that they are also the roots of ¢'(t)).
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Therefore, from (a), (c), (d) in Section 3.1, we have the following cases

Case 1. When ABC # 0, A =0, AB > 0, the equation has one pair of repeated real

roots and two other distinct real roots. That is,

vy = o (03 + 288 ﬁ) € (=1/a,0) (14)

$4=4L1<—C3+QABE+ 25) € (0,00)

It implies that g(¢) is monotone in (—1,—1/a) so that the curvesw = ¢(t) and v = h(t)
has exactly one point when v € (g(z4), g(x3)). Thus, it indicates that{g(x1), g(x3)] is
the support of the LSD.

Case 2. When A < 0,D > 0,F > 0, the equation has four-distinct real roots. Let

x;j = u £ w denote z; = v +w and z; = u — w for simplicity.”We have

T2 = 404{ cs + sgn(E) v £ (Yt Vv3) }

(15)
T34 = ﬁ {—cs— sgu(E) /i t(Vyz — Vu3) }
where
y1:1 D — 2v/A dos Q and yggz1 D — 2v/Acos 27T
3 3 ’ 3 3
with
6 =.arccos (33_2AD>
\ 24VA

Let Ty < @) STrE) Sy denote the ordered (increasing) values of z1,z2, 3, 4.
From (a);«(c), (d), z¢q),s@) € (=1,-1/a), x3) € (=1/a,0), and x4 € (0,00). Thus,
the curves v = g(t) and.v = h(t) has exactly one point when v € (g(w()),9(z(1))) or

v €(g(z(2y), 9(z3y)) - Thus, it indicates that the set [g(z4)), 9(z1))] U [9(z2)), 9(x(3))]
is the support-of the LSD, as described in Figure 1 (b).

Case 3./ When'A > 0, the equation has two distinct real roots. We have

3 ? ( )

1
Tro= 4—63 —c3 + sgn(E)\/ 3

where

—B+ VA
uip=AD+3 (f) , uz=D?— D(uy3 +u%/3) + (u}/3 +u§/3)2 —3A.

Let (1) < m(9) denote the ordered (increasing) values of x1,x2. In this case, the curves
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v = g(t) and v = h(t) has exactly one point when v € (g(z(2)), g9(z(1))). Thus, it indicates
that [g(7(2)), g9(z(1))] is the support of the LSD, as described in Figure 1 (a).

4 Numerical study

In this section, we present a numerical study to evaluate the performance of the propesed method
under various parameter settings. The code is available : https://github.com/yu314<coder and
https://huggingface.co/spaces/euler314.

Figure 2 illustrates the setting y = 10,a = 6 with varying 8 € (0,1): First, we apply
the eigen-decomposition technique to compute the bounds of eigenvalues of the=generalized
sample covariance matrix, denoted as simulated bounds. We plot two curves corresponding
to the estimated bounds from Theorem 3.1 and the simulated bounds with varing g€ (0,1),
respectively. The close alignment of the two curves indicates that  theiestimated.bounds perform

well.

Parameters: n = 300, p = 3000, a = 6.00, yo»= 10.00
118.10

105.28
92.47
79.66
66.85
54.03

41.22

28.41
15.60 - /’/

2.79 =

-10.03

0.0 Q.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 1.0

Figure 2: The graphs above/compare the estimated bounds (blue line) from Theorem 3.1 with
simulated bounds (red line), under the setting y = 10,a = 6 with varing g € (0, 1).

From Cases 2 and 3 in Section 3.2, the criterion A in (13) can be used to distinguish
between two situations:. (1) two disjoint intervals, and (2) a single interval. In each case, the
corresponding estimated bounds are provided. To further demonstrate the effectiveness of our

proposed method'in Section 3.2, we present two settings:

Setting /1. The spectral distribution for § = 0.05,a = 10,n = 1000,p = 1700 (i.e.

y = 1.7) reveal two disjoint intervals.

Setting 2. The spectral distribution for § = 0.5,a = 10,n = 1000, p = 1700 (i.e. y = 1.7)

form a single interval.

Under Setting 1, the criterion A ~ —8.38 x 10% < 0 is satisfied, implying the support of
the LSD is formed by two disjoint intervals. The Coarse Method provides bounds as established
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in Theorem 3.1 and discussed in Section 3.1. The FExplicit Method offers explicit estimates
for the bounds {g(z;))}s, introduced in Section 3.2. The Simulated Method refers to directly
computing eigenvalues via eigen-decomposition of a sample covariance matrix. Table 1 shows
that the estimates of both the coarse and explicit methods are close to those obtained from the
Simulated Method. Figure 3 showed that the estimated bounds in Ezplicit Method are very
close to the simulated bounded. For Setting 2, the criterion A ~ 2.14 x 10?6 > 0.is satisfied;
implying the support of the LSD is an interval. Table 2 shows that the estimates from both the
Coarse and Explicit Methods are close to those obtained from the Simulated Method. Figure 4
showed that the estimated bounds in Ezxplicit Method are very close to the simulated bounded.

Method Interval 1 Interval 2

Simulated Method ~ [0.1019  4.9566]  [7.00471, " 18.4447|
Coarse Method [0.0979 | [ 18.4314]
Explicit Method ~ [0.0979  4.8098]  [6:0009- 18/4314]

Table 1: Comparison of three methods for estimating the bounds of the'support of the spectral
distribution under Setting 1. The Coarse Method provides coarse estimated bounds as de-
scribed in Section 3.1, while the Ezplicit Method presents explicitiestimated bounds introduced
in Section 3.2.

Method Interval
Simulated Method  [0.2107 " 37.3610]
Coarse Method [0.2075  37.8357]

Explicit Metliod . €[0.2075  37.8357]

Table 2: Comparison of threesmethods for estimating the bounds of the support of the spectral
distribution under Setting 2/ The Coarse Method provides coarse estimated bounds as de-
scribed in Section 3.1, while the Fxplicit-Method presents explicit estimated bounds introduced
in Section 3.2.
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Eigenvalue Distribution: $=0.05, a=10.0, y=1.700

— KDE

g(x(4)) 9(z)) 9(z2)) ) 9(z3))

Figure 3: The histogram and kernel density estimate (KDE) of the.spectral distribution for g =
0.05,a = 10,y = 1.7 reveal two disjoint intervals. In this case,the criterion A ~ =8.38 x10%® < 0
is satisfied, and g(z(y)), ..., g(x(4)) represent the four estimated bounds corresponding to Case
2 in Section 3.2.

Eigenvalue Distribution: $=0.5;2=10.0,y=1.700

e —

.‘1(-1'(21) ) : : § !1(-1'(1))

Figure 4: The histogram and kernel.density estimate (KDE) of the spectral distribution for g =
0.5,a = 10,y = 1.7 reveal two disjoint intervals. In this case, the criterion A ~ 2.14 x 10%6 > 0
is satisfiedsy and g(w(;)) and g(x (o)) represent the two estimated bounds corresponding to Case
3 in Section:3.2.

5/ Conclusion

Based on existing convergence results for the limiting spectral distributions of a generalized
samplé.covariance matrices, we have derived explicit bounds for the support of the LSD in
the/dAmportant special case of a two-mass-point limiting measure. Our main theorem provides
concrete upper and lower bounds that can be computed through optimization problems involving
elementary functions. By geometric properties of quadratic functions, precise spectral bounds of
the LSD can be obtained. The explicit nature of our bounds makes them particularly valuable
for computational applications and numerical verification. Future research directions include

extending the bounds to support structures for more general limiting measure H, investigating
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the sharpness of the derived bounds, and developing efficient numerical algorithms for computing

the extremal values in the optimization problems that define the support boundaries.
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