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Geometric Analysis of the Eigenvalue Range of the 
Generalized Covariance Matrix 

Yu, Yao-Hsing (尤耀星) 

Abstract 

In classical random matrix theory, the limiting spectral distribution (LSD) of a sample covariance 

matrix can be derived explicitly via the Stieltjes transform. However, for generalized sample 

covariance matrices, no closed-form expression for the LSD is available, complicating efforts to 

analyze their spectral behavior. In this work, we employ a combination of geometric techniques and 

the Stieltjes transform to derive rigorous bounds on the support of the eigenvalue distribution for 

generalized covariance matrices. To assess the sharpness of our theoretical estimates, we conduct 

numerical simulations under various parameter settings and compare the observed eigenvalue 

ranges with our predicted bounds. The results demonstrate that our geometric transform approach 

yields tight approximations to the true spectral edge. These findings offer new insights into the 

asymptotic behavior of the generalized covariance matrix and provide practical guidelines for 

applications requiring precise eigenvalue information. 

Keywords:  Gaussian distribution, limiting spectral distribution (LSD), random matrix, 

Stieltjes transform 
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1 Introduction

In modern statistics and high-dimensional data analysis, the study of large random matrices has
become increasingly important. When analyzing datasets with many variables relative to the
number of observations, classical statistical methods often fail, and new theoretical frameworks
are needed. Random matrix theory provides powerful tools for understanding the behavior of
such high-dimensional systems. A fundamental object in multivariate statistics is the data ma-

trix, which organizes n observations of p variables into a structured p→n matrix X = (x1, . . . ,xn),
where each column xi corresponds to a single observation and each row represents a variable.
This representation facilitates computational e!ciency and provides a natural framework for
multivariate analysis techniques. As the dimensions of the data matrix grow large, the empirical
properties of derived quantities, such as the sample covariance matrix

Sn =
1

n
XX→

,

become increasingly important. Here, X→ denotes the conjugate transpose of X. A cornerstone
result in random matrix theory is the Mar!enko-Pastur law [7], which describes the limiting
spectral distribution of sample covariance matrices. Specifically, if the entries of X are inde-
pendent and identically distributed (i.i.d.) with mean zero and variance one, and if the ratio
p/n ↑ y > 0 as n ↑ ↓, then the empirical spectral distribution of Sn converges almost surely
to a nonrandom limit whose density is given by the Mar"enko-Pastur distribution.

An important line of work has been developed concerning generalized sample covariance

matrices. Define
Bn = SnTn,

where Sn denotes the sample covariance matrix, and {Tn}↑n=1 is a sequence of nonnegative
definite Hermitian matrices. This formulation encompasses many important examples across
scientific fields. For instance, the standard sample covariance matrix and Fisher matrices of the
form Fn arise naturally in statistical theory [9]. Similarly, products of i.i.d. random matrices
with this structure are commonly encountered in signal processing and wireless communications.
To the best of our knowledge, the exact form of the limiting spectral distribution (LSD) for gen-
eralized sample covariance matrices is not known. Therefore, instead of focusing on the explicit
form of the LSD, this study investigates the support of the limiting spectral behavior of such
matrices. Building upon the existing results [3, 4, 10], which provide implicit characterizations
via the Stieltjes transform, we develop a geometrical approach to determine the support of the
LSD.

Our main contributions are as follows:

1. We derive explicit bounds for the support of the limiting distribution when the limiting
population measure H has a two-mass-point support structure of the form H = ωεa+(1↔
ω)ε1.

2. We apply a geometrical technique by transforming the problem of solving the Stieltjes
transform into analyzing the number of intersection points between two curves.
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2 Background

Let M be a p→p Hermitian matrix with eigenvalues ϑ1, . . . ,ϑp. The empirical spectral distribution

(ESD) of M is defined as

F
M =

1

p

p∑

i=1

εωi ,

where εωi is the Dirac delta measure at ϑi. Equivalently, the cumulative distribution function is
given by

µ(x) = F
M[0, x] =

1

p

p∑

i=1

1ωi↓x,

where 1ωi↓x is the indicator function. The Stieltjes transform of a probability measure µ on R
is defined as

sµ(z) =

∫

R

1

x↔ z
dµ(x), z ↗ C+

,

where C+ = {z ↗ C : ↘(z) > 0} is the upper half-plane.

2.1 Fundamental theory

We begin with two fundamental results from random matrix theory. The first extends the
classical Mar"enko–Pastur law to products of sample covariance matrices with deterministic se-
quences. The second is an inverse formula that allows us to derive the corresponding probability
measure via the Stieltjes transform.

Theorem 2.1 (Generalized sample covariance matrix theorem [4, 10]). Let Sn be the sample

covariance matrix defined by Sn = 1
n
XX→

, where X = (x1, . . . ,xn) is a p → n data matrix. Let

{Tn} be a sequence of nonnegative definite Hermitian matrices of size p→p. Define a generalized

sample covariance matrix

Bn = SnTn. (1)

Assume the following conditions hold:

(i) The entries (xjk) of the data matrix are i.i.d. with mean zero and variance 1.

(ii) The dimension-to-sample ratio satisfies
p

n
↑ y > 0 as n ↑ ↓.

(iii) The sequence {Tn} is either deterministic or independent of Sn.

(iv) Almost surely, the empirical spectral distribution Hn = F
Tn of Tn converges weakly to a

nonrandom probability measure H.

Then almost surely, F
Bn converges weakly to a nonrandom probability measure Fy,H . Moreover,

the Stieltjes transform s(z) of Fy,H satisfies the implicit equation

s(z) =

∫
1

t(1↔ y ↔ yzs(z))↔ z
dH(t), z ↗ C+

. (2)

Remark 2.2. The equation (2) uniquely determines the Stieltjes transform s(z) in the upper

half-plane, and hence uniquely determines the limiting distribution Fy,H .
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Proposition 2.3 (Inversion Formula [4, 6]). Let µ be a probability measure on R with Stieltjes

transform sµ(z). Then for all continuous and compactly supported functions ϖ : R ↑ R,

∫

R
ϖ(x)µ(dx) = lim

v↔0

1

ϱ

∫

R
ϖ(x)↘(sµ(x+ iv)) dx.

In particular, for continuity points a < b of µ,

µ([a, b]) = lim
v↔0

1

ϱ

∫
b

a

↘(sµ(x+ iv)) dx.

2.2 Applications of theory

Theorem 2.1 can be applied through several classical examples from random matrix theory and
multivariate statistics.

Example 2.4 (Classical Mar"enko-Pastur law). If Tn = Ip (the p → p identity matrix), then

Bn = Sn. In this case, H = ε1 (the Dirac measure at 1), and Theorem 2.1 reduces to the

classical Mar!enko-Pastur law. The limiting distribution has support on [(1 ↔≃
y)2, (1 +

≃
y)2]

when y ⇐ 1, and has an additional point mass at zero when y > 1.

Example 2.5 (Fisher matrix). In multivariate analysis, the Fisher matrix is defined as Fn =

S1,nS
↗1
2,n, where S1,n and S2,n are independent sample covariance matrices. This can be written

in the form Fn = S1,nTn with Tn = S↗1
2,n.

Under the conditions of Theorem 2.1, and assuming that the spectral distribution of Tn

converges appropriately, the asymptotic behavior of Fn can be analyzed using this framework.

The limiting spectral distribution of Fisher matrices has been studied extensively by Zhang, Bai,

and Hu [9].

Example 2.6 (Product of i.i.d. sample covariance matrices). Consider the case where Tn is an

independent copy of the sample covariance matrix, denoted S2,n. We define

Bn = S1,nS2,n,

where S1,n and S2,n are independent sample covariance matrices. Such products arise de-noise

technique in signal processing, especially in high dimension and low sample size data ([5, 8]).

Under the framework of Theorem 2.1, assuming appropriate convergence of the spectral distri-

butions of both matrices, one can analyze the asymptotic spectral properties of Bn. The limiting

spectral distribution is characterized by the implicit equation (2) with H being the Mar!enko-

Pastur distribution. The limiting spectral distribution of product matrices has been studied by

[2].

3 Explicit support bounds via a geometric method

Building upon the convergence result in Theorem 2.1, we now present our main method: Geo-
metric technique to derive explicit bounds for the support of the LSD in a special case. While
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Theorem 2.1 provides the existence of the limiting distribution and its implicit characteriza-
tion via the Stieltjes transform, it does not give explicit information about the support of this
distribution. Our work fills this gap for an important special case.

3.1 Coarse Bounds for the Support

We consider a specific case where the limiting measure H has a simple two-point structure,
allowing us to derive explicit and computable bounds for the support of the limiting distribution.
Suppose the measure H is specified as

H = ωεa + (1↔ ω)ε1,

where a ⇒ 1, y ⇒ 1, and 0 ⇐ ω ⇐ 1.

Theorem 3.1. Suppose that the conditions of Theorem 2.1 hold. Then the support of Fy,H is

contained in the interval [
max

t↘(0,↑)
g(t), min

t↘(↗1/a,0)
g(t)

]
,

where

g(t) =
yω(a↔ 1)t+ (at+ 1)((y ↔ 1)t↔ 1)

(at+ 1)(t2 + t)
.

Proof. We start with an alternative formulation involving the matrix Bn = 1
n
X→TnX of size

n→ n. The matrices Bn and Bn share the same nonzero eigenvalues, so their ESDs satisfy

nF
Bn ↔ pF

Bn = (n↔ p)ε0.

When p/n ↑ y > 0, this gives the relation

F y,H ↔ yFy,H = (1↔ y)ε0,

where F y,H is the limiting distribution of Bn. The corresponding Stieltjes transforms s(z) and
s(z) are related by

s(z) = ↔1↔ y

z
+ ys(z).

Substituting this relation into the equation for s(z), we obtain the alternative formulation

s(z) = ↔
(
z ↔ y

∫
t

1 + ts(z)
dH(t)

)↗1

.

Solving for z yields
z = ↔ 1

s(z)
+ y

∫
t

1 + ts(z)
dH(t). (3)

We utilize the alternative formulation (3) to determine the support of the LSD. For the
measure H = ωεa + (1↔ ω)ε1, equation (3) becomes

z = ↔1

s
+ y

∫
t

1 + ts
dH(t) = ↔1

s
+ y

(
ωa

1 + as
+

1↔ ω

1 + s

)
. (4)
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By rewriting (4), we obtain the following cubic polynomial of s:

azs
3 +

(
a(z ↔ y + 1) + z

)
s
2 +

(
a+ z ↔ y + 1↔ yω (a↔ 1)

)
s+ 1 = 0.

We define a real-valued function as below.

f(t) = azt
3 +

(
a(z ↔ y + 1) + z

)
t
2 +

(
a+ z ↔ y + 1↔ yω (a↔ 1)

)
t+ 1. (5)

In view of Proposition 2.3, it is necessary to analyze the imaginary part of s(z) in (3.1). However,
the exact support of the limiting spectral distribution cannot be readily inferred from s(z), even
when an explicit expression for s(z) is available. Instead, we determine the values of z for which
s(z) has a nonzero imaginary part. Our objective is to characterize the set of z ↗ R for which
the equation f(t) = 0 admits a unique singular real solution. Conversely, any value of z for
which f(t) = 0 has three real roots lies outside the support of the LSD. Consider





v = g(t) := yε(a↗1)t+(at+1){(y↗1)t↗1}

(at+1)(t2+t) .

v = h(t) := z, z ⇒ 0.
(6)

Given z, v = h(t) is a horizontal line. When v = g(t) and v = h(t) have only one point of
intersection, this indicates that f(t) = 0 has only one real root. Therefore, we transform the
solve-equation problem into a geometric problem of curve intersection. As shown in Figure 1,
the left diagram has three intersection points, indicating that z is not in the support of the LSD.
The right diagram has one intersection point, indicating that z may be in the support of the
LSD.

Figure 1: The graphs below depict the functions v = g(t) and v = h(t). The left panel
corresponds to the parameter setting (a, y,ω) = (2.1, 1.7, 0.03). while the right panel uses
(a, y,ω) = (10, 1.7, 0.03).20
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Now, we analyze the behavior of the curve g(t) by directly di#erentiating it, as follows:

g
≃(t) =

1

t2
↔ a

2
yω

(at+ 1)2
↔ y(1↔ ω)

(t+ 1)2
=

P4(t)

t2(t+ 1)2(at+ 1)2
, (7)

g
≃≃(t) = ↔ 2

t3
+

2a3yω

(at+ 1)3
+

2y(1↔ ω)

(t+ 1)3
, (8)

where a quartic polynomial

P4(t) = (at+ 1)2(t+ 1)2 ↔ a
2
yω t

2(t+ 1)2 ↔ y(1↔ ω) t2(at+ 1)2.

We examine the curve of g(t) across four disjoint regions of the real line: (a) t < ↔1, (b)
t ↗ (↔1,↔1/a), (c) t ↗ (↔1/a, 0), and (d) t > 0. Detailed analyses for regions (a), (c), and
(d) are presented first, implies the result of Theorem 3.1. The discussion for region (b) will be
presented in next section.

(a) t < ↔1: Define

J(t) = ↔
(

a
2
yωt

2

(at+ 1)2
+

y(1↔ ω)t2

(t+ 1)2

)
.

We have

g
≃(t) =

1

t2

(
1↔ a

2
yωt

2

(at+ 1)2
↔ y(1↔ ω)t2

(t+ 1)2

)
=

1

t2
{1 + J(t)}. (9)

Note that
J
≃(t) = ↔2yt

(
2a2ω

(at+ 1)3
+

(1↔ ω)

(t+ 1)3

)
.

Since t < ↔1, we have at + 1 < 0 and t + 1 < 0 so J
≃(t) < 0 for t < ↔1. Thus, J(t)

is strictly decreasing on (↔↓,↔1). Moreover, lim
t⇐↗↑

J(t) = ↔y. Therefore, J(t) < ↔y for all
t < ↔1. From (9), we have

g
≃(t) <

1

t2
(1↔ y) < 0.

Hence, g is strictly decreasing on (↔↓,↔1) and admits no local extrema in this interval.

(c) t ↗ (↔1/a, 0): Clearly, we have a > 1, t+ 1 > 0, ↔t > 0, and at+ 1 > 0. Then,

g
≃≃(t) =

2

(↔t)3
+ 2yω

(at+ a)3 ↔ (at+ 1)3

(at+ 1)3(t+ 1)3
+

2y

(t+ 1)3
> 0.

Therefore, g≃(t) is strictly increasing. Moreover, since

lim
t⇐0→

g
≃(t) = ↓ and lim

t⇐(↗ 1
a)

+
g
≃(t) = ↔↓,

there exists exactly one root of the equation g
≃(t) = 0 in the interval (↔1/a, 0), and thus g(t)

has a unique local minimum in this interval.
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(d) t > 0: For the interval (0,↓), we define I(t) = g
≃(t) (at+ 1)2. Then for t > 0,

I(t) =
(at+ 1)2

t2
↔ a

2
yω ↔ y(1↔ ω)

(at+ 1)2

(t+ 1)2

and

I
≃(t) = ↔2(at+ 1)

t3
↔ 2y(1↔ ω)(a↔ 1)(at+ 1)

(t+ 1)3
. (10)

We have I
≃(t) < 0 for t > 0. In this case, I is strictly decreasing and (at + 1)2 is strictly

increasing on (0,↓). Consequently, I ≃(t) is also strictly decreasing on this interval. Since

lim
t⇐0+

I(t) = ↓ and lim
t⇐↑

I(t) = a
2(1↔ y) < 0, (11)

there exists a unique b > 0 with I(b) = 0, i.e. g
≃(b) = 0. Thus g has a unique local maximum

on (0,↓).

Based on (a), (c), and (d), the curves v = g(t) and v = h(t) may have one point. Thus,
[
max

t↘(0,↑)
g(t), min

t↘(↗1/a,0)
g(t)

]

include the support of the LSD. The proof is done.

3.2 Explicit Bounds for the Support

To derive the exact bounds for the support of LSD, we will complete the part (b) in Section 3.1.

(b) t ↗ (↔1,↔1/a): Note that P4(↔1) < 0, P4(↔1/a) < 0, and P4(0) > 0 in (7). It follows that
P4(t) and g

≃(t) share the same set of roots. From the analyses in Section 3.1, we conclude that
the number of real roots of g≃(t) is either two or zero. Let

P4(t) = c4t
4 + c3t

3 + c2t
2 + c1t+ c0, (12)

where c4 = a
2(1↔y), c3 = 2a2(1↔yω)+2a{1↔y(1↔ω)}, c2 = a

2(1↔yω)+4a+{1↔y(1↔ω)},
c1 = 2a + 2, and c0 = 1. Based a modified version of the Ferrari’s method, we apply the Tian
Heng (夡猡) formulae For more information, visit https://zhuanlan.zhihu.com/p/677634589.
Let

D = 3c23 ↔ 8c4c2,

E = ↔c
3
3 + 4c4c3c2 ↔ 8c24c1,

F = 3c43 + 16c24c
2
2 ↔ 16c4c

2
3c2 + 16c24c3c1 ↔ 64c34c0,

A = D
2 ↔ 3F, B = DF ↔ 9E2

, C = F
2 ↔ 3DE

2
, ! = B

2 ↔ 4AC. (13)

Assume that x1, x2, x3, x4 are the four roots of P4(t) (note that they are also the roots of g≃(t)).
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Therefore, from (a), (c), (d) in Section 3.1, we have the following cases

Case 1. When ABC ⇑= 0, ! = 0, AB > 0, the equation has one pair of repeated real
roots and two other distinct real roots. That is,






x1 = x2 =
1
4c4

(
↔c3 ↔ 2AE

B

)
↗ (↔1,↔1/a)

x3 =
1
4c4

(
↔c3 +

2AE

B
↔

√
2B
A

)
↗ (↔1/a, 0)

x4 =
1
4c4

(
↔c3 +

2AE

B
+

√
2B
A

)
↗ (0,↓)

(14)

It implies that g(t) is monotone in (↔1,↔1/a) so that the curves v = g(t) and v = h(t)

has exactly one point when v ↗ (g(x4), g(x3)). Thus, it indicates that [g(x4), g(x3)] is
the support of the LSD.

Case 2. When ! < 0, D > 0, F > 0, the equation has four distinct real roots. Let
xi,j = u± w denote xi = u+ w and xj = u↔ w for simplicity. We have






x1,2 =
1
4c4

{
↔c3 + sgn(E)

≃
y1 ± (

≃
y2 +

≃
y3)

}

x3,4 =
1
4c4

{
↔c3 ↔ sgn(E)

≃
y1 ± (

≃
y2 ↔

≃
y3)

}
,

(15)

where

y1 =
1

3

(
D ↔ 2

≃
A cos

(
ς

3

))
and y2,3 =

1

3

(
D ↔ 2

≃
A cos

(
ς

3
± 2ϱ

3

))

with
ς = arccos

(
3B ↔ 2AD

2A
≃
A

)
.

Let x(1) ⇐ x(2) ⇐ x(3) ⇐ x(4) denote the ordered (increasing) values of x1, x2, x3, x4.
From (a), (c), (d), x(1), x(2) ↗ (↔1,↔1/a), x(3) ↗ (↔1/a, 0), and x(4) ↗ (0,↓). Thus,
the curves v = g(t) and v = h(t) has exactly one point when v ↗ (g(x(4)), g(x(1))) or
v ↗ (g(x(2)), g(x(3))) . Thus, it indicates that the set [g(x(4)), g(x(1))]


[g(x(2)), g(x(3))]

is the support of the LSD, as described in Figure 1 (b).

Case 3. When ! > 0, the equation has two distinct real roots. We have

x1,2 =
1

4c3



↔c3 + sgn(E)


D + u

1/3
1 + u

1/3
2

3
±


2D ↔ (u1/31 + u

1/3
2 ) + 2

≃
u3

3



 , (16)

where

u1,2 = AD + 3


↔B ±

≃
!

2


, u3 = D

2 ↔D(u1/31 + u
1/3
2 ) + (u1/31 + u

1/3
2 )2 ↔ 3A.

Let x(1) ⇐ x(2) denote the ordered (increasing) values of x1, x2. In this case, the curves
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v = g(t) and v = h(t) has exactly one point when v ↗ (g(x(2)), g(x(1))). Thus, it indicates
that [g(x(2)), g(x(1))] is the support of the LSD, as described in Figure 1 (a).

4 Numerical study

In this section, we present a numerical study to evaluate the performance of the proposed method
under various parameter settings. The code is available : https://github.com/yu314-coder and
https://huggingface.co/spaces/euler314.

Figure 2 illustrates the setting y = 10, a = 6 with varying ω ↗ (0, 1). First, we apply
the eigen-decomposition technique to compute the bounds of eigenvalues of the generalized
sample covariance matrix, denoted as simulated bounds. We plot two curves corresponding
to the estimated bounds from Theorem 3.1 and the simulated bounds with varing ω ↗ (0, 1),
respectively. The close alignment of the two curves indicates that the estimated bounds perform
well.

Figure 2: The graphs above compare the estimated bounds (blue line) from Theorem 3.1 with
simulated bounds (red line), under the setting y = 10, a = 6 with varing ω ↗ (0, 1).

From Cases 2 and 3 in Section 3.2, the criterion ! in (13) can be used to distinguish
between two situations: (1) two disjoint intervals, and (2) a single interval. In each case, the
corresponding estimated bounds are provided. To further demonstrate the e#ectiveness of our
proposed method in Section 3.2, we present two settings:

Setting 1. The spectral distribution for ω = 0.05, a = 10, n = 1000, p = 1700 (i.e.
y = 1.7) reveal two disjoint intervals.

Setting 2. The spectral distribution for ω = 0.5, a = 10, n = 1000, p = 1700 (i.e. y = 1.7)
form a single interval.

Under Setting 1, the criterion ! ⇓ ↔8.38 → 1025 < 0 is satisfied, implying the support of
the LSD is formed by two disjoint intervals. The Coarse Method provides bounds as established
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in Theorem 3.1 and discussed in Section 3.1. The Explicit Method o#ers explicit estimates
for the bounds {g(x(j))}s, introduced in Section 3.2. The Simulated Method refers to directly
computing eigenvalues via eigen-decomposition of a sample covariance matrix. Table 1 shows
that the estimates of both the coarse and explicit methods are close to those obtained from the
Simulated Method. Figure 3 showed that the estimated bounds in Explicit Method are very
close to the simulated bounded. For Setting 2, the criterion ! ⇓ 2.14 → 1026 > 0 is satisfied,
implying the support of the LSD is an interval. Table 2 shows that the estimates from both the
Coarse and Explicit Methods are close to those obtained from the Simulated Method. Figure 4
showed that the estimated bounds in Explicit Method are very close to the simulated bounded.

Method Interval 1 Interval 2

Simulated Method [0.1019 4.9566] [7.0041 18.4447]
Coarse Method [0.0979 ] [ 18.4314]
Explicit Method [0.0979 4.8998] [6.9009 18.4314]

Table 1: Comparison of three methods for estimating the bounds of the support of the spectral
distribution under Setting 1. The Coarse Method provides coarse estimated bounds as de-
scribed in Section 3.1, while the Explicit Method presents explicit estimated bounds introduced
in Section 3.2.

Method Interval

Simulated Method [0.2107 37.3610]
Coarse Method [0.2075 37.8357]
Explicit Method [0.2075 37.8357]

Table 2: Comparison of three methods for estimating the bounds of the support of the spectral
distribution under Setting 2. The Coarse Method provides coarse estimated bounds as de-
scribed in Section 3.1, while the Explicit Method presents explicit estimated bounds introduced
in Section 3.2.
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Figure 3: The histogram and kernel density estimate (KDE) of the spectral distribution for ω =
0.05, a = 10, y = 1.7 reveal two disjoint intervals. In this case, the criterion ! ⇓ ↔8.38→1025 < 0
is satisfied, and g(x(1)), . . . , g(x(4)) represent the four estimated bounds corresponding to Case
2 in Section 3.2.

Figure 4: The histogram and kernel density estimate (KDE) of the spectral distribution for ω =
0.5, a = 10, y = 1.7 reveal two disjoint intervals. In this case, the criterion ! ⇓ 2.14→ 1026 > 0
is satisfied, and g(x(1)) and g(x(2)) represent the two estimated bounds corresponding to Case
3 in Section 3.2.

5 Conclusion

Based on existing convergence results for the limiting spectral distributions of a generalized
sample covariance matrices, we have derived explicit bounds for the support of the LSD in
the important special case of a two-mass-point limiting measure. Our main theorem provides
concrete upper and lower bounds that can be computed through optimization problems involving
elementary functions. By geometric properties of quadratic functions, precise spectral bounds of
the LSD can be obtained. The explicit nature of our bounds makes them particularly valuable
for computational applications and numerical verification. Future research directions include
extending the bounds to support structures for more general limiting measure H, investigating
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the sharpness of the derived bounds, and developing e!cient numerical algorithms for computing
the extremal values in the optimization problems that define the support boundaries.
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